

Faculty of Engineering

A MOBILE APPLICATION FOR BIRD SPECIES

RECOGNITION USING DEEP LEARNING TECHNIQUES

ALVAREZ BERAI ANAK UCHONG

Bachelor of Engineering

Electrical and Electronics Engineering with Honours

2023

 UNIVERSITI MALAYSIA SARAWAK

 Grade: _____________

Please tick ()

Final Year Project Report

Masters

PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the 25th day of JULY 2023.

Student’s Declaration:

I ALVAREZ BERAI ANAK UCHONG, 69024, FACULTY OF ENGINEERING hereby declare that

the work entitled A MOBILE APPLICATION FOR BIRD SPECIES RECOGNITION USING DEEP

LEARNING TECHNIQUES is my original work. I have not copied from any other students’ work or

from any other sources except where due reference or acknowledgement is made explicitly in the

text, nor has any part been written for me by another person.

 27/07/2023 Alvarez Berai Anak Uchong (69024)

____________________ _______________________casue_

 Date submitted Name of the student (Matric No.)

Supervisor’s Declaration:

I ASSOCIATE PROFESSOR TS DR ROHANA SAPAWI hereby certifies that the work entitled A

MOBILE APPLICATION FOR BIRD SPECIES RECOGNITION USING DEEP LEARNING

TECHNIQUES prepared by the above named student and was submitted to the “FACULTY” as a *

partial/full fulfillment for the conferment of BACHELOR OF ENGINEERING, ELECTRICAL AND

ELECTRONIC ENGINEERING WITH HONOURS, and the aforementioned work, to the best of my

knowledge, is the said student’s work.

Received for examination by: AP Ts Dr Rohana Sapawi Date: 27/07/2023.

 (Name of the supervisor)

I declare that Project/Thesis is classified as (Please tick (√)):

 CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972) *

 RESTRICTED (Contains restricted information as specified by the organisation where

 research was done) *

 OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be

placed officially in the Centre for Academic Information Services with the abiding interest and rights

as follows:

• This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).

• The Centre for Academic Information Services has the lawful right to make copies for the

purpose of academic and research only and not for other purposes.

• The Centre for Academic Information Services has the lawful right to digitalise the

content for the Local Content Database.

• The Centre for Academic Information Services has the lawful right to make copies of the

Project/Thesis for academic exchange between Higher Learning Institute.

• No dispute or any claim shall arise from the student itself or third party on this

Project/Thesis once it becomes the sole property of UNIMAS.

• This Project/Thesis or any material, data and information related to it shall not be

distributed, published or disclosed to any party by the student except with UNIMAS

permission.

Student signature Supervisor signature: rrrrrrrrrrttttttttjjj

 (27/07/2023) Date: 27/07/2023

Current Address:

LOT3849 Phase 4 RPR Kidurong, Jalan Tanjung Kidurong, 97000, Bintulu, Sarawak

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as an

annexure a letter from the organisation with the period and reasons for confidentiality and

restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

A MOBILE APPLICATION FOR BIRD SPECIES

RECOGNITION USING DEEP LEARNING TECHNIQUES

ALVAREZ BERAI ANAK UCHONG

A dissertation submitted in partial fulfilment

of the requirement for the degree of

Bachelor of Engineering

Electrical and Electronics Engineering with Honours

Faculty of Engineering

Universiti Malaysia Sarawak

2023

ii

ACKNOWLEDGEMENT

First and foremost, I would like to thank our Almighty God for His grace, wisdom

and protection throughout the research and writing process. Without His guidance, this

project would not have been feasible.

I would also like to extend my deepest gratitude to Associate Professor Ts Dr Rohana

Sapawi, my Final Year Project supervisor, for her unwavering guidance and support, as

well as for generously sharing her skills from the beginning to the completion of this

academic journey.

Additionally, I must give my most thanks to Universiti Malaysia Sarawak for

providing access to research facilities and resources. Especially, I am very grateful to the

Department of Electrical and Electronics Engineering at University Malaysia Sarawak for

their support and resources throughout this academic endeavour.

Last but not least, I would like to express my heartfelt thanks to my family for their

love, support and encouragement over the course of conducting research and writing the

paper.

iii

ABSTRACT

The development of a mobile application for bird species identification has become a

significant area of research due to its potential to engage bird enthusiasts, facilitate citizen

science initiatives, and contribute to conservation efforts. In this project, we present a

comprehensive approach to building a mobile application for bird species identification,

encompassing the development of a machine learning model in Jupyter Lab, model

optimization using Google Cloud Platform with Vertex AI, then building the API to

process the request then send prediction and the creation of an application through

Android Studio. The system utilizeses a convolutional neural network (CNN) architecture

through transfer learning trained on a dataset of local Sarawak birds. The images were

preprocessed to enhance relevant features and remove noise. The CNN transfer learning

model chosen was EfficientNet-B4. To validate the robustness of the model, 5 famous

transfer learning model (EfficientNet-B4, ResNet-50, InceptionV3, MobileNetV2 and

VGG16) were compared through parameters such as training time, training loss,

validation loss, training accuracy, validation accuracy, test loss, and test accuracy. The

chosen EfficientNet-B4 model achieved an accuracy of 93.06%, test loss of 0.3156,

training accuracy of 96.81%, training loss of 0.1081, validation accuracy of 93.87%,

validation loss of 0.2853 and average training time of 285 seconds for 1 epoch with a total

of 20 epochs, demonstrating its effectiveness in accurately classifying the bird species.

The successful completion of this project makes a valuable contribution to the field of

bird species identification and conservation. The developed mobile application provides

an accessible and user-friendly tool for bird enthusiasts, researchers, and citizen scientists,

promoting active engagement in bird conservation efforts and facilitating data collection

for monitoring bird populations and habitats. Future directions for this project include

expanding the model's dataset to cover a broader range of bird species and environmental

conditions, as well as integrating real-time updates and environmental sensor data to

enhance the application's functionality and provide users with dynamic and contextually

rich bird identification information.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

Chapter 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Summary 4

Chapter 2 LITERATURE REVIEW 5

2.1 Overview 5

2.2 Related Studies 5

2.2.1 Traditional Bird Identification Method 6

2.2.2 Deep Learning for Bird Species Identification 8

2.3 Existing Bird Identification Mobile Applications 18

2.4 Research gap 20

2.5 Summary 21

Chapter 3 METHODOLOGY 22

3.1 Overview 22

3.2 Conceptual Framework 23

3.3 Methodology 24

3.3.1 Bird Dataset 25

3.3.2 Data Pre-Processing 26

v

3.3.3 Deep Learning Model Design 27

3.3.4 Integration and Implementation of Deep Learning Model

 29

3.3.5 Model Optimisation in Google Cloud Platform using

Vertex AI 30

3.3.6 User Interface (UI) for Mobile Application 31

3.3.7 Evaluate Mobile Application Accuracy 33

3.4 System Hardware & Software 34

3.5 Summary 34

Chapter 4 RESULT AND DISCUSSION 35

4.1 Overview 35

4.2 Comparison of Five (5) Transfer Learning Image Classification

Model 36

4.2.1 ResNet-50 36

4.2.2 VGG16 41

4.2.3 EfficientNet-B4 45

4.2.4 MobileNetV2 49

4.2.5 InceptionV3 53

4.2.6 Comparison Analysis Based on Parameters for 5 Image

Classification Model 57

4.3 Analysis of EfficientNet-B4 in Jupyter Lab Platform 59

4.4 Analysis of Model After Optimisation in Google Cloud Platform

using Vertex AI 61

4.5 Analysis of Mobile Application Testing Accuracy Result 64

4.6 Comparison of research model with another researcher’s model.

 69

4.7 Limitations of the Project 70

4.8 Summary 72

vi

Chapter 5 Conclusion 73

5.1 Future Works and Improvements 73

5.2 Conclusion 75

REFERENCES 77

APPENDIX 81

vii

LIST OF TABLES

Table Page

Table 2.1 Related Studies on Bird Identification using Deep Learning Technique 15

Table 2.2 Existing Mobile Applications for Bird Identification 19

Table 4.1 : Results for each parameter train for 20 epochs for ResNet-50 model. 40

Table 4.2: Results for each parameter train for 20 epochs for VGG16 model. 45

Table 4.3: Results for each parameter train for 20 epochs for EfficientNet-B4 model. 49

Table 4.4: Results for each parameter train for 20 epochs for MobileNetV2 model. 53

Table 4.5: Results for each parameter train for 20 epochs for InceptionV3 model. 57

Table 4.6: Comparison of parameters for each of the image classification model. 59

Table 4.7: Model Confusion Matrix. 63

Table 4.8: Result of Mobile App Testing with Test Dataset. 67

Table 4.9:Comparison for the research model with another existing research. 70

viii

LIST OF FIGURES

Figure Page

Figure 1.1 Pink-necked Green Pigeon (a), Ashy Tailorbird (b), Mangrove Blue

Flycatcher (c) and Common Flameback (d) [6]. 2

Figure 2.1 (a) Bird tagging [10] and (b) Local Guidebook for Bird [11]. 6

Figure 2.2 Deep Learning Subsets [13]. 8

Figure 2.3 Typical CNN Architecture [14]. 9

Figure 2.4 Architecture of Transfer Learning [20]. 11

Figure 3.1 Conceptual Framework of the study 23

Figure 3.2 Overall Flowchart of System 24

Figure 3.3 Training sets (a) and Validation set (b) of local bird species. 25

Figure 3.4 Dataset Pre-Processing Process 26

Figure 4.1: ResNet-50 Model Summary 38

Figure 4.2: Data of ResNet-50 train loss, validation loss, train accuracy and validation

accuracy for 20 epochs. 39

Figure 4.3 : Graph of training and validation loss for ResNet-50 model. 39

Figure 4.4: Graph of training and validation accuracy for ResNet-50 model. 39

Figure 4.5: Testing loss and accuracy of the ResNet-50 model. 40

Figure 4.6: Model Summary for VGG16 model. 42

Figure 4.7: Data of VGG16 train loss, validation loss, train accuracy and validation

accuracy for 10 epochs. 43

Figure 4.8: Graph of training and validation loss for VGG16 model. 43

Figure 4.9: Graph of training and validation accuracy for VGG16 model. 44

Figure 4.10: Testing loss and accuracy of the VGG16 model. 44

Figure 4.11: EfficientNet-B4 Model Summary 46

Figure 4.12: Data of EfficientNet-B4 train loss, validation loss, train accuracy and

validation accuracy for 20 epochs. 47

Figure 4.13: Graph of training and validation loss for EfficientNet-B4 model. 47

Figure 4.14: Graph of training and validation accuracy for EfficientNet-B4 model. 48

Figure 4.15: Testing loss and accuracy of the EfficientNet-B4 model. 48

Figure 4.16: MobileNetV2 Model Summary 50

ix

Figure 4.17: Data of MobileNetV2’s train loss, validation loss, train accuracy and

validation accuracy for 20 epochs. 51

Figure 4.18: Graph of training and validation loss for MobileNetV2 model. 51

Figure 4.19: Graph of training and validation accuracy for MobileNetV2 model. 52

Figure 4.20: Testing loss and accuracy of the MobileNetV2 model. 52

Figure 4.21: InceptionV3 Model Summary. 54

Figure 4.22: Data of InceptionV3 train loss, validation loss, train accuracy and

validation accuracy for 20 epochs. 55

Figure 4.23: Graph of training and validation loss for InceptionV3 model. 55

Figure 4.24: Graph of training and validation accuracy for InceptionV3 model. 56

Figure 4.25: Testing loss and accuracy of the InceptionV3 model. 56

Figure 4.26: EfficientNet-B4 model test loss and accuracy performance. 60

Figure 4.27: Result of prediction of the model using the test set. 60

Figure 4.28: Average precision, precision and recall precision from Vertex AI. 61

Figure 4.29: Graph of Precision-recall and Precision-recall by threshold. 62

Figure 4.30: Mobile Application Overview. 64

x

LIST OF ABBREVIATIONS

CNN - Convulutional Neural Network

AI - Artificial Inteligence

TV - Television

CUB - Caltech UCSD Bird

UCSD - University of California San Diego

ResNet - Residual Network

ProtoPNet - Prototypical Part Network

UAV - Unmanned Aerial Vehicle

R-CNN - Region-based Convolutional Neural Network

YOLO - You Only Look Once

IoT - Internet of Things

SVM - Support Vector Machine

VggNet - Visual Geometry Group Network

API - Application Programming Interface

DeCaf - Deep Convulutional Neural Network Activation Features

RS-DeCaf - Reducing and Stretching

MobileNet - Mobile Network

CWBF - Chinese Wild Bird Federation

ID - Identification

POOF - Part-based One-vs-One Features

IOS - IPhone Operating System

UI - User Interface

ONNX - Open Neural Network Exchange

CPU - Central Processing Unit

xi

GPU - Graphics Processing Unit

RAM - Random Access Memory

OS - Operating System

GDDR - Graphics Double Data Rate

HDD - Hard Disk Drive

SSD - Solid State Drive

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Sarawak, known for its historical association with head-hunters and abundant

hornbill population, is the largest state in Malaysia and covers the north western region

of the island of Borneo. The rainforests in this area are incredibly diverse and teeming

with a wide variety of tropical wildlife [1]. Sarawak is home to a significant number of

Borneo's 650 bird species, including many of the island's unique, endemic species such

as the Bornean Bristlehead. The state boasts the highest number of national parks and

nature reserves in Malaysia, covering over 600,000 hectares of protected areas, providing

excellent birdwatching opportunities [2].

 National parks in Sarawak still rely on old method using the expertise of

ornithologists to identify bird’s species. By old methods means Sarawak government still

hired ornithologist or birds’ experts to help them identify and keep count of birds

manually in Sarawak every year to obtain their statistics for conservations purposes.

Recent advancement of deep learning, provides state of the art solutions to help bird

conservation.

According to Sarawak Forestry, as of 2019 statistics, there are 47,349 visitors 1/3

are foreigners came to Sarawak for birdwatching and as of 2021 annual shorebird count

by ornithologist detected that an increase of 6.7% bird in Sarawak from the previous year

and 2.4% among detected were endangered bird species [3]. Figure 1.1 shows some of

2

the rarest birds that can only be found in Sarawak are Pink-necked Green Pigeon, Ashy

Tailorbird, Mangrove Blue Flycatcher and Common Flameback [4].

Figure 1.1 Pink-necked Green Pigeon (a), Ashy Tailorbird (b), Mangrove Blue

Flycatcher (c) and Common Flameback (d) [6].

 Past research in using deep learning technique such as [5], [6], [7], [8] and [9]

stated that deep learning technique achieved a high accuracy and faster time in identifying

and classifying bird species. This shows that deep learning is proven to be the ideal and

effectives way to help identifies and classifying the bird’s species. Therefore, it is a need

to create a mobile application that integrate deep learning model for identifying and

classifying bird species to help Sarawak Government as well as Sarawak Tourism for

conservations and tourists.

1.2 Problem Statement

National parks in Sarawak still rely on old method using the expertists of

ornithologists to identify bird species where current methods for bird species

identification rely heavily on expert knowledge and manual observation, which can be

time-consuming and subject to observer bias. This can limit the accuracy and reliability

of bird species identification, and can also make it difficult to collect and analyse data on

a large scale. In addition, current methods may not be practical or feasible in remote and

(a) (b) (c) (d)

3

difficult-to-access areas, where expert knowledge may not be readily available and

manual observation may be challenging.

Birdwatching is a popular activity for tourists visiting Sarawak, however, many

visitors have a hard time identifying the different bird species in real-time. This is due to

a lack of resources available for tourists to reference, such as local guidebooks on birds

found in Sarawak. With over 600 species of birds found in Sarawak, many of which are

endemic to Borneo, identifying the birds can be a challenging task for visitors who are

not familiar with the local avifauna. Even for experienced birders, it can be difficult to

find detailed and accurate information about the birds found in the area. As a result,

tourists often have to rely on their eyes and the knowledge of local guides to identify the

birds they encounter in the national parks. This can make the experience of birdwatching

less enjoyable and informative for tourists, as it can be difficult to learn about the different

bird species and their behaviours without proper resources. In addition, it also limits the

potential for tourists to contribute to citizen science or bird monitoring programs.

Deep learning has been used in recent years as a method for identifying birds,

however, it is not without its limitations. One of the main limitations is that it is not a

real-time process. These methods typically involve the use of pre-trained models that

require a large amount of data to be fed into them in order to accurately identify birds.

This process of feeding the data and running the models can take a significant amount of

time, making it difficult to identify birds in real-time while observing them in the wild.

1.3 Objectives

The main objective of this research is to develop a mobile application for bird

species recognition using image processing techniques and deep learning, with the goal

of providing an accurate and convenient tool for birdwatchers and ornithologists to

identify and classify different species of birds in real time.

4

The specific research objectives are to:

1. Develop a deep learning model that can classify bird species based on

images.

2. Design a user-friendly mobile application that can utilised the trained deep

learning model to classify birds in real time.

3. Evaluate the accuracy of the mobile application in term of its accuracy.

1.4 Summary

In summary, this research aims to develop a mobile application that uses image

processing techniques and deep learning to accurately recognize and identify different

bird species from photographs, and provide identification and information about the

species. The application is intended to make it easier for non-experts to identify and learn

about birds, and has the potential to be a valuable tool for birdwatchers, conservationists,

and anyone interested in birds. The development of this application is motivated by the

importance of birds in biodiversity and the need for a tool that facilitates the identification

and monitoring of bird species, and has the potential to make a significant contribution to

the field of ornithology and conservation.

5

Chapter 2

LITERATURE REVIEW

2.1 Overview

This chapter will discuss on old or traditional method in identifying bird and compare

it with existing researches on bird identification using deep learning technique (CNN or

Transfer Learning) and also the existing mobile application in Appstore and Google Play

store. This research also discusses the research gap of the current deep learning technique

as well as the existing mobile application for bird identification.

2.2 Related Studies

Many researches have been worked on deep learning specifically using transfer

learning but few has applied the deep learning model into mobile applications with local

Sarawak’s bird dataset. Many researchers have worked on only bird recognition with

many traditional diverse solutions. Table 2.1 will discuss on some of the related works

on bird identification by researchers.

6

2.2.1 Traditional Bird Identification Method

Figure 2.1 (a) Bird tagging [10] and (b) Local Guidebook for Bird [11].

Traditional bird identification methods have been used for centuries by ornithologists

and birdwatchers to identify and study bird species. These methods include using field

guides, plumage, behavior, and habitat to identify birds [12].

Figure 2.1 shows bird tagging that involves attaching a small tag to a bird, typically

on the leg, that contains identifying information such as a unique number or code. This

allows researchers to track the movements and migrations of individual birds, which can

provide valuable information about the ecology and behaviour of different species. Local

book guides, on the other hand, are physical or digital guidebooks that contain detailed

information about different bird species, including illustrations, descriptions, and

information about their distribution, habitat, and behavior. These guides are typically

focused on a specific region and can be used by birdwatchers and researchers to identify

different bird species in the field.

Both of these methods have their own advantages and disadvantages. Bird tagging

provides a way to track individual birds over time and can provide detailed information

about their movements and habits, but it requires capturing and handling the birds. Local

book guides are an efficient and easy way to identify birds in the wild, but it requires an

(a) (b)

7

expert to use them, and the information provided may not be as detailed as the information

provided by tagging.

One of also the most common methods for identifying birds is to rely on memory and

prior knowledge. Birdwatchers or birders must familiarize themselves with different

species by studying birding books, magazines, and guides in order to recognize a species

when they see it in the wild. This can require a significant amount of time and effort to

review and learn about different birds. In the field, birds may not always be clearly visible

and may only be seen briefly, which can make identification difficult.

One way for a birdwatcher to determine the identity of a bird is to ask someone who

is knowledgeable about birds and is nearby or easily accessible. Another option is to take

a picture of the bird and then refer to resources such as books or online guides, or seek

out an expert for assistance. Alternatively, the birdwatcher can make notes and possibly

draw the bird and then seek expert help at a later time.

Field guides are books that contain illustrations, photographs, and descriptions of

different bird species. These guides are often organized by region, and they provide

information on the size, shape, color, and markings of different bird species, as well as

information on their habitat, behavior, and distribution. Field guides are a popular and

widely used tool for bird identification, and they are considered to be the foundation of

traditional bird identification methods.

Plumage, or the feathers of a bird, is another important aspect of traditional bird

identification method. The color, pattern, and shape of a bird's feathers can provide

important clues as to its identity. Birds also have different feather patterns and colors

depending on their age and sex, so ornithologists and birdwatchers must take these factors

into account when identifying birds by their plumage.

Behavior and habitat are also important factors in traditional bird identification

methods. Birds have different behaviors and habitats depending on their species, and

these can provide important clues as to their identity. For example, some birds are more

active during the day, while others are more active at night. Some birds live in forests,

while others live in grasslands or wetlands.

8

2.2.2 Deep Learning for Bird Species Identification

Figure 2.2 Deep Learning Subsets [13].

Based on Figure 2.2, deep learning is a type of machine learning that utilizes neural

networks with three or more layers, which aim to mimic the functioning of the human

brain, allowing it to learn from large amounts of data. While a neural network with a

single layer can still make rough predictions, extra hidden layers can improve and refine

accuracy. Deep learning is the driving force behind many AI applications and services

that increase automation, enabling the execution of analytical and physical tasks without

human intervention. It is the underlying technology for everyday products and services

like digital assistants, voice-enabled TV remotes, and credit card fraud detection, as well

as emerging technologies such as self-driving cars.

Deep learning is a branch of machine learning that stands out due to the type of data

it can handle and the methods it employs for learning. Machine learning algorithms

generally use structured, labelled data to make predictions, while deep learning skips pre-

processing steps and can handle unstructured data such as text and images, automatically

extracting features [13]. For instance, deep learning algorithms can identify which

features, such as ears, are crucial to distinguish different animals, whereas in machine

9

learning, this hierarchy of features is established manually by human experts. Through

the process of gradient descent and backpropagation, the deep learning algorithm adapts

and improves itself for greater accuracy, allowing it to make predictions with more

precision.

 Convolutional Neural Network

Figure 2.3 Typical CNN Architecture [14].

A standard CNN architecture comprises several layers that work in tandem to extract

features from an input image. Figure 2.3 shows that these layers can be broadly divided

into two categories: convolutional and fully connected layers.

The convolutional layers extract features from the input image by applying a set of

filters, which are small matrices that scan the image to identify specific patterns. The

output of the convolutional layer is a feature map, which is a condensed representation of

the input image that highlights the features detected by the filters. The pooling layers are

used to reduce the number of pixels in the image by taking the maximum or average value

of a small region of the feature map, this reduces computational burden and improves the

robustness of the network.

The fully connected layers are used to analyze the features extracted by the

convolutional layers. There are a large number of neurons composed together that are

connected to all the neurons in the previous layer. The output of the fully connected layers

is a set of class scores, which are used to classify the input image into one of several

10

predefined classes. The normalization layers are used to improve the stability of the

network during training. The most common normalization technique used in CNNs is

batch normalization, which normalizes the activations of the neurons across a batch of

images to reduce the internal covariate shift.

Additionally, more complex models may use additional layers such as dropout, which

is a technique used to prevent overfitting by randomly dropping out neurons during

training, and residual layers, which aims to make the optimization process easier by

allowing the network to learn the residual mapping between the input and output.

Based on Table 2.1, related studies on bird identification such as Wei et al [15] that

published a paper on a method for identifying specific species of birds in images, a

difficult task in computer vision known as fine-grained bird species categorization. The

research used the Caltech-UCSD Birds (CUB) dataset, which includes over 5,994 images

of birds from 200 different species. The authors developed the Mask-CNN method, which

combines a CNN called ResNet-50 with a masking module to localize parts of the bird in

the image, such as the head and wings, and select relevant descriptors for classification.

The method achieved an accuracy of 80.2% on the CUB dataset, a notable result in this

field where distinctions between species can be subtle and variations within a species can

be large. Mask-CNN addresses these challenges and performs well on the CUB dataset.

Chen et al [16] published paper in 2019 on deep learning for interpretable image

recognition, a task that involves accurately classifying images and explaining the

reasoning behind the classification decisions. The research used the CUB-200-2011

dataset, which includes images of 200 different bird species, and developed the ProtoPNet

method based on a combination of three neural network architectures. ProtoPNet

achieved an accuracy of 84.8% on the CUB-200-2011 dataset and provided interpretable

explanations for its classification decisions.

In 2019, Hong et al [17] published a paper on using deep learning methods for bird

detection in images captured by unmanned aerial vehicles (UAVs). Accurate detection of

birds in UAV imagery is important for a variety of applications, such as wildlife

monitoring and conservation. The research used a dataset of 113,466 images self-captured

by the authors using UAVs. The authors compared three different deep learning models

for the task, Faster R-CNN, YOLO, and a combination of Resnet 101 and Inception v.2.

11

The combination of Resnet 101 and Inception v.2 achieved the best performance, with an

accuracy of 95.44% on the dataset.

In 2021, Jacob et al [18] published a paper on a deep learning algorithm for image-

based recognition in IoT applications. The algorithm was developed using the Caltech-

UCSD Birds-200-2011 dataset, which includes over 11,000 images of 200 bird species.

The authors used a pre-trained SVM in the development of the algorithm, which achieved

an accuracy of 92.5% on the dataset while in 2020, Satyam Raj [19] published a paper on

using CNNs for identifying bird species in images. The research used a dataset of 8218

images of 60 different bird species obtained using Microsoft's Bing Image Search API v7

and developed the VGGNet CNN for the task. The model achieved an accuracy of 93.19%

on the dataset, showing the effectiveness of CNNs in image-based bird species

identification.

In 2021, Huang et al [5] published a paper on using deep learning models for

recognizing endemic bird species. The research used a dataset of 31,320 images from the

China Wildlife and Nature Federation and BirdLife International, and developed the

Inception-ResNet-v2 model for the task. The model achieved an accuracy of 97.90% on

the dataset compared to in 2018, Niemi et al [9] published a paper on deep learning for

automatic bird identification. The research used a dataset of 9,312 images collected in

Finland and developed a deep learning model based on an SVM classifier. The model

achieved an accuracy of 94.63% on the dataset.

 Transfer learning

Figure 2.4 Architecture of Transfer Learning [20].

12

Figure 2.4 shows that transfer learning involves using a model that has already been

trained on a task as a starting point for a new, related task [20]. This allows the new model

to take advantage of the knowledge gained from the original training, potentially leading

to better performance. Transfer learning can be particularly useful when there is a limited

amount of data available for the new task. In deep learning, transfer learning has been

successful in achieving top results for a range of tasks, such as image recognition, speech

recognition, and natural language processing. All the researchers here used transfer

learning method which in 2018, Zhong et al [21] published a paper on using DeCAFs for

image classification. The research used the Caltech-UCSD birds’ dataset and developed

the RS-DeCAF method for reducing and stretching DeCAFs. The RS-DeCAF method

was used with transfer learning and an AlexNet model and achieved an accuracy of

35.31% on the dataset. While this result demonstrates the potential of DeCAFs for image

classification, the performance of the RS-DeCAF method was lower than other methods.

Srijan et al (2021) [20] conduct research focused on mobile application for bird

species identification using transfer learning. The application was trained on a dataset

from Kaggle that includes 40,000 images of 260 different bird species. The authors used

the efficientNet-Lite architecture and transfer learning to train the model. The results of

their study showed that the mobile application achieved an accuracy of 98.61% in

identifying bird species. The use of transfer learning in this study allowed the authors to

take advantage of pre-trained models, which reduced the amount of data and

computational resources needed to train the model, making it feasible to deploy the model

on a mobile device.

In 2020, Rahman et al [7] published a paper on using deep learning to recognize local

birds in Bangladesh. The research used a dataset of 3500 images of local birds in

Bangladesh and developed the Inception-v3 and MobileNet models for the task. Transfer

learning was used to improve the performance of the models, which achieved an accuracy

of 91.00% on the dataset while in 2020, Ragib et al [22] published a paper on using deep

learning to automatically identify bird species. The research used a dataset of 14,000

images and developed the ResNet-101 model for the task. Transfer learning was used to

improve the performance of the model, which achieved an accuracy of 97.98% on the

dataset.

In 2021, Al-Showarah et al [6] published a paper on using deep learning to identify

birds. The research used a dataset of 4340 images of 434 bird species from the Jordanian

13

Bird Watching Association and developed the VGG19 model for the task. Transfer

learning was used to improve the performance of the model, which achieved an accuracy

of 71% on the dataset compare to in 2019, Boudaoud et al [23] published a paper on using

deep learning to detect marine birds in high-resolution aerial images. The research used

a dataset of 12,352 images and developed a CNN-based model for the task. Transfer

learning was used with a pre-trained model to improve the performance of the model,

which achieved an accuracy of 95.18% on the dataset. In 2021, Wu et al [24] published a

paper on using deep transfer learning for bird classification. The research used the CUB-

200-2011 dataset of 11,788 images and developed the ResNeXt model for the task.

Transfer learning was used to improve the performance of the model, which achieved an

accuracy of 84.43% on the dataset.

 Dataset

Datasets in deep learning are groups of data utilized to teach, assess, and examine a

machine learning model, such as a deep neural network. The data in a dataset generally

includes input and output pairs, where the input is a set of features or attributes and the

output is the related label or category [25].

The significance of a dataset in deep learning is that it enables training a model that

can generalize well to new, unseen data. In simpler terms, a good dataset will have a wide

variety of examples that cover the full spectrum of possible inputs and outputs, allowing

the model to make accurate predictions on new, unseen data. Additionally, a large and

diverse dataset can also aid in preventing overfitting, a common issue in deep learning

where a model becomes too specific to the training data and performs inadequately on

new data [25].

Most of the researcher and journals reviewed such as [16], [15], [21], [18] and [24]

use dataset obtains from CUB-200-2011 dataset, developed by Caltech and UCSD. The

dataset is a collection of images of birds, comprising of more than 11,000 images of 200

distinct bird species. The dataset is intended for use in fine-grained visual classification

tasks, such as determining the particular breed of a bird in an image. The images in the

dataset have been gathered from the internet, and are varied in terms of perspective, scale,

14

and background. The images have also been manually labeled with bounding boxes

around the birds and labels indicating the species.

Additionally, each image has a set of attributes, such as the presence of specific body

parts of the bird (e.g., crest, tail, etc.) which can be utilized as supplementary features for

training models. It is a challenging dataset due to the high variability of the images, which

makes it a good test-bed for developing and evaluating new image recognition algorithms.

The dataset is also widely used as a benchmark for comparing the performance of

different deep learning models.

Researcher in [19] uses Microsoft's Bing Image Search API v7 that contain 60 species

with 8218 images are used in combination with deep learning techniques to create a bird

identification system. The API are used to search the internet for images of birds, and to

retrieve the search results in the form of image URLs, metadata, and thumbnails. While

researcher [26] used dataset from JONATHAN specifically for fine-grained bird

classification. It is a large-scale dataset of annotated images of birds, which can be used

to train deep learning models for the task of fine-grained bird classification. The dataset

includes over 200,000 images of birds belonging to 600 different species. Both the dataset

is better in terms of large number of images and variety of bird images but since the

dataset is from the web the quality of some images may be poor.

Some researcher [17], [7], and [9], capture and collect their own dataset of images of

birds with 113,466 images, 3500 images and 9,312 images respectively. The bird’s

images collected were from the researcher’s local birds to cater for specific birds in their

own regions respectively. So, from the journal self-collected images the researchers

actually have control over data collection, types of images that are included, as well as

the annotation process. This allows researchers to ensure that the dataset is tailored to the

specific task of bird identification and that the data is of high quality but this process is

time-consuming as collecting and annotating a dataset can be a time-consuming process,

which can delay the development of a deep learning model.

15

Table 2.1 Related Studies on Bird Identification using Deep Learning Technique

Ref Research Focus Dataset/ Database Size Learning Architecture/ Model Accuracy

Srijan et al,

2021 [20]

Mobile Application for Bird

Species Identification Using

Transfer Learning

Kaggle 260 bird

species,

40,000

images

Transfer

Learning

EfficientNet-Lite 98.61%

Wei et al, 2017

[15]

Localizing Parts and Selecting

Descriptors for Fine-Grained Bird

Species Categorization

Caltech-UCSD

Birds (CUB)

5,994 images Deep

Learning

Mask-CNN

ResNet-50

80.2%

Chen et al,

2019 [16]

Deep Learning for Interpretable

Image Recognition

CUB-200-2011 200 species Deep

Learning

ProtoPNet

(VGG19 +ResNet34

+DenseNet121-based)

84.8%

16

Hong et al,

2019 [17]

Application of Deep-Learning

Methods to Bird Detection Using

Unmanned Aerial Vehicle Imagery

Self-captured 113,466

images

Deep

Learning

Faster R-CNN

YOLO

Resnet 101

Inception v.2

95.44%

Zhong et al,

2018 [21]

Reducing and Stretching Deep

Convolutional Activation Features

for Accurate Image Classification

Caltech-UCSD

birds

5,994 images Transfer

Learning

RS-DeCAF

AlexNet

35.31%

Rahman et al,

2020 [7]

Recognition of Local Birds of

Bangladesh using MobileNet and

Inception-v3

Bangladesh local

birds

3500 images, Transfer

Learning

Inception-v3,

MobileNet

91.00%

Jacob et al,

2021 [18]

Design of Deep Learning

Algorithm for IoT Application by

Image based Recognition

Caltech-UCSD

Birds-200-2011

11,000

images

Deep

Learning

Pre-Trained SVM 92.5%

Satyam Raj,

2020 [19]

Image based Bird Species

Identification using Convolutional

Neural Network

Microsoft’s Bing

Image Search API

v7

60 species,

8218 images

Deep

Learning

VGGNet 93.19%

17

Ragib et al,

2020 [27]

Automatic Bird Species

Identification Using Deep Learning

 14000 images Transfer

Learning

ResNet-101 97.98%

Al-Showarah

et al, 2021 [6]

Birds Identification System using

Deep Learning

Jordanian Bird

Watching

Association

4340 images,

434 bird

species

Transfer

Learning

VGG19 71%

Huang et al,

2021 [5]

Recognition of Endemic Bird

Species Using Deep Learning

Models

CWBF, BirdLife

International

31,320

images

Deep

Learning

Inception-ResNet-v2 97.90%

Boudaoud et

al, 2019 [23]

Marine Bird Detection Based on

Deep Learning using High-

Resolution Aerial Images

JONATHAN

Training

12,352

images

Transfer

Learning

CNN Based,

Pre-trained model

95,18%

Wu et al, 2021

[24]

Birds Classification Based on Deep

Transfer Learning

CUB-200-2011 11,788

images

Transfer

Learning

ResNeXt 84.43%

Niemi et al,

2018 [9]

Deep Learning Case Study for

Automatic Bird Identification

Manually collected

data at site

(Finland)

9,312 images Deep

Learning

SVM classifier 94.63%

18

2.3 Existing Bird Identification Mobile Applications

This research study examined 5 widely available bird identification mobile apps,

Merlin Bird ID, National Geographic Birds, Peterson Birds, iBird Pro and Audobon Birds

as shown in Table 2.2. The development of Merlin Bird ID involved the contribution of

experts, Amazon Mechanical Turk workers, and over 500 citizen scientists, who helped

to annotate the dataset used by the app [28]. The dataset included partial annotations and

bounding boxes. The app also uses a "human-in-the-loop" approach, in which it provides

users with an identification result based on input from human experts.

Partial annotation is a costly process that can be time-consuming and labour-intensive,

and it does not necessarily result in a dataset that is completely error-free. Novice

annotators may make mistakes, but if the annotators are knowledgeable in the subject

matter, the dataset may be more accurate. "Human-in-the-loop" methods, which involve

input from human experts, can reduce the user experience because they require users to

take additional steps to obtain a result .

National Geographic Birds uses a different type of classifier than the commonly used

"one-vs-all" classifier [29]. The "one-vs-most" classifier used by National Geographic

Birds compares the input image to the species that is most likely to be a match, rather

than all species. National Geographic Birds employs Part-based one-vs-one Features

(POOFs) and Support Vector Machines (SVMs) for image classification. However,

Convolutional Neural Networks (CNNs) have been found to be more effective for image

classification than SVMs. Like, Merlin Bird ID, National Geographic Birds also uses a

dataset with bounding boxes and part annotations.

Peterson Birds is a widely used mobile application for bird identification created by

ornithologist Roger Tory Peterson [30] while Audubon Birds is based on the Audubon

field guide, a widely recognized and respected guide to bird identification [31]. Both the

app, includes illustrations, descriptions, and information about the distribution, habitat,

and behaviour of different bird species, and is organized by colour, shape, and size,

making it easy for users to identify birds in the field. One of the benefits of the apps are

their recognition and long history of helping people identify birds. The app is also easy

19

to use and navigate, making it easy for users to find the information they need.

Furthermore, its portable and accessible nature makes it convenient for users who are in

the field. However, both the app may require internet connection to access its information

which might not be accessible in some areas, and it may not be updated regularly, lacking

the most recent information about bird species.

iBird Pro is a mobile application that provides a comprehensive guide for identifying

over 940 bird species found in North America [32]. The app features detailed illustrations,

descriptions, and information on the distribution, habitat, and behaviour of different bird

species. It also includes additional features such as bird calls, search filters, and quizzes,

which assist users in identifying birds in the field. One of the benefits of using iBird Pro

is the large number of bird species included in the guide, making it a valuable resource

for bird watchers, naturalists, and researchers. Furthermore, the app includes features

such as bird calls and quizzes that can help users improve their bird identification skills.

However, a disadvantage of the app is that it focuses only on North American bird species,

making it not useful for users in other regions. Additionally, certain features of the app

may require internet connection which may not be available in some areas.

All the bird app mentioned uses only the dataset for their own respective region which

is mainly in the Europe and North-America region. In this research, it focuses specifically

on the local bird here in Sarawak which will uses a local bird dataset and specifically

identify and classes the birds accordingly based on the local birds from Sarawak.

Table 2.2 Existing Mobile Applications for Bird Identification

Ref. Application Dataset

Size

Ease of use Platform

availability

Accuracy

[28] Merlin Bird

ID

400

common

species

in North

America

Search Time -

Approximately

7 seconds

IOS only Approximately

95.00%

20

2.4 Research gap

The existing literature on bird image classification and deep learning is extensive,

with deep learning techniques achieving impressive results on a variety of image

classification tasks. However, most of the existing research has focused on traditional

computer-based approaches, with relatively little attention given to mobile-based

solutions. This is a significant gap, as mobile devices are becoming increasingly powerful

and prevalent, and there is a growing demand for accessible and user-friendly tools that

can be used in the field.

The current existing researches also contain mostly dataset from the Europe and North

America region which is not suitable since this research focus is on local birds from

Sarawak. Thus, the existing deep learning models are not suitable to train local bird

dataset on. Besides, the existing study are mostly using a computer-based software to

evaluate the accuracy and identified the bird species on. This is not a real-time approach

for birder and tourist to rely on when identifying the bird species on the field.

[29] National

Geographic

Birds

860

species

Search Time -

Approximately

5 seconds

IOS &

Android

Approximately

90.00%

[30] Peterson

Birds

800+

species

Search Time -

Approximately

5 seconds

IOS &

Android

Approximately

93.00%

[32] iBird Pro 946

species

Search Time -

Instant search

IOS only Approximately

95.00%

[31] Audobon

Birds

760+

species

Search Time -

Approximately

3 seconds

IOS &

Android

Approximately

98.00%

21

2.5 Summary

The literature review chapter in this report on bird species recognition utilizing image

processing techniques and deep learning give a summary of the current research in this

field. This chapter start by addressing related studies, including any prior work on mobile

applications for bird species recognition, and any related studies on image processing

techniques and deep learning. The chapter then explore traditional bird identification

methods and their shortcomings. Additionally, it also discusses the benefits that image

processing techniques and deep learning bring to the field of bird species recognition.

This literature review also delves into the specific methods employed in your research,

such as convolutional neural networks and transfer learning. Related studies also provide

a summary of the dataset used in the research, including how it was obtained and

preprocessed. Last but not least, the chapter summarize the key findings of the literature

review and how they relate to the research question or problem statement of the project

that include a discussion of the gaps in existing research that this study aims to fill.

22

Chapter 3

METHODOLOGY

3.1 Overview

This chapter discusses the methods that need to be done to achieve the objectives

stated in chapter 1. The chapter delves into the conceptual framework of the mobile app,

outlining how it will work. Additionally, it covers the methodology, which includes the

dataset used and how it was obtained, as well as the size of the data related to the local

birds of Sarawak.

Furthermore, the chapter explores the data pre-processing techniques employed to

process the dataset effectively. It also describes the deep learning model used,

incorporating transfer learning, and outlines the process of designing and training the

model. An essential part of this chapter involves the steps taken to convert the model into

a lighter version suitable for the mobile app, utilizing TensorFlow and TensorFlow-Lite.

Moreover, the chapter delves into the design process of the User Interface (UI) of the

mobile app, ensuring an optimal user experience. It also addresses the process of

integrating and implementing the model into the mobile app. The evaluation of the mobile

app is a significant aspect, where its accuracy is assessed.

Last but not least, this chapter provides insights into the hardware and software

involved in the entire process, along with their specifications. Understanding these

aspects is crucial for comprehending the comprehensive setup that underlies the

development of the mobile app and its deep learning model.

23

3.2 Conceptual Framework

Figure 3.1 Conceptual Framework of the study

 Based on Figure 3.1, a conceptual framework was used to develop a mobile

application for bird species recognition. The mobile application allows users to capture

bird images using their phone's camera or upload images from their phone's library. The

captured images are then processed and analysed using a deep learning neural network

algorithm implemented in the mobile application. The algorithm determines the species

of the bird based on the cross entropy, train accuracy, and validation accuracy of the pixels

in the image. The output of the analysis, based on the trained model, displays the

identified bird species, its scientific name, and a recommended location where the bird is

commonly found.

24

3.3 Methodology

Figure 3.2 Overall Flowchart of System

Figure 3.2 shows the flowchart and the process in development of a mobile app for

bird identification that starts with acquiring a dataset of bird pictures. This dataset requires

cleaning and organizing through a pre-processing phase. After pre-processing, the data is

divided into training and validation datasets. The training dataset is then used to train the

deep learning model. It is crucial to evaluate the model's performance by checking for

any incorrectly classified images or low accuracy. In case of misclassified images or low

accuracy, the solution is to replace those misclassified images with the training data of

the corresponding birds to enhance the model's performance.

When the model performs well on the validation dataset, the next step is to design the

user interface (UI) of the mobile app which includes creating an easy to use and user-

friendly layout for the app, as well as designing various elements such as buttons and text

25

fields. After the UI design, it must be implemented and integrated with the deep learning

model by connecting the UI elements with the functionality of the model.

Next, the model that has been trained in Jupyter Lab is exported to Google Cloud

Platform using Vertex AI for further optimization of the model where the model will

undergo optimisation process such as quantisation, pruning, weight sharing and model

distillation. Since this model will be used for real time application which is the mobile

application, optimisation is important to improved performance, reduced model size, and

efficient deployment. After that, Application Programming Interface (API) is created to

be the bridge between the model in the cloud and the mobile app in Android Studio. API

is used to receive request from the mobile app and send it to the cloud where the model

is stored to receive and process the prediction from the app.

Finally, the mobile app must be tested for accuracy and bugs. This includes testing

the app with various bird images and ensuring that it correctly identifies the birds in the

images. It also includes checking for any bugs or crashes in the app.

3.3.1 Bird Dataset

Figure 3.3 Training sets (a) and Validation set (b) of local bird species.

 In this project, the dataset used are obtained from a lecturer, Dr Mohamad Fizl

Sidq bin Ramji from Faculty of Resource Science and Technology [33]. From Figure 3.3

the dataset provided contain a total of 1878 images of birds from 30 species of local birds

in Sarawak. All the images are in .jpg format and categorise in separate folders for each

(a) (b)

26

species. Each species of birds contains at least 60 to 80 images in each separate folder.

The dataset then separated into training and validation set with 80:20 split which 1503

files for training and 375 files for validation.

3.3.2 Data Pre-Processing

Figure 3.4 Dataset Pre-Processing Process

Figure 3.4 shows the process involved in dataset pre-processing process such as data

partitioning where it is a method of dividing a dataset into three distinct groups, training,

validation, and testing sets. The main goal of this technique is to prevent overfitting,

which happens when a model becomes too intricate and is unable to generalize to new

data. By utilizing a separate validation set, the model's performance can be examined on

unseen data, which provides a more precise evaluation of its capabilities. The standard

split is 80:20, where 80% of the data is used for training, 20% for validation and testing.

This technique also allows for evaluating the deep learning model's performance, as the

test set is used to measure its ability to generalize to new data. In conclusion, data

partitioning is an essential step in the development of deep learning models and helps to

ensure robustness and reliability.

Adjusting the dimensions of an image is known as image resizing. It can be used to

make an image bigger or smaller. In the context of deep learning, image resizing is

frequently used to make the size of images consistent before it can be used in the model.

For instance, in this research images are converted to 256x256 pixels, all images used for

training and testing must be adjusted to this size. This is significant as deep learning

27

models usually require a fixed input size and adjusting images to a consistent size allows

the model to process the images more effectively. The process of image resizing is

accomplished using image editing software OpenCV.

3.3.3 Deep Learning Model Design

Transfer learning is a method in which a pre-trained model is used as a starting point

for a new, but related, task. The pre-trained model provides a foundation of knowledge

that can be utilized in the new domain. There are different options for implementing

transfer learning, such as feature transfer and fine-tuning, depending on the relationship

between the tasks. Another option is to keep certain layers of the network unchanged and

retrain others [34].

The process of designing a deep learning model utilizing transfer learning

encompasses several essential stages. Initially, the required libraries and dependencies,

such as TensorFlow or PyTorch, are imported into the Python environment, commonly

utilizing Jupyter Lab as an interactive development platform. These libraries provide the

necessary tools and functions for constructing and training deep neural networks.

Subsequently, a pre-trained model is loaded into the framework. Renowned pre-

trained models such as VGG16, ResNet, MobileNet, EffifientNet and Inception are

readily available in deep learning frameworks like TensorFlow and PyTorch. These

models have undergone training on extensive datasets, often comprising millions of

images, enabling them to capture intricate and meaningful representations of visual

patterns.

To ensure that the pre-trained layers remain unaltered during the training process, the

model are frozen. By freezing the pre-trained layers, the learned weights and patterns are

preserved and not modified throughout the model's training. This step is critical in transfer

learning as it enables the newly added layers to concentrate on learning task-specific

features without interference from the pre-trained layers.

Once the pre-trained layers are frozen, custom layers are incorporated atop the pre-

trained model. These layers are responsible for learning the task-specific features that are

relevant to the objective at hand. For instance, one may add a Global Average Pooling

28

layer followed by a Dense layer. The Global Average Pooling layer consolidates spatial

information across the output feature maps, thereby reducing the dimensionality of the

data. Subsequently, the Dense layer offers the flexibility to learn non-linear relationships

and capture intricate patterns within the data.

Following the addition of custom layers, a new model is constructed by connecting

the input and output tensors of the pre-trained model to the input and output tensors of

the custom layers. This resulting model combines the pre-trained layers' capability for

feature extraction with the task-specific layers' aptitude for learning and categorizing the

data [35].

 Designing Deep Learning using Transfer Learning

The first step in designing a deep learning model with transfer learning in python on

Jupyter Lab is to load the pre-trained model using the "import" function from the

TensorFlow library. This function will return a pre-trained CNN model that can use as a

starting point for the new model.

The next step is to replace the final fully connected layers of the pre-trained model

with new layers that are suitable for the dataset. In this case, since the dataset contain 30

species with 30 classes, the final layer needs to be replaced with a new fully connected

layer with 30 outputs. This step allows the model to adapt to the new task and dataset.

Once the layers are replaced, the weights of the pre-trained layers need to be freeze

so it will not be updated during training. This step is important because the pre-trained

layers already contain useful information and so that the model will not overwrite it.

After that, the model be train on the new dataset using the "trainNetwork" function.

In this research, data portioning and image resizing will be performed to improve the

performance of the model. Once the model is trained, the model will be fine-tune by

unfreezing some of the pre-trained layers and training them on the new dataset. This step

allows for further adaption of the model to the new task.

Finally, the model will be tested on new data to evaluate its performance. Various

metrics such as training time, training loss, validation loss, training accuracy, validation

accuracy, test loss, and test accuracy.

29

 TensorFlow and TensorFlow-lite

After the deep learning model is trained and fine-tuned in MATLAB, the model file

is converted to TensorFlow or TensorFlow Lite for deployment on Android platform.

In converting the model to TensorFlow, "exportONNXNetwork" function is used

from the Deep Learning Toolbox to export the model to the ONNX format. ONNX (Open

Neural Network Exchange) is an open format for representing deep learning models that

allows for interoperability between different frameworks. Once the model is in ONNX

format, the TensorFlow's ONNX converter is used to import the model into TensorFlow.

The ONNX converter provides a python script that can be used to convert the ONNX

model to TensorFlow's protobuf format.

After the model is in TensorFlow format, TensorFlow Lite is used to convert it to a

format that is optimized for mobile and embedded devices. TensorFlow Lite is a

lightweight version of TensorFlow that is designed for mobile and embedded devices. It

allows TensorFlow models to run on devices with limited resources such as smartphones

and IoT devices. So, to convert the model to TensorFlow Lite, TensorFlow Lite converter

need to used. The TensorFlow Lite converter provides a python script that can be used to

convert the TensorFlow model to TensorFlow Lite format. TensorFlow Lite's command-

line tool also can be used to convert the model directly from the command line.

3.3.4 Integration and Implementation of Deep Learning Model

The first step to implement and integrate the TensorFlow Lite model into a mobile

application is to add the TensorFlow Lite for mobile library into the mobile application.

This can be done by including the TensorFlow Lite library in the application's build.gradle

file for Android or Podfile for iOS. This will allow the TensorFlow Lite APIs to be used

in the mobile application, which provides a set of APIs that allow the TensorFlow Lite

models to run on mobile and embedded devices.

The next step is to load the TensorFlow Lite model into the application. This can be

done by reading the model file and creating a TensorFlow Lite interpreter object that can

run the model. The interpreter object provides an easy-to-use interface to run the model

30

on input data. Once the model is loaded, the input data need to be prepared for the model.

This includes converting the data into the format that the model expects and scaling the

data if necessary. The input data should match the input tensor shape and type that the

model is expecting.

After the input data is prepared, the TensorFlow Lite interpreter object can be used

to run the model on the input data. This will produce the model's output, which is a set of

tensors. The next step is to process the output tensors to make them usable in the mobile

application. This may include converting the output to a format that is easy to use, or

mapping the output to a specific action or result in the application. The output tensors

should be processed based on the expected output of the model.

Finally, after the above steps have been implemented, the model can be integrated

into the mobile application by triggering the model's execution in response to user input

or other events. It's important to consider the performance and energy consumption of the

model when integrating it into the mobile application.

3.3.5 Model Optimisation in Google Cloud Platform using Vertex AI

The Model Optimization Toolkit provided by Vertex AI on Google Cloud Platform

offers a comprehensive range of techniques and tools to optimize machine learning

models. The goal is to improve model performance, reduce model size, and enable

efficient deployment. The toolkit consists of various components that address different

aspects of model optimization.

One important technique available in the toolkit is quantization. Quantization

involves converting the high-precision floating-point numbers in a model into lower-

precision fixed-point or integer representations. This reduction in the number of bits used

to represent numbers significantly decreases the memory requirements of the model and

enables faster inference on hardware accelerators like TPUs.

Pruning is another essential optimization technique. It involves identifying and

removing redundant connections, weights, or neurons from a trained model. During the

training process, neural networks often contain redundant components that have minimal

impact on overall performance. By eliminating these unnecessary components, pruning

31

produces a sparser model that requires fewer computations during inference, resulting in

improved efficiency.

Weight sharing is a technique included in the Model Optimization Toolkit that

reduces the number of unique weights in a model. Similar weights are grouped together

and stored as shared parameters, thereby reducing the memory footprint of the model.

This technique is particularly effective for convolutional neural networks (CNNs) due to

the spatial redundancies present in their weight tensors.

Model distillation is an optimization approach available in the toolkit, which involves

transferring knowledge from a larger, more complex model (teacher model) to a smaller,

more efficient model (student model). The student model is trained to mimic the

behaviour and predictions of the teacher model, allowing it to achieve comparable

performance while being more lightweight and suitable for deployment on devices with

limited resources.

To support the deployment of optimized models on mobile and edge devices, the

Model Optimization Toolkit utilizes TensorFlow Lite. TensorFlow Lite is a framework

specifically designed for deploying machine learning models on mobile and embedded

platforms. It incorporates optimizations such as quantization, weight quantization, and

hardware acceleration, further enhancing the efficiency and performance of models in

these deployment scenarios.

3.3.6 User Interface (UI) for Mobile Application

Recently, mobile technology has been increasingly utilized in wildlife conservation,

with a variety of mobile apps being developed to help identify and track different bird

species. One such app is a bird identification tool that uses deep learning to aid users in

recognizing birds by their visual features. The application's user interface (UI) is crucial

to its success, as it must be easy to use and understand in order to effectively guide users

in identifying birds.

Designing the User Interface (UI) for a mobile application that integrates a machine

learning model in Android Studio encompasses several essential steps. Initially, the

Android Studio project is established by creating a new project and specifying details like

32

the application name, package name, and minimum Android version. Depending on the

requirements, one can opt for a project template or start from scratch with a blank activity.

Subsequently, the main UI of the application is designed, taking into account the

necessary components for user interaction and displaying the machine learning model's

output. These components can include buttons, text views, image views, and input fields.

The layout and organization of these elements are carefully planned to ensure an intuitive

and user-friendly interface.

Once the UI design is finalized, the machine learning model is integrated into the

application. This involves importing the required libraries and dependencies specific to

the machine learning model into the Android project. The model is loaded and initialized

within the application code. Strategies are determined for processing and feeding user

input into the model for inference or prediction. The logic for invoking the model and

obtaining the results or predictions is established.

Handling user input is a critical aspect of UI design. Event handlers for UI

components are implemented to capture user input effectively. The UI is designed to

collect the necessary information for the model, such as text input, image capture, or file

upload. Preprocessing of user input data is conducted to ensure compatibility with the

model's input requirements. It is crucial to validate and format user input correctly before

passing it to the model for processing.

The presentation of the machine learning model's output to the user is another

significant consideration in UI design. The UI is designed to display the output in a user-

friendly format, which can include text, images, graphs, or visualizations. The formatting

and presentation of the output data are tailored to the specific requirements of the

application. Suitable UI components are employed to enhance the visual representation

of the results.

Optimizing the UI and performance of the application is vital for delivering a smooth

user experience. The performance impact of running the machine learning model on a

mobile device is taken into account. Strategies are implemented to optimize the UI and

code to ensure responsiveness and minimize processing time. Techniques such as

asynchronous processing or background threads may be employed to prevent UI freezing

during model execution. Thorough testing is performed on various Android devices and

screen sizes to ensure compatibility and optimal performance of the application.

33

3.3.7 Evaluate Mobile Application Accuracy

After implementing and integrating the trained deep learning model into the mobile

application, the mobile app is then move into testing phase. To evaluate the accuracy of

the mobile application designed for bird species identification, a comprehensive

assessment was carried out using a specific collection of 30 images showcasing various

local bird species. The primary objective of this evaluation was to determine the

application's ability to correctly recognize and identify the bird species depicted in the

provided images.

The evaluation procedure involved in putting the 30 test images into the mobile

application and recording the species identifications generated by the application for each

respective image. Subsequently, a manual assessment was conducted by comparing the

application's identifications with the known bird species present in the images.

In order to quantify the accuracy of the test, the number of correct identifications

made by the application was divided by the total number of test images. To express the

accuracy as a percentage, the resulting ratio was then multiplied by 100. For example, if

the application accurately identified 25 out of the 30 test images, the accuracy would be

calculated as (25/30) * 100 = 83.33%.

Through this evaluation process, a quantitative measure of the mobile application's

accuracy in identifying local bird species was obtained. The average accuracy rate derived

from this evaluation serves as a significant metric for assessing the application's

performance and reliability in real-world scenarios.

It is important to acknowledge that this evaluation was conducted using a specific set

of test images, and the accuracy of the application may vary when presented with different

images or bird species. To gain a more comprehensive understanding of the application's

accuracy and its potential for broader use, further evaluations employing diverse datasets

and a larger sample size would be beneficial.

34

3.4 System Hardware & Software

As for the system hardware, all simulations and the training of model is on a laptop

ASUS ROG GL552VW with specifications of Central Processing Unit (CPU) is Intel

Core i7-6700HQ, Graphics Processing Unit (GPU) is NVIDIA GeForce GTX 960M

(2GB GDDR5), Random Access Memory (RAM) is 16GB DDR4, with a storage of

128GB SSD + 1000GB HDD. For the mobile hardware where the app will be deployed

on Huawei nova 5T with specifications of Operating System (OS) is Android 9.0 (Pie),

upgradable to Android 10, EMUI 10, chipset is Kirin 980 (7 nm), Central Processing Unit

(CPU) is Octa-core (2x2.6 GHz Cortex-A76 & 2x1.92 GHz Cortex-A76 & 4x1.8 GHz

Cortex-A55), Graphics Processing Unit (GPU) of Mali-G76 MP10, memory of 128GB

8GB RAM and battery capacity of Li-Po 3750 mAh.

As for the system software, Jupyter Lab that is used for obtaining the pre-trained

model, Python software for training the deep learning model, TensorFlow & TensorFlow-

lite for converting the model into a lighter version to deployed the model into mobile app,

Vertex AI in Google Cloud Platform to optimise the model and Android Studio that is

used to design the UI for the mobile app.

3.5 Summary

The methodology chapter of this research on a mobile application for bird species

recognition using image processing techniques and deep learning provide an overview of

the methods used in this research. This chapter begin by describing the conceptual

framework of the mobile app, including the overall design. Next, this chapter detailed the

methods used in the research, including any image processing techniques used to pre-

process the bird dataset. This section also describes the deep learning model design

process and the steps taken to convert the model to TensorFlow-Lite for use in a mobile

app. Then this chapter also discuss the design of the UI and the steps taken to integrate

and implement the model into the mobile application. This chapter also include a

discussion of how the mobile app was evaluated in terms of accuracy and hardware and

software specifications. Finally, this chapter should summarize the key findings of the

methodology and how they relate to the research problem statement.

35

CHAPTER 4

RESULT AND DISCUSSION

4.1 Overview

In this chapter, an overview is provided of the outcomes and analysis derived from

various parameters for five image classification models employed in classifying local bird

species. The models under examination include ResNet-50, InceptionV3, VGG16,

MobileNetV2, and EfficientNet-B4. The parameters assessed encompass a range of

aspects such as training time, training loss, validation loss, training accuracy, validation

accuracy, test loss, and test accuracy.

Through the comparison of these parameters, the most effective model is selected for

further evaluation. Subsequently, the chosen model is deployed on Google Cloud

Platform using Vertex AI, where it undergoes optimization to enhance its performance.

The optimization process involves scrutinizing the precision-recall graph and precision-

recall threshold to gauge the model's precision and recall rates.

Additionally, the chapter delves into assessing the performance of the mobile

application associated with the model. This evaluation entails subjecting the mobile app

to testing with a test set, thereby facilitating the calculation of its average accuracy in

identifying bird species.

In summary, this chapter presents a comprehensive overview of the results and

analysis obtained from the image classification models, including the selection of the best

model, its deployment on Google Cloud Platform for optimization, and the evaluation of

the mobile app's accuracy.

36

4.2 Comparison of Five (5) Transfer Learning Image Classification Model

Transfer learning is a widely used technique in deep learning for image classification

tasks. In this project, five popular transfer learning models EfficientNet-B4,

MobileNetV2, InceptionV3, ResNet-50, and VGG16 were compared to help choose

which model best perform for the bird’s images dataset. These models are evaluated on

seven parameters which are their training time, training loss, validation loss, training

accuracy, validation accuracy, test loss, and test accuracy.

Training time refers to the duration for a neural network model to learn from the

training data and update its parameters. Additionally, training loss measures the

disagreement between the model's predicted outputs and actual labels in the training data.

Similarly, validation loss assesses the disagreement on a separate validation dataset,

guiding model improvements. Moreover, training accuracy measures the percentage of

correctly predicted outputs on the training data, while validation accuracy does the same

on the validation data. Furthermore, test loss evaluates the disagreement on unseen test

data, and test accuracy measures the percentage of correct predictions on the test data.

In order to assess the reliability and accuracy of the model, the local bird image

datasets will be utilized to train various image classification models. The purpose of

employing these datasets is to ensure that the image classification process can accurately

identify the species of each bird, with the intention of implementing it in a mobile app

platform later on. This project emphasizes the importance of evaluating the accuracy of

each trained model and how effectively it performs on the provided dataset.

4.2.1 ResNet-50

ResNet-50 is a member of the Res-Net family, which is a convolutional neural

network architecture widely utilized in computer vision tasks like image classification

and object detection.ResNet-50 is characterized by its 50-layer deep structure, enabling

it to effectively capture intricate patterns and features in images.

An important innovation of ResNet-50 is the incorporation of residual connections,

allowing the network to learn residual mappings and directly focus on the difference

37

between input and output at each layer. This resolves the issue of vanishing gradients and

enables successful training of deep networks.

ResNet-50 follows a modular design, comprising blocks that consist of convolutional

layers, batch normalization, and activation functions. These blocks facilitate feature

extraction at different levels of abstraction, enabling the model to learn representations of

varying complexities.

The ResNet-50 model has a total of 90,836,126 parameters shown in Figure 4.1.

Parameters are the variables learned by the model during training, and they are crucial for

its ability to make predictions on new data. A higher number of parameters often indicates

a more complex and potentially powerful model.

Out of the total parameters, 67,248,414 are trainable. Trainable parameters are the

ones that get updated during the training process to optimize the model's performance on

the training data. These trainable parameters are what the model adjusts and fine-tunes to

improve its ability to recognize patterns and features in the data.

The remaining 23,587,712 parameters are non-trainable. Non-trainable parameters

are those that are fixed and do not get updated during training. These parameters are

typically pre-defined or come from pre-trained models that serve as a starting point for

further training or transfer learning.

38

Figure 4.1: ResNet-50 Model Summary

From figure 4.2, 4.3, 4.4 and 4.5 during the first epoch, the model had a relatively

high training loss of 4.2724 and a low training accuracy of 0.0998 , indicating poor

performance on the training data. The validation loss was 2.6946, and the validation

accuracy was 0.2853, showing that the model was also struggling with unseen data during

validation.

As the training continued, the model's performance improved significantly. The

training loss decreased, and the training accuracy increased with each epoch. By the 20th

epoch, the training loss dropped to 0.9868, and the training accuracy reached 0.7631,

demonstrating the model's ability to learn and improve its predictions on the training data.

The validation performance also showed steady improvement throughout the training

process. The validation loss decreased from 2.6946 in the first epoch to 0.7053 in the 20th

epoch, indicating that the model became better at generalizing to new data. The validation

accuracy increased from 0.2853 to 0.8693, showing the model's ability to make accurate

predictions on previously unseen data.

39

Figure 4.2: Data of ResNet-50 train loss, validation loss, train accuracy and validation

accuracy for 20 epochs.

Figure 4.3 : Graph of training and validation loss for ResNet-50 model.

Figure 4.4: Graph of training and validation accuracy for ResNet-50 model.

40

Figure 4.5: Testing loss and accuracy of the ResNet-50 model.

The Table 4.1, provides a detailed evaluation of the performance of ResNet-50

throughout the training and validation processes, as well as the final test results. The

average training time for one epoch is 215 seconds, indicating how long it takes for the

model to process the entire training dataset once during training.

During the training phase, the model achieves an average training loss of 0.9401,

reflecting the discrepancy between its predicted outputs and the actual target labels. The

average training accuracy reaches 0.7631, indicating the model's proficiency in

classifying examples from the training set.

In the validation phase, the model's performance is assessed on a separate dataset not

used during training. The average validation loss is 0.7053, indicating good generalization

performance and learning meaningful representations from the data. The average

validation accuracy is 0.8693, demonstrating the model's ability to generalize well to new,

unseen data.Finally, the model's performance on completely unseen data is measured

using the test dataset. The test loss is 0.7052, confirming that the model performs well on

new examples, while the test accuracy reaches 0.8693, further indicating its good

generalization capability.

Table 4.1 : Results for each parameter train for 20 epochs for ResNet-50 model.

Average

Training

Time for

1 Epochs

(s)

Average

Training

Loss

Average

Training

Accuracy

Average

Validation

Loss

Average

Validation

Accuracy

Test

Loss

Test

Accuracy

215 0.9401 0.7631 0.7053 0.8693 0.7052 0.8693

41

4.2.2 VGG16

VGG16 is a well-known convolutional neural network architecture recognized for its

effectiveness and simplicity in image classification tasks. Developed by the Visual

Geometry Group at the University of Oxford, VGG16 is characterized by its 16 layers,

consisting of 13 convolutional layers and 3 fully connected layers. Its architecture follows

a uniform structure with stacked 3x3 convolutional filters.

The deep convolutional layers in VGG16 allow the model to learn intricate patterns

and hierarchical representations in images. Through the use of multiple stacked

convolutional layers, VGG16 can capture both low-level features like edges and textures,

as well as high-level features such as shapes and objects.

Unlike more recent architectures, VGG16 does not incorporate specialized layers like

residual connections or inception modules. It prioritizes simplicity and employs a

straightforward design approach.

The model summary in Figure 4.6 shows that VGG16 consists of a total of 27,699,294

parameters. Among these, 12,984,606 parameters are designated as trainable, and they

are adapted during the training phase to gather insights from the data. Conversely, the

remaining 14,714,688 parameters are classified as non-trainable and remain fixed

throughout the training process. The abundance of trainable parameters enables the model

to grasp intricate patterns and features from the data, enhancing its efficacy in image

classification tasks. On the other hand, the non-trainable parameters offer valuable pre-

defined features or representations that support the model in its classification endeavors.

42

Figure 4.6: Model Summary for VGG16 model.

The data summary and graphs in Figure 4.7, 4.8, 4.9 and 4.10 presents the

performance of VGG16 during training and validation across multiple epochs. It tracks

key metrics that reflect the model's learning and generalization capabilities. As the

training progresses over the epochs, the "Train Loss" decreases, indicating an

enhancement in the model's ability to make accurate predictions on the training data. For

instance, in the first epoch, the train loss is 26.6519, which significantly reduces to 2.2901

in the twentieth epoch. Concurrently, the "Train Accuracy" increases as the model gets

better at classifying examples from the training set. It rises from 0.0745 in the first epoch

to 0.4205 in the twentieth epoch.

In the validation phase, the model's performance on unseen data is measured through

the "Val Loss" and "Val Accuracy" metrics. The validation loss, which starts at 3.9927 in

the first epoch, decreases to 1.9679 in the twentieth epoch, showcasing the model's

improvement in generalization. Similarly, the validation accuracy increases from 0.3173

in the first epoch to 0.4987 in the twentieth epoch, highlighting the model's enhanced

ability to generalize to new, unseen examples.

43

Figure 4.7: Data of VGG16 train loss, validation loss, train accuracy and validation

accuracy for 10 epochs.

Figure 4.8: Graph of training and validation loss for VGG16 model.

44

Figure 4.9: Graph of training and validation accuracy for VGG16 model.

Figure 4.10: Testing loss and accuracy of the VGG16 model.

The table 4.2 summary provides a comprehensive evaluation of VGG16's

performance across different phases of the model's training and testing.

During training, the model demonstrates an average training loss of 2.2724, indicating

that its predictions are improving and getting closer to the true labels as it undergoes more

epochs. The average training accuracy increases from 0.0745 in the first epoch to 0.4205

in the twentieth epoch, showcasing the model's ability to classify examples from the

training set more accurately over time.

In the validation phase, the model's performance is assessed on a separate dataset, and

the average validation loss decreases from 3.9927 in the first epoch to 1.9679 in the

twentieth epoch, demonstrating its ability to generalize well to unseen data. Similarly, the

average validation accuracy rises from 0.3173 to 0.5173 during the same period,

indicating better generalization performance.

The final evaluation on the test dataset reveals a test loss of 1.9678 and a test accuracy

of 0.4986, demonstrating that the model performs relatively well on completely new,

unseen examples.

45

Table 4.2: Results for each parameter train for 20 epochs for VGG16 model.

Average

Training

Time for

1 Epochs

(s)

Average

Training

Loss

Average

Training

Accuracy

Average

Validation

Loss

Average

Validation

Accuracy

Test

Loss

Test

Accuracy

398 2.2724 0.4205 1.9679 0.5173 1.9678 0.4986

4.2.3 EfficientNet-B4

EfficientNet-B4 is a variation within the Efficient-Net series of convolutional neural

network models. Its purpose is to strike a balance between model size and performance

across a broad range of computer vision tasks, including image classification and object

detection.

EfficientNet-B4 extends the base architecture of the Efficient-Net model by

incorporating additional layers and parameters, making it larger and potentially more

robust. The "B4" designation denotes the specific scaling factor applied to the base

architecture, indicating its relative size in comparison to the original Efficient-Net model.

EfficientNet-B4 takes advantage of advanced techniques like compound scaling,

which simultaneously scales the model's depth, width, and resolution. This approach

enhances both efficiency and accuracy. By employing compound scaling, EfficientNet-

B4 achieves superior performance compared to earlier models while maintaining

computational and parameter efficiency.

The EfficientNet-B4 model in Figure 4.11 has a total of 76,533,629 parameters.

During training, 63,447,438 of these parameters are updated and optimized, while the

remaining 13,086,191 parameters are fixed and not modified during the training process.

Having a large number of trainable parameters allows the model to learn complex patterns

46

and features from the data, which contributes to its high performance in image

classification tasks.

Figure 4.11: EfficientNet-B4 Model Summary

The data summary in Figure 4.12, 4.13, 4.14 and 4.15 are the performance of

EfficientNet-B4 during training and validation across multiple epochs. During the

training process, the model experiences a significant decrease in the "Train Loss" values,

starting from 3.5077 in the first epoch and dropping to 0.1235 in the twentieth epoch.

This decline indicates the model's improvement in making accurate predictions on the

training data. Concurrently, the "Train Accuracy" increases steadily from 0.1670 to

0.9574, demonstrating the model's growing proficiency in classifying examples from the

training dataset.

In the validation phase, the model's performance is evaluated on a separate dataset not

used for training. The "Val Loss" diminishes progressively from 1.8407 to 0.3157,

suggesting that the model is effectively learning meaningful patterns and features from

the data, enabling it to make accurate predictions on unseen examples. Simultaneously,

47

the "Val Accuracy" rises from 0.6987 to 0.9307, affirming the model's ability to

generalize its knowledge to new data and perform well on unseen examples.

Overall, the data summary reveals that EfficientNet-B4 exhibits a decreasing trend in

both training and validation loss, along with an increasing trend in both training and

validation accuracy. These trends indicate that the model is effectively learning from the

data and generalizing well to new, unseen examples, making it a suitable and efficient

choice for image classification tasks.

Figure 4.12: Data of EfficientNet-B4 train loss, validation loss, train accuracy and

validation accuracy for 20 epochs.

Figure 4.13: Graph of training and validation loss for EfficientNet-B4 model.

48

Figure 4.14: Graph of training and validation accuracy for EfficientNet-B4 model.

Figure 4.15: Testing loss and accuracy of the EfficientNet-B4 model.

The table 4.3 data represents the performance metrics of the EfficientNet-B4 model.

During training, each epoch took an average of 285 seconds (approximately 4 minutes

and 45 seconds) to complete. The model achieved an average training loss of 0.1081,

indicating how well it performed on the training data, with lower values being better. The

average training accuracy reached an impressive 96.81%, reflecting the model's ability to

correctly predict and classify images in the training set.

For validation, the model achieved an average validation loss of 0.2853, which

suggests that it performed well on unseen data during validation. The average validation

accuracy was 93.87%, demonstrating the model's ability to generalize and make accurate

predictions on new, unseen data.

After training and validation, the model was tested on a separate test dataset. The test

loss was measured at 0.3156, which is consistent with the validation loss and indicates

good generalization. The test accuracy was recorded at 93.06%, which shows the model's

strong ability to accurately classify images in the test set.

49

Table 4.3: Results for each parameter train for 20 epochs for EfficientNet-B4 model.

Average

Training

Time for

1 Epochs

(s)

Average

Training

Loss

Average

Training

Accuracy

Average

Validation

Loss

Average

Validation

Accuracy

Test

Loss

Test

Accuracy

285 0.1081 0.9681 0.2853 0.9387 0.3156 0.9306

4.2.4 MobileNetV2

MobileNetV2 is a convolutional neural network architecture developed by Google to

process and classify images efficiently on devices with limited resources, such as mobile

phones and embedded systems. It is an enhanced version of the original MobileNet.

The primary goal of MobileNetV2 is to strike a balance between model size and

accuracy. It incorporates various techniques to optimize its performance, including depth

wise separable convolutions, which separate spatial and channel-wise convolutions to

reduce computational complexity.

MobileNetV2 also features inverted residual blocks with linear bottlenecks, which

enable efficient information flow by using bottleneck layers with fewer channels. This

design captures complex patterns while minimizing the number of parameters.

Additionally, MobileNetV2 utilizes linear scaling of depth and width, allowing

customization of the model's size and complexity based on available resources and

performance requirements.

The MobileNetV2 model has a total of 3,052,894 parameters as shown in figure 4.16,

which are the variables learned during training and are crucial for making predictions on

new data. With more than three million parameters, the MobileNetV2 is of moderate size,

making it efficient for resource-constrained devices.

50

Out of the total parameters, 794,910 are trainable. These trainable parameters are

updated during training to optimize the model's performance on the training data,

allowing the model to learn and improve its ability to recognize patterns and features. The

remaining 2,257,984 parameters are non-trainable. These parameters are fixed and do not

change during training. They are often predefined or come from pre-trained models,

serving as a starting point for further training or transfer learning processes.

Figure 4.16: MobileNetV2 Model Summary

From figure 4.17, 4.18, 4.19, and 4.20, in the beginning, the model's performance was

not good, with high training loss (3.5006) and low training accuracy (0.0519). The

validation results were also unsatisfactory, with a validation loss of 3.1715 and validation

accuracy of 0.2560, indicating difficulty in handling new, unseen data during validation.

However, as the training continued, the model significantly improved its

performance. The training loss decreased, reaching 0.5833, and the training accuracy

increased to 0.8410 by the 20th epoch, showing the model's ability to learn and make

more accurate predictions on the training data.

51

The validation performance also steadily improved during training. The validation

loss decreased from 3.1715 in the first epoch to 0.4863 in the 20th epoch, indicating the

model's better generalization to new data. The validation accuracy increased from 0.2560

to 0.8747, demonstrating the model's improved ability to make accurate predictions on

previously unseen data.

Figure 4.17: Data of MobileNetV2’s train loss, validation loss, train accuracy and

validation accuracy for 20 epochs.

Figure 4.18: Graph of training and validation loss for MobileNetV2 model.

52

Figure 4.19: Graph of training and validation accuracy for MobileNetV2 model.

Figure 4.20: Testing loss and accuracy of the MobileNetV2 model.

The table 4.4 presents performance details for the MobileNetV2 model in terms of

training, validation, and test metrics. On average, each training epoch took 174 seconds,

representing the time it took for the model to complete one full round of training on the

entire dataset. The model achieved an average training loss of 0.5833, indicating how

well it performed on the training data. A lower training loss suggests improved accuracy

in making predictions on the training set.

The average training accuracy reached 0.8410, showing the percentage of correct

predictions the model made on the training data. A higher training accuracy indicates the

model's increased ability to recognize patterns and features in the training set. During

validation, the model showed an average validation loss of 0.4863, demonstrating its

performance on unseen data during validation. A lower validation loss suggests that the

model is generalizing well to new data.

The average validation accuracy was an impressive 0.8747, indicating the model's

capability to make accurate predictions on new, unseen data during validation. Lastly,

when tested on a separate test dataset, the model achieved an average test loss of 0.4862

53

and an average test accuracy of 0.8746. These results highlight the model's strong

performance in accurately classifying data it has never encountered before.

Table 4.4: Results for each parameter train for 20 epochs for MobileNetV2 model.

Average

Training

Time for

1 Epochs

(s)

Average

Training

Loss

Average

Training

Accuracy

Average

Validation

Loss

Average

Validation

Accuracy

Test

Loss

Test

Accuracy

174 0.5833 0.8410 0.4863 0.8747 0.4862 0.8746

4.2.5 InceptionV3

InceptionV3, developed by Google's DeepMind team, is a convolutional neural

network architecture created for computer vision tasks like image classification and

object detection.

The main innovation in InceptionV3 is the utilization of "Inception modules," which

are blocks that perform parallel convolutions at various scales and concatenate the results.

This enables the network to capture information at different levels of abstraction,

extracting both detailed and high-level features from images effectively. InceptionV3 also

integrates techniques like factorized convolutions and pooling to reduce computational

costs and memory requirements without sacrificing expressive capabilities.

Additionally, InceptionV3 employs "auxiliary classifiers" at intermediate layers,

which provide extra supervision during training and address the issue of vanishing

gradients, leading to more stable and efficient training. With its deep architecture and

advanced design, InceptionV3 has demonstrated remarkable performance on image

classification benchmarks, surpassing earlier models. It is widely adopted in research and

practical applications due to its ability to capture comprehensive visual representations

and accurately classify images.

54

The InceptionV3 model possesses a grand total of 59,691,070 parameters as shown

in figure 4.21. Parameters are the learned variables during training that are crucial for the

model's predictive capabilities on new data. With approximately 60 million parameters,

the InceptionV3 model is relatively large and intricate.

Within the total parameters, 37,888,286 are trainable. These trainable parameters are

the ones that undergo updates during the training process to optimize the model's

performance on the training data. The model fine-tunes and adjusts these trainable

parameters to enhance its capacity for recognizing patterns and features in the data. On

the other hand, the remaining 21,802,784 parameters are non-trainable. These parameters

remain fixed and do not experience updates during training. They are typically pre-

defined or sourced from pre-trained models, serving as an initial foundation for further

training or transfer learning endeavors.

Figure 4.21: InceptionV3 Model Summary.

During the training as shown in 4.22, 4.23, 4.24 and 4.25 the model's performance

was measured using training loss and training accuracy. The training loss decreased

gradually from 33.43 in the initial epoch to 3.40 in the 12th epoch, indicating that the

model improved in making predictions on the training data. However, the training

55

accuracy remained relatively low, varying around 0.03 to 0.05, suggesting the model

struggled to correctly classify the training data.

For validation, the model's performance was measured using validation loss and

validation accuracy. The validation loss fluctuated between 3.40 and 3.41 throughout the

training epochs. The validation accuracy remained consistently low, at around 0.03 to

0.04, indicating that the model faced difficulties in generalizing to new, unseen data

during validation.

Figure 4.22: Data of InceptionV3 train loss, validation loss, train accuracy and

validation accuracy for 20 epochs.

Figure 4.23: Graph of training and validation loss for InceptionV3 model.

56

Figure 4.24: Graph of training and validation accuracy for InceptionV3 model.

Figure 4.25: Testing loss and accuracy of the InceptionV3 model.

Table 4.5 shows the InceptionV3 model took an average of 125 seconds for each

training epoch, representing the time it needed to complete one round of training using

the entire dataset. During training, the model achieved an average training loss of 3.3953,

indicating its performance on the training data. A lower training loss implies improved

accuracy in predicting the training set. The average training accuracy reached 0.0505,

showing the percentage of correct predictions made by the model on the training data.

Higher training accuracy indicates the model's improved ability to recognize patterns and

features in the training set.

For validation, the model's average validation loss was 3.3998, representing its

performance on new, unseen data during validation. A lower validation loss suggests that

the model is generalizing well to new data. The average validation accuracy was 0.0320,

indicating the model's capability to make accurate predictions on new, unseen data during

57

validation. In separate testing on an independent dataset, the model obtained an average

test loss of 3.3998 and an average test accuracy of 0.0320.

Table 4.5: Results for each parameter train for 20 epochs for InceptionV3 model.

Average

Training

Time for

1 Epochs

(s)

Average

Training

Loss

Average

Training

Accuracy

Average

Validation

Loss

Average

Validation

Accuracy

Test

Loss

Test

Accuracy

125 3.3953 0.0505 3.3998 0.0320 3.3998 0.0320

4.2.6 Comparison Analysis Based on Parameters for 5 Image Classification Model

Comparing the models based on Table 4.6 below with the given parameters which are

their training time, training loss, validation loss, training accuracy, validation accuracy,

test loss, and test accuracy, it becomes apparent that each model possesses its own

strengths and weaknesses. In terms of training time, InceptionV3 stands out as the swiftest

model, averaging a mere 125 seconds. MobileNetV2 closely follows with a training time

of approximately 174 seconds. Conversely, EfficientNetB4, ResNet-50, and VGG16

necessitate more time for training, averaging at 285, 215, and 398 seconds, respectively.

In the realm of training loss, EfficientNetB4 exhibits the most favourable

performance, achieving an average training loss of 0.1081. MobileNetV2 also

demonstrates commendable results in this regard, with a training loss of 0.5833. On the

other hand, ResNet-50, VGG16, and InceptionV3 present higher training losses, with

values of 0.9401, 2.2724, and 3.3953, respectively.

EfficientNetB4 emerges as the frontrunner in training accuracy, boasting an average

accuracy of 0.9681. MobileNetV2 closely trails behind with a training accuracy of

0.8410, while ResNet-50, VGG16, and InceptionV3 attain lower training accuracies of

0.7631, 0.4205, and 0.0505, respectively.

58

Shifting focus to the validation phase, EfficientNetB4 exhibits superior performance

by attaining the lowest validation loss of 0.2853. MobileNetV2 also fares well in this

aspect, with a validation loss of 0.4863. Conversely, ResNet-50, VGG16, and

InceptionV3 present higher validation losses, recording values of 0.7053, 1.9679, and

3.3998, respectively.

When considering validation accuracy, EfficientNetB4 takes the lead with an average

accuracy of 0.9387, closely pursued by MobileNetV2 at 0.8747. ResNet-50 achieves a

validation accuracy of 0.8693, whereas VGG16 and InceptionV3 lag behind with values

of 0.5173 and 0.0320, respectively.

In the testing phase, EfficientNetB4 continues to shine with the lowest test loss of

0.3156. MobileNetV2 closely follows with a test loss of 0.4862. Conversely, ResNet-50,

VGG16, and InceptionV3 exhibit higher test losses, recording values of 0.7052, 1.9678,

and 3.3998, respectively.

Lastly, in terms of test accuracy, EfficientNetB4 proves to be the top performer with

an accuracy of 0.9306. MobileNetV2 closely trails behind with an accuracy of 0.8746,

while ResNet-50 achieves an accuracy of 0.8693. VGG16 and InceptionV3 record lower

test accuracies of 0.4986 and 0.0320, respectively.

Taking into account the overall performance across all parameters, EfficientNetB4

emerges as the optimal model for image classification. It consistently delivers excellent

results in terms of training loss, training accuracy, validation loss, validation accuracy,

test loss, and test accuracy.

59

Table 4.6: Comparison of parameters for each of the image classification model.

Image

Classification

Model

Average

Training

Time (s)

Average

Training

Loss

Average

Training

Accuracy

Average

Validation

Loss

Average

Validation

Accuracy

Test

Loss

Test

Accuracy

InceptionV3 125 3.3953 0.0505 3.3998 0.0320 3.3998 0.0320

ResNet-50 215 0.9401 0.7631 0.7053 0.8693 0.7052 0.8693

VGG16 398 2.2724 0.4205 1.9679 0.5173 1.9678 0.4986

EfficientNetB4 285 0.1081 0.9681 0.2853 0.9387 0.3156 0.9306

MobileNetV2 174 0.5833 0.8410 0.4863 0.8747 0.4862 0.8746

4.3 Analysis of EfficientNet-B4 in Jupyter Lab Platform

JupyterLab is a popular interactive development environment extensively utilized in

the fields of machine learning and data science. It offers users a web-based interface to

generate and exchange documents known as notebooks. These notebooks are capable of

containing real-time code, equations, visual representations, and descriptive text.

After comparison from Table 4.6, EfficientNet-B4 model is the best model

performing on our dataset on the local bird images where it consistently delivers excellent

results in terms of training loss, training accuracy, validation loss, validation accuracy,

test loss, and test accuracy.

From Figure 4.26, EfficientNet-B4 model perform the best against the test dataset

where the model achieves an accuracy of 93.06% with the least test losses of 0.3156. This

meets the minimum requirement for this project where the model must perform minimum

90% for the dataset of the local birds in Sarawak. This shows that the model performs

well against new data and with little loss means the model generalise well against new

input data that will be test in the mobile app.

60

Figure 4.26: EfficientNet-B4 model test loss and accuracy performance.

From Figure 4.27, it shows the output of the prediction which were tested against the

test dataset for the local birds in Sarawak. Above each bird picture shows what class of

birds the model predicted and at the bottom of each image shows the real class of the

image. From the figure it can be seen that the model accurately predicts the bird images.

This means the model perform well against the test dataset of the local Sarawak birds

used.

Figure 4.27: Result of prediction of the model using the test set.

61

4.4 Analysis of Model After Optimisation in Google Cloud Platform using Vertex

AI

Google Cloud Platform (GCP) is a comprehensive collection of cloud computing

services offered by Google, providing a diverse array of tools and services to create,

deploy, and manage applications and services in the cloud. GCP furnishes a scalable and

dependable infrastructure, enabling businesses to utilize different computing resources,

storage options, and networking capabilities.

While Vertex AI is a specialized machine learning platform available within Google

Cloud Platform, designed to streamline and expedite the development and deployment of

machine learning models. It presents a unified and user-friendly interface for tasks like

data preparation, model training, evaluation, and deployment. Vertex AI is compatible

with popular machine learning frameworks like TensorFlow and PyTorch, making it

effortless to utilize existing models and code.

In this result, the model was actually trained with Python through Jupyter Lab

platform and then exported to Google Cloud Platform to be further optimised. During

optimisation process, the model undergoes processes such as quantisation, pruning,

weight sharing and model distillation with default settings in Vertex AI.

From Figure 4.28 and 4.29, provided data findings lead to the conclusion that the

classification model being examined demonstrates exceptional precision and recall

performance. The average precision score of 0.999 indicates an extremely high level of

accuracy in the model's positive predictions. This score, which evaluates the trade-off

between precision and recall across various thresholds, signifies a remarkable precision

level in the model's predictions.

Figure 4.28: Average precision, precision and recall precision from Vertex AI.

62

Figure 4.29: Graph of Precision-recall and Precision-recall by threshold.

Furthermore, the precision value of 100% further emphasizes the exceptional

accuracy of the model's positive predictions. Precision represents the ratio of correctly

predicted positive instances to all positive predictions made by the model. Achieving a

precision score of 100% suggests that the model has successfully identified all positive

instances with no false positives. This highlights a strong confidence in the model's ability

to accurately classify positive instances.

Additionally, the recall value of 98.4% indicates that the model has a robust ability to

capture a significant proportion of the actual positive instances in the dataset. Recall

value, also referred to as sensitivity, measures the model's capacity to correctly identify

all positive instances. A recall score of 98.4% suggests that the model effectively

identifies 98.4% of the actual positive instances, thereby minimizing false negatives.

In summary, the data findings provide a highly positive evaluation of the

classification model's performance. With an average precision of 0.999 and a precision

of 100%, the model's positive predictions exhibit exceptional accuracy, ensuring no false

positives. Additionally, the recall rate of 98.4% indicates that the model successfully

identifies a substantial portion of the actual positive instances, resulting in minimal false

negatives. Collectively, these findings indicate that the model is highly reliable and

proficient in accurately identifying positive instances while maintaining a high level of

precision and recall.

63

While as for Table 4.7, where it represents the confusion matrix of the model shown

in Vertex AI after optimisation. The confusion matrix table presented provides valuable

insights into the performance of a multi-class classification model by illustrating the

correspondence between predicted and true labels. Each row signifies a true label, while

each column represents a predicted label. The values in the table indicate the proportion

or percentage of instances falling into various combinations of true and predicted labels.

Table 4.7: Model Confusion Matrix.

Upon analysing the confusion matrix, the following observations can be made where

for the first row, which corresponds to the true label "Black_Capped_Babbler," the model

exhibits 100% accuracy in predicting this label, as indicated by the value in the first

column. Additionally, the remaining columns in this row have values of 0%, indicating

that the model did not misclassify any other labels as "Black_Capped_Babbler."

Moving on to the second row, which represents the true label

"Asian_Glossy_Starling," we find that the model accurately predicts this label with 100%

precision, as denoted by the value in the second column. Similarly, the other columns in

this row have values of 0%, indicating the absence of misclassifications for this label.

Continuing to the third row, corresponding to the true label "Black_Headed_Munia,"

the model achieves a perfect prediction rate of 100% for this particular label, as

64

demonstrated by the value in the third column. Consistently, the remaining columns in

this row hold values of 0%, signifying accurate classification without any false positives.

This pattern persists for the subsequent rows, with each true label being accurately

predicted with 100% precision. In each case, all other columns in the respective rows

have values of 0%, indicating the absence of misclassifications.

In conclusion, based on the provided confusion matrix table, the classification model

demonstrates remarkable accuracy across all classes present in the dataset. It successfully

predicts each true label without generating any false positives or false negatives. This

exceptional performance serves as evidence of the model's effectiveness for this particular

multi-class classification task.

4.5 Analysis of Mobile Application Testing Accuracy Result

A user-friendly interface is essential for a bird image classification mobile

application, guiding users throughout the identification process. From Figure 4.30, the

overview of how the mobile application was shown. It starts with the initial screen, acting

as a welcome page, provides users with a concise overview of the app's functionality. It

engages users right from the start by showcasing captivating bird images.

Figure 4.30: Mobile Application Overview.

The application allows users to capture bird images directly using device's camera, or

alternatively, users can upload images from their gallery or storage. Clear instructions or

65

prompts are provided to help users capture or select suitable images, ensuring optimal

quality for accurate identification and classification.

Once an image is captured or uploaded, the application employs computer vision

techniques where it sends a request to the model in Google Cloud Platform through API

to process it. The image goes through feature extraction, where relevant visual

characteristics are extracted to represent the bird. The backend processing is designed to

be seamless and efficient, providing users with swift identification results.

The identification results are presented in a clear and comprehensible manner to the

user. The app displays the predicted bird species name, accompanied by additional

information such as its prediction confidence accuracy. Users have the option to explore

multiple images and detailed descriptions of the bird species, facilitating further learning

and exploration.

Next to test how well the mobile application performs on the new dataset, the mobile

application was tested with new dataset called test dataset containing 30 images randomly

obtain from the internet to get the average accuracy. This average accuracy will show

how well the model performs and altogether to achieve the third objective where the need

to evaluate how well the mobile applications perform especially in terms of its accuracy.

The provided Table 4.8 contains data about a collection of images and their respective

predictions for the bird species depicted, which are then compared to the actual bird

species (referred to as the ground truth). Each row in the table represents an image and

includes the Image ID, the Bird Species (Ground Truth), the Predicted Bird Species, and

the Accuracy percentage.

To calculate the real average accuracy of the model confidence towards the test

dataset containing 30 images obtain randomly from the internet:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%)

𝑛
 (4.1)

=
2644.42

30

= 88.15%

66

Upon analysing the accuracy values, it becomes evident that the average accuracy

across all the images is approximately 88.15%. This indicates that, on average, the

predicted bird species align quite well with the actual bird species (ground truth).

Upon further examination of the accuracy values for each image, it is notable that a

considerable number of predictions exhibit high levels of accuracy, surpassing 90%. For

example, images 2, 10, 22, 24, 26, and 27 achieved accuracy percentages of 99.97%,

99.99%, 99.83%, 99.91%, 99.42%, and 99.99%, respectively. These predictions

demonstrate a close correspondence between the predicted bird species and the actual

bird species, indicating the effectiveness of the employed model or system.

Additionally, there are several predictions with accuracies ranging from 80% to 90%.

Images 6, 7, 12, 13, 17, 18, 20, and 21 achieved accuracy percentages of 87.78%, 91.12%,

83.60%, 84.99%, 77.63%, 84.91%, 91.63%, and 89.91%, respectively. Although these

accuracies are relatively high, there is still room for improvement, as some variation exists

between the predicted bird species and the actual bird species.

Nevertheless, it is important to note that a few images received lower accuracy scores.

For instance, image 5 had an accuracy of 52.87%, image 14 obtained an accuracy of

29.38%, and image 15 achieved an accuracy of 37.73%. These results indicate a

significant mismatch between the predicted bird species and the actual bird species for

these particular images.

Considering the overall average accuracy of approximately 88.15%, it can be

concluded that the model or system utilized for predicting bird species performs

reasonably well. However, there is potential for improvement, especially in terms of the

accuracy of certain predictions. Addressing the cases with lower accuracy and striving

for further enhancements would contribute to an increase in the reliability of the

predictions.

67

Table 4.8: Result of Mobile App Testing with Test Dataset.

Image ID Bird Species

(Ground Truth)

Predicted Bird

Species

Accuracy (%)

1 Asian Glossy

Starling

Asian Glossy

Starling

97.65

2 Banded

Woodpecker

Banded

Woodpecker

99.97

3 Black & Red

Broadbill

Black & Red

Broadbill

89.98

4 Ashy Tailorbird Ashy Tailorbird 93.26

5 Black-Capped

Babbler

Black-Throated

Babbler

52.87

6 Black-Headed

Bulbul

Black-Headed

Bulbul

87.78

7 Black-Headed

Munia

Black-Headed

Munia

91.12

8 Black-Thighted

Falconet

Black-Thighted

Falconet

79.95

9 Black-Throated

Babbler

Black-Throated

Babbler

77.35

10 Blue-Eared

Kingfisher

Blue-Eared

Kingfisher

99.99

11 Blue-Throated Bee

Eater

Blue-Throated Bee

Eater

85.67

12 Brahminy Kite Brahminy Kite 83.60

13 Brown-Throated

Sunbird

Brown-Throated

Sunbird

84.99

68

14 Buff Vented Bulbul Black-Headed

Bulbul

29.38

15 Buff-Necked

Woodpecker

Banded

Woodpecker

37.73

16 Chestnut-Naped

Forktail

Chestnut-Naped

Forktail

96.92

17 Chestnut-Rumped

Babbler

Chestnut-Rumped

Babbler

77.63

18 Chestnut-Winged

Babbler

Chestnut-Winged

Babbler

84.91

19 Chinese Egret Chinese Egret 96.01

20 Collared

Kingfisher

Collared

Kingfisher

91.63

21 Collared Scops

Owl

Collared Scops

Owl

89.91

22 Common

Flameback

Common

Flameback

99.83

23 Common

Greenshank

Common

Greenshank

93.44

24 Common Iora Common Iora 99.91

25 Cream-Vented

Bulbul

Cream-Vented

Bulbul

97.19

26 Crested Goshawk Crested Goshawk 99.42

27 Crested Jay Crested Jay 99.99

28 Emerald Dove Spotted Dove 63.45

29 Spotted Dove Spotted Dove 80.19

30 Yellow-Vented

Bulbul

Yellow-Vented

Bulbul

98.65

69

4.6 Comparison of research model with another researcher’s model.

The table 4.9 compares different research models and their accuracy in classifying

bird species using diverse datasets. The accuracy percentage reflects how well the models

correctly identified the bird species.

This research utilized a self-captured dataset with 1878 images and 30 bird species.

The research used the EfficientNet-B4 model, achieving an 88.15% accuracy. Transfer

learning was applied, allowing the model to leverage pre-trained knowledge from other

tasks. Al-Showarah et al (2021) used the Jordanian Bird Watching Association dataset

with 4340 images and 434 bird species. Their research employed the VGG19 model with

transfer learning, resulting in a 71% accuracy.

Wu et al (2021) worked with the CUB-200-2011 dataset comprising 11,788 images.

They used the ResNeXt model with transfer learning and achieved an 84.43% accuracy.

Rahman et al (2020) worked with the Bangladesh local bird’s dataset containing 3500

images of various bird species. They used transfer learning with Inception-v3 and

MobileNet models, achieving an impressive accuracy of 91.00%.

Wei et al (2017) used the Caltech-UCSD Birds (CUB) dataset with 5,994 images.

Their deep learning model, Mask-CNN, achieved an accuracy of 80.20%. In summary,

researchers employed different datasets and models to classify bird species. Transfer

learning was a common technique used to improve model performance by leveraging pre-

trained knowledge. Among the presented models, Rahman et al achieved the highest

accuracy of 91.00% on the Bangladesh local bird’s dataset using Inception-v3 and

MobileNet models but this model does not apply for Sarawak local birds as this research

focuses on the varieties of dataset specifically for Sarawak local birds.

70

Table 4.9:Comparison for the research model with another existing research.

Author Dataset/

Database

Size Learning Architecture/

Model

Accuracy

%

Myself(Alvarez) Self-

captured by

Dr

Mohamad

Fizl Sidq

bin Ramji

1878

images

30

species

Transfer

Learning

EfficientNet-

B4

88.15

Al-Showarah et

al, 2021

Jordanian

Bird

Watching

Association

4340

images,

434

bird

species

Transfer

Learning

VGG19 71

Wu et al, 2021 CUB-200-

2011

11,788

images

Transfer

Learning

ResNeXt 84.43

Rahman et al, 2020 Bangladesh

local birds

3500

images,

Transfer

Learning

Inception-v3,

MobileNet

91.00

Wei et al, 2017 Caltech-

UCSD

Birds

(CUB)

5,994

images

Deep

Learning

Mask-CNN 80.20

4.7 Limitations of the Project

To begin with, despite efforts to optimize the bird species identification model using

GCP's Vertex AI, there are inherent limitations in its accuracy. Factors like variations in

71

lighting conditions, image quality, and the visual similarities among different bird species

can impact the identification accuracy. Continuous refinement and updates to the model

are necessary for ongoing improvements in accuracy.

Another aspect to consider is the limited diversity of the dataset used for training the

model. In this case the dataset primarily represents specific regions or common bird

species, the model's ability to accurately identify bird species from other regions or less

common species may be restricted. To enhance the application's performance, it is

important to expand the dataset by including a broader range of bird species and

geographical regions.

Additionally, the project face limitations in terms of hardware computing power. The

speed of processing and the latency of sending image data to the API for identification

and receiving results is influenced by the computational capabilities of the hardware.

Limited computing power led to increased processing time and potential bottlenecks.

Optimization of the application and infrastructure is crucial to minimize latency and

ensure efficient performance.

Moreover, compatibility with various platforms and devices is an important

consideration. The mobile application developed on Android Studio does have

compatibility constraints with specific Android versions or devices. Extensive testing and

potential modifications are required to ensure compatibility across a wide range of

Android versions and devices with varying hardware configurations and screen

resolutions.

In addition, the user interface (UI) and user experience (UX) aspects of the mobile

application play a crucial role. While the focus is often on the model and API backend,

providing an intuitive and user-friendly interface significantly enhances the overall

usability and appeal of the application.

Ethical considerations should also be addressed, including privacy, data usage, and

potential biases in the dataset or model. Obtaining proper consent, ensuring transparent

data practices, and mitigating biases that may arise during the training process are vital

for responsible AI development.

Lastly, the limitations of hardware computing power need to be taken into account.

The computational demands of running the model and processing image data is

substantial, and the available hardware have limitations in processing power and memory

72

capacity. It is crucial to ensure that the hardware used for hosting the model and running

the application can adequately handle the computational requirements to ensure smooth

operation.

4.8 Summary

This chapter offers a comprehensive overview of the outcomes and analysis derived

from the utilization of five image classification models for the identification of local bird

species. The models investigated include ResNet-50, InceptionV3, VGG16,

MobileNetV2, and EfficientNet-B4. Performance evaluation involved assessing various

parameters such as training time, training loss, validation loss, training accuracy,

validation accuracy, test loss, and test accuracy.

Based on a comparison of these parameters, the most effective model was determined

which is the EfficientNet-B4 for further examination. Subsequently, the chosen model

underwent optimization by deploying it on Google Cloud Platform using Vertex AI.

Optimization strategies included an analysis of the precision-recall graph and precision-

recall threshold to ascertain the precision and recall rates of the model.

The chapter also encompasses an evaluation of the mobile application's performance

in association with the model. Testing the mobile app with a fresh dataset known as the

test set facilitated the calculation of its average accuracy in identifying bird species. The

average accuracy obtained was 88.15% which indicates the mobile application perform

well in identifying the species of local Sarawak birds.

In summary, the chapter provides an extensive summary of the results and analysis

obtained from the image classification models, including the identification of the best-

performing model, its optimization on Google Cloud Platform, and the evaluation of the

mobile app's accuracy. The chapter's contributions are significant in terms of advancing

the identification of bird species through image classification.

73

CHAPTER 5

CONCLUSION

5.1 Future Works and Improvements

The bird species identification project has demonstrated its ability to accurately

identify bird species and engage users in bird conservation. However, there are several

areas where further work and improvements can be explored to enhance the project's

capabilities and maximize its impact.

One key area for improvement is expanding the project's compatibility to other mobile

platforms, such as iOS. Currently, the project may be limited to a specific platform, which

restricts its reach and potential user base. By extending compatibility to other popular

mobile operating systems, the project would become accessible to a wider audience,

allowing more individuals to participate in bird identification and conservation efforts.

Another important aspect to consider is the incorporation of real-time updates and

notifications. Providing users with timely information about bird sightings, conservation

initiatives, and relevant news would greatly enhance their engagement with the

application. Real-time updates could notify users about rare bird sightings in their area or

inform them about ongoing conservation projects, creating a sense of urgency and

motivating users to actively contribute to the preservation of bird species.

Furthermore, integrating crowdsourcing and citizen science into the project can bring

significant benefits. Allowing users to contribute their bird species observations through

the application would not only expand the dataset but also help validate the accuracy of

the identification model. By engaging users in citizen science initiatives, the project can

tap into the collective knowledge and efforts of bird enthusiasts worldwide, ultimately

improving the precision and reliability of species identification.

Localization and language support are also critical considerations for wider

participation. Adapting the application to support multiple languages and localizing the

74

user interface would overcome language barriers and make the project accessible to users

from diverse regions and cultures. This inclusiveness would foster greater engagement

and involvement from individuals around the world, facilitating global collaboration in

bird conservation efforts.

To encourage collaboration and knowledge sharing among users, integrating social

sharing and community building features into the application is crucial. Enabling users to

share their bird sightings, photos, and identification successes on social media platforms

would create a virtual community of bird enthusiasts. This community-driven approach

would promote collaborative learning, facilitate mentorship opportunities, and allow

users to engage in discussions and exchanges about bird species, conservation strategies,

and environmental challenges.

Another avenue for improvement lies in exploring the integration of environmental

sensors and leveraging existing data sources. By incorporating environmental sensors or

utilizing available data on weather patterns, bird migration, and habitat conditions, the

identification model could be enriched with additional contextual information. This

integration would enhance the accuracy of species identification and provide users with

a more comprehensive understanding of the bird species they encounter. Moreover,

incorporating such data sources would contribute to scientific research on bird behavior,

migration patterns, and ecological changes.

Augmented reality (AR) enhancements present an exciting opportunity to make the

bird species identification project more immersive and interactive. Introducing AR

features that overlay digital information about identified bird species onto real-time

camera views would offer users a captivating and educational experience. For instance,

users could point their phone's camera at a bird and instantly receive information about

its habitat, diet, and unique characteristics. This interactive approach would foster a

deeper appreciation for birds and their natural environment.

Additionally, implementing offline functionality would provide valuable features for

users. Allowing individuals to access the identification model and relevant information

even without an internet connection would enhance the usability and practicality of the

application. This feature would be particularly useful for bird enthusiasts exploring

remote areas with limited connectivity or embarking on outdoor expeditions where

internet access may be scarce. Offline functionality ensures that users can continue to

75

identify bird species and access relevant information, regardless of their location or

internet availability.

By considering and implementing these future works and improvements, the bird

species identification project has the potential to evolve into a comprehensive tool that

not only assists users in accurately identifying bird species but also actively engages them

in bird conservation efforts. The project can become a valuable resource for bird

enthusiasts, researchers, and conservationists, contributing to the preservation of avian

biodiversity and promoting a deeper understanding of the natural world.

5.2 Conclusion

In summary, this project has successfully developed a mobile application for bird

species identification, employing an integrated approach that combines Jupyter Lab for

model development, Google Cloud Platform with Vertex AI for model optimization, and

Android Studio for application creation. Through this comprehensive methodology, it has

achieved a highly efficient and accurate bird species identification system that is

accessible to bird enthusiasts and researchers.

The project began by creating a robust bird species identification model in Jupyter

Lab, utilizing a diverse dataset containing various bird species. Leveraging machine

learning algorithms and deep learning techniques, the trained model to recognize different

bird species based on their unique characteristics. This initial step laid the foundation for

the subsequent stages of the project.

In the comparison analysis of transfer learning models, including VGG16,

MobileNetV2, InceptionV3, ResNet-50, and EfficientNet-B4, EfficientNet-B4 stood out

as the most suitable model for this research. Its superior performance in terms of accuracy,

efficiency, and computational resource utilization made it the ideal choice for achieving

the project's goals. EfficientNet-B4 demonstrated exceptional capability in accurately

identifying bird species, while also optimizing computational resources, enabling faster

processing times and ensuring a smooth user experience.

To optimize the model's performance and efficiency, the model was seamlessly

transitioned to the Google Cloud Platform, capitalizing on the advanced capabilities of

76

Vertex AI. Leveraging the platform's powerful tools and resources facilitated model

optimization, resulting in improved accuracy and speed. Utilizing the cloud infrastructure

ensured that the model could handle a substantial number of requests from the mobile

application without compromising responsiveness.

Subsequently, the integrated model was integrated into the mobile application

developed in Android Studio. The application features a user-friendly interface and

intuitive design, enabling users to capture bird images through their smartphone cameras

and receive instant and accurate species identifications. The API, which connects the

application to the cloud-based model, efficiently processes user requests, providing swift

responses and ensuring a seamless user experience.

The successful implementation of this mobile application holds significant

implications for bird enthusiasts, researchers, and conservationists. The application serves

as a powerful and accessible tool for identifying bird species in the wild, enabling users

to deepen their knowledge and appreciation of avian biodiversity. Furthermore, the

application's crowdsourcing potential allows users to contribute to ongoing bird

conservation efforts, fostering a global community of citizen scientists and assisting in

the monitoring of bird populations and habitats.

While the project has achieved commendable results, there are several areas for future

exploration and improvement. Expanding the model's dataset to include a broader range

of bird species and environmental conditions could further enhance its accuracy and

generalizability. Additionally, incorporating real-time updates and integrating

environmental sensor data into the model could provide users with dynamic and

contextually rich bird identification information.

In conclusion, the creation of this mobile application for bird species identification

showcases the potential of integrating cutting-edge technologies in the fields of machine

learning, cloud computing, and mobile app development. The seamless collaboration

between Jupyter Lab, Google Cloud Platform with Vertex AI, and Android Studio has

resulted in a user-friendly, efficient, and accurate tool that contributes to bird conservation

efforts and fosters a deeper understanding and appreciation of avian biodiversity. As

technology continues to advance, this project lays the groundwork for further innovation

and exploration in the realm of species identification and wildlife conservation.

77

REFERENCES

[1] ‘Birding in Sarawak - The most number of Important Bird Areas in Malaysia’.

https://chinese.sarawaktourism.com/attraction/birding-sarawak-malaysia/

(accessed Jan. 12, 2023).

[2] ‘Bird Watching in Sarawak - Bird Watching in Sarawak’.

https://birdwatching.sarawaktourism.com/ (accessed Jan. 12, 2023).

[3] ‘Visitor Statistics - Sarawak Forestry Corporation’.

https://sarawakforestry.com/visitor-statistics/ (accessed Jan. 12, 2023).

[4] ‘Sarawak’. https://birdsmalaysia.my/sarawak/ (accessed Jan. 12, 2023).

[5] Y. P. Huang and H. Basanta, ‘Recognition of Endemic Bird Species Using Deep

Learning Models’, IEEE Access, vol. 9, pp. 102975–102984, 2021, doi:

10.1109/ACCESS.2021.3098532.

[6] S. A. Al-Showarah and S. T. Al-Qbailat, ‘Birds Identification System using Deep

Learning’. [Online]. Available: www.ijacsa.thesai.org

[7] M. M. Rahman, A. Amin Biswas, A. Rajbongshi, A. Majumder, and C. Realty,

‘Recognition of Local Birds of Bangladesh using MobileNet and Inception-v3’,

2020. [Online]. Available: www.ijacsa.thesai.org

[8] P. Wu, G. Wu, X. Wu, X. Yi, and N. Xiong, ‘Birds Classification Based on Deep

Transfer Learning’, in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Springer Science and Business Media Deutschland GmbH, 2021, pp. 173–183. doi:

10.1007/978-3-030-74717-6_19.

[9] J. Niemi and J. T. Tanttu, ‘Deep learning case study for automatic bird

identification’, Applied Sciences (Switzerland), vol. 8, no. 11, Oct. 2018, doi:

10.3390/app8112089.

[10] ‘COTERC Partnership - Environmental & Wildlife ManagementEnvironmental &

Wildlife Management | Cégep Vanier College’.

https://www.vaniercollege.qc.ca/ewm/coterc-partnership/ (accessed Jan. 16,

2023).

78

[11] ‘Ten Tips to Help Avoid Mis-Identifying Birds - Birding World’. http://birding-

world.com/ten-tips-help-avoid-mis-identifying-birds/ (accessed Jan. 16, 2023).

[12] ‘How to Identify Birds | Audubon’. https://www.audubon.org/content/how-

identify-birds (accessed Jan. 14, 2023).

[13] ‘What is Deep Learning? | IBM’. https://www.ibm.com/topics/deep-learning

(accessed Jan. 16, 2023).

[14] M. Hussain, J. J. Bird, and D. R. Faria, ‘A study on CNN transfer learning for

image classification’, in Advances in Intelligent Systems and Computing, Springer

Verlag, 2019, pp. 191–202. doi: 10.1007/978-3-319-97982-3_16.

[15] X. S. Wei, C. W. Xie, J. Wu, and C. Shen, ‘Mask-CNN: Localizing parts and

selecting descriptors for fine-grained bird species categorization’, Pattern

Recognit, vol. 76, pp. 704–714, Apr. 2018, doi: 10.1016/j.patcog.2017.10.002.

[16] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, ‘This Looks Like That:

Deep Learning for Interpretable Image Recognition’.

[17] S. J. Hong, Y. Han, S. Y. Kim, A. Y. Lee, and G. Kim, ‘Application of deep-

learning methods to bird detection using unmanned aerial vehicle imagery’,

Sensors (Switzerland), vol. 19, no. 7, Apr. 2019, doi: 10.3390/s19071651.

[18] I. J. Jacob and P. E. Darney, ‘Design of Deep Learning Algorithm for IoT

Application by Image based Recognition’, Journal of ISMAC, vol. 3, no. 3, pp.

276–290, Aug. 2021, doi: 10.36548/jismac.2021.3.008.

[19] S. Raj, S. Garyali, S. Kumar, B. E. Scholar, and S. Shidnal, ‘Image based Bird

Species Identification using Convolutional Neural Network’. [Online]. Available:

www.ijert.org

[20] Srijan, Samriddhi, and D. Gupta, ‘Mobile Application for Bird Species

Identification Using Transfer Learning’, in 3rd IEEE International Conference on

Artificial Intelligence in Engineering and Technology, IICAIET 2021, Institute of

Electrical and Electronics Engineers Inc., Sep. 2021. doi:

10.1109/IICAIET51634.2021.9573796.

[21] G. Zhong, S. Yan, K. Huang, Y. Cai, and J. Dong, ‘Reducing and Stretching Deep

Convolutional Activation Features for Accurate Image Classification’, Cognit

Comput, vol. 10, no. 1, pp. 179–186, Feb. 2018, doi: 10.1007/s12559-017-9515-z.

79

[22] X.-S. Yang and Institute of Electrical and Electronics Engineers, Proceedings of

the World Conference on Smart Trends in Systems, Security and Sustainability

(WS4 2020) : July 27-28, 2020, virtual conference.

[23] Institute of Electrical and Electronics Engineers, OCEANS 2019 MTS/IEEE

SEATTLE.

[24] P. Wu, G. Wu, X. Wu, X. Yi, and N. Xiong, ‘Birds Classification Based on Deep

Transfer Learning’, in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Springer Science and Business Media Deutschland GmbH, 2021, pp. 173–183. doi:

10.1007/978-3-030-74717-6_19.

[25] N. E. Khalifa, M. Loey, and S. Mirjalili, ‘A comprehensive survey of recent trends

in deep learning for digital images augmentation’, Artif Intell Rev, vol. 55, no. 3,

pp. 2351–2377, Mar. 2022, doi: 10.1007/s10462-021-10066-4.

[26] F. Z. el Bouni, T. el Hariri, C. Zouitni, I. ben Bahva, H. el Aboui, and A. el

Ouaazizi, ‘Bird image recognition and classification using Watson visual

recognition services from IBMCloud and Conventional Neural Network (CNN)’,

in 3rd International Conference on Electrical, Communication and Computer

Engineering, ICECCE 2021, Institute of Electrical and Electronics Engineers Inc.,

Jun. 2021. doi: 10.1109/ICECCE52056.2021.9514269.

[27] X.-S. Yang and Institute of Electrical and Electronics Engineers, Proceedings of

the World Conference on Smart Trends in Systems, Security and Sustainability

(WS4 2020) : July 27-28, 2020, virtual conference.

[28] ‘Merlin Bird ID – Free, instant bird identification help and guide for thousands of

birds – Identify the birds you see’. https://merlin.allaboutbirds.org/ (accessed Jan.

17, 2023).

[29] ‘National Geographic Birds: Field Guide to North America by National

Geographic Society’. https://appadvice.com/app/national-geographic-birds-field-

guide-to-north-america/315268465 (accessed Jan. 17, 2023).

[30] ‘Peterson Birds North America - Free download and software reviews - CNET

Download’. https://download.cnet.com/Peterson-Birds-North-America/3000-

18495_4-78373956.html (accessed Jan. 16, 2023).

80

[31] ‘Birds | Audubon’. https://www.audubon.org/birds (accessed Jan. 17, 2023).

[32] ‘iBird ProTM - Why the Switch?’ https://www.ibird.com/why-switch/why-

switch.html (accessed Jan. 16, 2023).

[33] ‘Expert’. https://expert.unimas.my/profile/2729 (accessed Jan. 14, 2023).

[34] A. S. Qureshi, A. Khan, A. Zameer, and A. Usman, ‘Wind power prediction using

deep neural network based meta regression and transfer learning’, Applied Soft

Computing Journal, vol. 58, 2017, doi: 10.1016/j.asoc.2017.05.031.

[35] J. Gorospe, R. Mulero, O. Arbelaitz, J. Muguerza, and M. Á. Antón, ‘A

generalization performance study using deep learning networks in embedded

systems’, Sensors (Switzerland), vol. 21, no. 4, 2021, doi: 10.3390/s21041031.

81

APPENDIX

All of the datasets, power point slides, codes for the model in Jupyter Lab platform,

the XML files and code for the Android Studio files is in this google drive link below:

https://drive.google.com/drive/folders/13jR_8s3PsCngp0XVt8Vr5mywq5lKvlAF?usp=sharing

Code for EfficientNet-B4 model in Jupyter Lab platform.

https://drive.google.com/drive/folders/13jR_8s3PsCngp0XVt8Vr5mywq5lKvlAF?usp=sharing

82

83

	6e20803776d06d77935023266e43e46cdfdb680e14894849d266c6cfb97222f7.pdf
	6e20803776d06d77935023266e43e46cdfdb680e14894849d266c6cfb97222f7.pdf

