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ABSTRACT 

One of the solutions to cater to increasing internet demands is to employ Fiber-to-the-

Home (FTTH) access network that mainly uses Gigabit Passive Optical Network (GPON) 

structure. One of the optical devices used for this network is a 3dB directional coupler 

using Silicon-on-Insulator (SOI) Large Cross-section Rib Waveguide (LCRW). 

According to previous research, coupler that uses SOI LCRW can operate in single-mode 

propagation, has low cost, and it can offer minimal loss. This is ideal for FTTH access 

network standards. In this thesis, by using the optimum symmetrical and asymmetrical 

LCRW, the parallel LCRW and S-Bend LCRW were designed and combined to form a 

3dB directional coupler. The downstream wavelengths used in the simulation were 1480 

nm and 1550 nm which is FTTH compliant. The Soref’s formula were used to design 

LCRW to ensure single-mode propagation for the coupler. Modal field analysis through 

the beam propagation method (BPM) were used in the simulation by using OptiBPM 9.0 

software. The LCRW with highest refractive index (w = 7 µm, H = 7 µm, d = 0.5 µm) 

were chosen to model the directional coupler. From the results, it was found that the 

symmetrical SOI LCRW for 3dB directional coupler with total length of 12741 µm with 

offset spacing of 0.55 µm produced the best results of the normalised output power (NOP) 

of ~30% at both outputs for both downstream wavelengths. The coupling ratio at output 

SB3 was 50.66% for 1480 nm signal and 48.98% for 1550 nm signal. 
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ABSTRAK 

Salah satu penyelesaian untuk memenuhi permintaan internet yang semakin meningkat 

adalah dengan menggunakan rangkaian capaian Fiber-to-the-Home (FTTH) yang 

kebanyakannya menggunakan struktur Rangkaian Optik Pasif Gigabit (GPON). Salah 

satu peranti optik yang digunakan untuk rangkaian ini ialah pengganding arah 3dB yang 

menggunakan Silicon-on-Insulator (SOI) Large Cross-Section Rib Waveguide (LCRW). 

Menurut penyelidikan terdahulu, pengganding yang menggunakan SOI LCRW boleh 

beroperasi dalam perambatan mod tunggal, mempunyai kos yang rendah, dan ia boleh 

menawarkan kerugian yang minimum. Pandu gelombang ini sesuai untuk digunakan 

dalam rangkaian akses FTTH. Dalam tesis ini, dengan menggunakan geometri simetri dan 

asimetri LCRW yang optimum, pandu gelombang selari dan pandu gelombang S-Bend 

telah direka dan digabungkan untuk membentuk pengganding arah 3dB. Panjang 

gelombang hiliran yang digunakan dalam simulasi ialah 1480 nm dan 1550 nm yang 

mematuhi FTTH. Formula Soref digunakan untuk mereka bentuk LCRW bagi 

memastikan perambatan mod tunggal untuk pengganding. Analisis medan modal melalui 

kaedah perambatan rasuk (BPM) digunakan dalam simulasi dengan menggunakan 

perisian OptiBPM 9.0. LCRW dengan indeks biasan tertinggi (w = 7 μm, H = 7 μm, d = 

0.5 μm) telah dipilih untuk memodelkan pengganding arah. Daripada hasil simulasi, 

didapati bahawa LCRW SOI simetri untuk pengganding arah 3dB dengan jumlah panjang 

12741 μm dengan jarak mengimbangi 0.55 μm menghasilkan keputusan terbaik kuasa 

keluaran ternormal (NOP) sebanyak ~30% pada kedua-dua output untuk kedua-dua 

panjang gelombang hiliran. Nisbah gandingan pada output SB3 ialah 50.66% untuk 

isyarat 1480 nm dan 48.98% untuk isyarat 1550 nm. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background  

Information transmission continues to be developed at a fast pace due to the high 

demand for communication between devices or users to be faster. Internet access which 

used to be a luxury has become a necessity as declared by United Nations in 2016 [1] that 

internet access is a human right. This has become more obvious when Coronavirus 

(COVID-19) diseases were discovered and most were forced to stay at home, a lot of 

activities started to rely a lot on network connections. After COVID-19 was declared as 

a pandemic, people started to adapt to the new normal where students must undergo online 

classes, workers must work from home, and government must disperse information 

efficiently regarding government aid and COVID-19’s developments via television, 

radio, and social media. This goes to show that most of us are starting to rely heavily on 

network connections to gain the latest information. Online gaming is another example of 

how faster and more reliable network connections are in demand as online gaming 

becomes a growing industry, especially during the pandemic [2]. As a result of increasing 

demand, internet service providers (ISPs) continue to pursue affordable broadband that 

offers both higher bandwidth and faster data throughput which is solvable by deploying 

optical networks like Passive Optical Networks (PON). Another driver that led to an 

increase in demand for optical networks in Malaysia is the government’s initiative to 

improve broadband quality and coverage and provide accessible and affordable internet 

connection through the implementation of a five-year plan named The National 

Fiberisation and Connectivity Plan (NFCP) [3].  

One of the ways to meet this need is by establishing an optical fiber connection to be 

closer to the consumer. This can be done by implementing a fiber-to-the-home (FTTH) 

network whereby this architecture allows connections of fiber links from the central office 

to the end user’s home. There is multiple optical fiber network architecture such as Point-

to-Point (P2P), Active Optical Network (AON), and Passive Optical Network (PON). 
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However, the most suitable network architecture for FTTH is PON mainly because it 

addresses the cost issues presented in P2P and AON architectures, and it is also simpler 

compared to the other two [4]. PON architecture mainly consists of three parts which are 

Optical Line Terminal (OLT), a Fiber Distribution Hub (FDH) which houses optical 

splitters, and an Optical Network Terminal (ONT) as shown in Figure 1.1. 

 

Figure 1.1: Passive Optical Network (PON) Architecture [5] 

Nowadays, there is various research being conducted to integrate optical components 

onto silicon substrates. This field of research is known as silicon photonics and in this 

field, the study of the optical properties of silicon and the design and construction of 

devices for optical components are explored. One of the ongoing studies in silicon 

photonics is the Silicon-On-Insulator (SOI) platform which is usually used in integrated 

optical circuits also known as Photonics Integrated Circuit (PIC). For this technology, 

coupling light efficiently is critically important to ensure low losses. However, it is 

difficult to achieve high coupling efficiency due to the volume mismatch between silicon 

waveguide and optical fiber [6].   
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1.2 Problem Statement 

Nowadays, a faster and more secure network operation is in demand by the general 

masses. Corporations also seek a network system that has larger capacity communication 

systems. One of the solutions for this demand is to deploy Fiber-to-the-X (FTTX) 

architecture. In this project, FTTH architecture is the focus where the optical fiber is 

connected all the way to the home. As more demands for network communication to offer 

affordable options that provide higher bandwidth and faster data throughput, a lot of new 

technology are invented day by day. The same can be said for coupler devices as 

researchers are eager to develop a coupler device that offers higher coupling efficiency. 

As mentioned in the previous section, the coupling efficiency is very important to ensure 

less loss. The different geometry between optical fiber and waveguide poses a challenge 

in ensuring that the coupling efficiency is high. The loss budget for all optical components 

in the implementation of ITU-T G.984 standards are also considered as strict as the 

standard for Class B+ is at a total of 13 dB at a minimum and 28 dB at maximum for both 

wavelengths operating at region 1310 nm and 1490 nm [7]. This means that the loss 

budget is strict when deploying FTTH network. So, it is very important to ensure that the 

optical components designed operate at minimal loss. Hence, one of the focuses of this 

project is to ensure that the coupler devices that will be designed operate with minimal 

loss. 

For a 20 km FTTH network, single-mode propagation is preferred due to its nature of 

having less attenuation at longer distances. Hence, the standards set up by International 

Telecommunication Union (ITU) for ITU-T G.984 which is normally used in FTTH is in 

single-mode propagation [7]. Thus, to design an optical coupler for FTTH, the coupler 

must use be in single-mode propagation. To ensure the coupler propagates in a single 

mode, a detailed study of the geometry of the waveguides used is done. This is because 

the geometry of waveguides will affect the mode that will pass through them. In this 

project, the rib waveguide is the focus. So, the design of the waveguide’s geometry must 

follow certain conditions to ensure that it propagates in a single mode. One of the 

solutions for this is to use Soref’s formula [8] to design a large cross-section rib 

waveguide (LCRW) operating in single mode.  

Lastly, the issue with optical devices is that most were developed using rare materials 

such as Lithium Niobate (LiNbO3) and Semiconductor III-V Materials such as Gallium 
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Arsenide (GaAs) are expensive. The usage of rare materials drives up the cost of 

fabrication of optical devices hence increasing the cost of deploying optical networks. 

Hence, one of the solutions is to use cheaper materials such as Silicon. As mentioned in 

an article written by Abate in 2015 [9], the cost to make a wafer of GaAs can cost about 

$5000 USD, as compared to a silicon wafer that cost $5 USD. Thus, utilising Silicon-on-

Insulators (SOI) technology has become one of the solutions to reduce the cost of the 

fabrication of optical devices. Hence, the coupler devices that will be designed in this 

project are based on SOI technology.  

1.3 Objectives 

This project mainly focuses on designing a coupler device for the FTTH network by 

using SOI LCRW. The objectives of this project are as follows. 

• To investigate the effect of using different geometries of SOI LCRW 

• To determine the optimum structure parameters for SOI LCRW as a coupler device. 

• To design an FTTH coupler by using SOI LCRW.  

1.4 Summary 

In these thesis, there are five chapters which are Chapter 1: Introduction, Chapter 2: 

Literature Review, Chapter 3: Methodology, Chapter 4: Results and Discussion, and 

Chapter 5: Conclusion.  

Chapter 1 focuses more on the background of this whole thesis which includes a brief 

description of the FTTH network and coupler device. Chapter 1 also includes problem 

statements and objectives.  

In Chapter 2, further explanations regarding the thesis were done by reviewing 

previous studies and exploring theories related to FTTH networks, silicon photonics, and 

SOI LCRW. From these literature resources, all important parameters in designing the 

coupler devices were outlined.  

Chapter 3 described the procedures taken to execute the project. The process of 

designing coupler devices by combining both parallel LCRW and S-bend LCRW were 

done by using OptiBPM 9.0 software tool such as Mode Solver, Waveguide Designer, 

and 3D Simulations.  
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Once the simulation was done, the results were obtained, tabulated and relevant 

graphs were plotted which was include Chapter 4. Analysis for the optimum parameters 

for symmetrical and asymmetrical LCRW were done, and the results were discussed 

further. The normalised output power (NOP) was compared to the expected results.  

The final findings were concluded in Chapter 5. Limitations of this thesis and 

recommendations for further research were also discussed in this chapter.  
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Overview 

To design a coupler device with SOI LCRW that can be deployed in FTTH 

applications and uses a single-mode propagation, thorough research into the topic must 

be done to outline any limitations and expectations of this project. Through these 

literature reviews, the advantages and disadvantages of each element comprised in the 

coupler design were determined. The designs and methodologies proposed by previous 

studies were also included in this chapter to aid in the design of couplers in this thesis. 

2.2 Optical Fiber Communication 

The concept of an optical fiber communication system is similar to the basic concept 

of any type of communication system.  A basic communication system consists of an 

information source, transmitter, transmission medium, receiver and destination point as 

shown in Figure 2.1. The transmitter and receiver are also known as modulators and 

demodulators respectively. The information source is non-electrical messages that have 

been converted into electrical signals. These signals are then converted into a format that 

can be transmitted through the transmission medium. Usually, this is achieved by 

modulating a carrier. The transmission medium carries the signals to be sent to the 

receiver. This can be done by using a pair of wires, a cable or through the air.  Once the 

receiver receives the signals, the signals were then transformed back into their original 

electrical information or in other words, they will go through demodulation before being 

sent to their destination point. The optical fiber communication system can be considered 

in detail by referring to Figure 2.2 which showed the main components of an optical fiber 

communications link. The block diagram in Figure 2.1 is the reference for the optical 

fiber system in Figure 2.2. 


