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ABSTRACT

With the advent of Deep Learning, people have begun to use it
with computer vision approaches to identify plant diseases on
a large scale targeting multiple crops and diseases. However,
this requires a large amount of plant disease data, which is
often not readily available, and the cost of acquiring disease
images is high. Thus, developing a generalized model for
recognizing unseen classes is very important and remains a
major challenge to date. Existing methods solve the problem
with general supervised recognition tasks based on the seen
composition of the crop and the disease. However, ignoring
the composition of unseen classes during model training can
lead to a reduction in model generalisation. Therefore, in this
work, we propose a new approach that leverages the visual
features of crop and disease from the seen composition, using
them to learn the features of unseen crop-disease composition
classes. We show that our proposed method can improve the
classification performance of these unseen classes and out-
perform the state-of-the-art in the identification of multiple
crop-diseases.

Index Terms— Plant disease identification, Feature gen-
eration, Unseen instances

1. INTRODUCTION

Although most deep learning models can achieve promising
performance for plant species [1, 2, 3] or disease identifica-
tion, when it comes to identifying unknown classes of multi-
ple crop-disease pairs, performance is severely impacted [4,
5, 6, 7, 8]. The small scale of the publicly available plant dis-
ease datasets has also limited the ability of the deep learning
models to be able to generalise to large and diverse classes of
crop diseases. This prompts us to consider the possibility of
exploiting the available data, i.e. labelled crop disease data, to
deal with the unseen classes. We consider that since the same
pathogen can attack multiple crop species, and those grouped
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Fig. 1. The illustrated feature space learned (left) without
considering the features of unseen classes, and (right) that en-
riches the class diversity of the training data to encompass the
unseen classes.

under the similar common disease class tend to share similar
visual symptoms. Thus, even if we do not have all the dis-
ease samples for each crop species, can we leverage the fea-
tures of the readily available crop-diseases, and adapt them
to other unseen crop-disease pairs? Our goal is illustrated
in Figure 1(right). With the training set composed of a set of
seen crops and diseases composition such as the tomato early
blight, pepper bell bacteria spot, etc., we enrich the class di-
versity of the training data to encompass the distribution of
unseen classes corresponding to the unseen composition of
crop and disease, e.g. tomato bacterial spot.

Existing mainstream methods focus on converting this
problem into a general supervised recognition task. They aim
to directly predict diseases and crop species from the original
visual features, ignoring their entanglement. For example,
[7, 6] addressed the problem by training a symptom-oriented
feature classifier that only considers diseases without crop
species. This approach limits the model’s ability to recognize
plant diseases, as information on crop species can be useful
to generate lists of diseases associated with crop species [9].
Other baseline methods presented in [8] show different con-
figurations for learning crop and disease features, either by
two-headed classifiers or by single-headed classifiers. How-
ever, experimental results show that by neglecting the com-
position of unseen classes during model training, the model
tends to match individual concepts to seen classes, which
limits recognition accuracy. Although conditional multitask
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Fig. 2. The overview of the proposed model

learning (CMTL) proposed by [8] simultaneously learns the
distribution of crop species and disease features with a con-
ditional linkage between them, generalization of the model to
unseen classes has not shown significant improvement. We
also note that unlike general zero-shot learning reported on
existing object recognition applications [10, 11], the current
benchmark dataset for plant disease identification has not yet
supported the semantic information about plant disease im-
ages. In other words, it is not possible to establish a semantic
link between seen and unseen classes, which is essential for
generalised zero shot learning.

Thus, considering that only the visual information of the
individual concept (crop or disease) is available, we propose
a new approach that focuses on the transferability of visual
knowledge from a small sample to larger classes of crop dis-
eases. More specifically, we first train embedding generators
for crop species and diseases. Then, the output is fed into a
pairwise feature generation module to increase the diversity
of the training composition. The next module projects the
combined plant and disease features into a common feature
space that distinguishes between composition classes, includ-
ing seen and unseen. The relatedness of the two concepts
is further reinforced by the self-attention and reference con-
nection with its complementary features. All the aforemen-
tioned modules are optimized in an end-to-end manner. In
short, this paper has two main contributions. First, our stud-
ies provide a new direction on how to effectively use widely
available labeled plant disease data to identify unseen classes
based on visual information of the two important concepts of
crop species and diseases. Second, we show that our proposed
method can improve the classification performance of unseen
classes of crop disease pairs and outperform the state-of-the-
art in the identification of multiple crop-diseases.

2. METHOD

Problem Formulation. In this study, each image in our train-
ing and testing set is associated with a composition category,
c, which consists of two concepts: the crop category and the
disease category. More formally, a composition category can
be defined as c = (cc, cd) ∈ C where cc and cd correspond
to the crop and disease categories respectively. For example,
Tomato crop and Bacterial Spot disease will correspond-
ing to Tomato bacterial spot composition. Besides, same

crop concepts or disease concepts can also appear in different
composition such as Tomato early blight and Peach bacterial
spot. Additionally, C = S ∪ U where S refers as seen com-
positions and U refers as unseen compositions. Our training
set only consists of compositions in S but not in U . The goal
of our study is to design a model to classify the compositions
in U with only information from compositions in S.

Overall Framework. The architecture of our proposed
model, as shown in Fig. 2, consists of three main modules:
(1) base feature extractor, (2) pairwise feature generation
module and (3) crop-disease model. The base feature ex-
tractor extracts features of individual concepts (crop features,
ĉc and disease features, ĉd) from the training set, Xs. The
pairwise feature generation module generates synthetic com-
position features, t̂ of different pairs that include seen and
unseen compositions. Thereafter, the synthetic composition
features, t̂ will be used to train the crop-disease model for
identification task. The details of each module are presented
in the following subsections.

2.1. Base Feature Extractor Module

The backbone of our base feature extractor is built from ViT
models by [12]. Specifically, it consists of crop ViT model,
g(ϕ) and disease ViT model, f(ϕ). Crop ViT model takes
an image xi from Xs as input, and outputs crop features,
ĉc = g(xi) while disease ViT model outputs disease fea-
tures, ĉd = f(xi). The features produced (ĉc and ĉd) will
then be used by our next pairwise feature generation module
to generate classes that encompass both S and U . Both ViT
models consist of 12 layers, 12 attention heads and 768 em-
bedded dimension. The size of the original image is reshaped
to 224× 224.

2.2. Pairwise Feature Generation Module

To enrich the diversity of classes in the training data, we pro-
pose the Pairwise Feature Generation module to generate fea-
tures for different pairs of synthetic composition features to
encompass U . In particular, the module obtains ĉc and ĉd
from the base feature extractor as inputs, and combines them
via feature summation to form the synthetic composition fea-
tures, t̂ = ĉc + ĉd. The composition category of feature t̂,
denoted by ct̂, is formulated to include both S and U compo-
sitions, which means that ct̂ ∈ cc × cd, where cc ∈ L1...K

c

and cd ∈ L1...M
d are associated with the crop and disease cat-

egories respectively, and K and M are the total number of
crop and disease categories.

2.3. Crop-disease model

Our crop and disease model k takes the combined features
t̂ as inputs and produces the prediction of the crop, x, and
disease, y, via a two-headed classifier. The dual classification
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head with individual concepts is deployed here to improve the
generalisation of the model by exploiting domain-specific in-
formation on crop species and disease concepts contained in
the training data. However, simply combining ĉc and ĉd to
form t̂, does not explore the relatedness of the two concepts,
especially when the two features may have domain distribu-
tion variations. Therefore, given the divergence of disease
and crop species features, we exploit their entanglement by
enriching the compositional feature representation with self-
attention [13]. Furthermore, to preserve its compositional fea-
tures for pairwise feature classification via a two-headed clas-
sifier, we introduce a reference function of its complementary
features for each of these individual concepts. This is illus-
trated in Fig. 2 with the residual links. This is inspired by the
CMTL architecture [8] where a conditional link is established
between crop and disease features to encourage knowledge
sharing and further improve disease identifications. With this,
the final synthetic crop and disease features learned before the
classifier’s head are then f̂c = t̂c + ĉd and f̂d = t̂d + ĉc re-
spectively. The final synthetic features are also normalized
and projected into their classifier head with GeLu activation.

2.4. Training Strategy

The three aforementioned modules are trained end-to-end.
The features, ĉc and ĉd are learned by our crop ViT model,
g(ϕ) and disease ViT model, f(ϕ) using cross-entropy loss.
The loss functions are defined as LCE1 =

∑n
i=1 ailog(gi)

and LCE2 =
∑n

i=1 bilog(fi) where ai and bi are the truth
label for crop and disease respectively. gi and fi are the
softmax probability for the ith class for crop ViT model
and disease ViT model respectively. Another two cross-
entropy losses are also applied on synthetic crop-disease
feature, t̂ by our crop-disease model k(ϕ) and the loss
functions are defined as LCE1 com =

∑n
i=1 cilog(ki) and

LCE2 com =
∑n

i=1 dilog(kj) where ci and di are the truth
label from original crop and disease label, ki and kj are the
softmax probability for the ith class. As the final module
for learning synthetic crop-disease composition function is
highly dependent on the individual features of ĉc and ĉd, we
ensure that our first two individual modules are optimized to
a certain weight range in advance before proceeding with the
training of the synthetic crop-disease composition function.
Specifically, we use the moving weighted sum of all losses to
train all modules end-to-end. The loss is defined as follows;

Lfinal = α(LCE1+LCE2)+(1−α)(LCE1 com+LCE2 com)
(1)

We assign α as a weighting coefficient directly proportional to
the number of epochs in our final loss function. Both crop ViT
model and disease ViT model are pre-trained from ImageNet.
Our model is trained for 15 epochs with an initial learning
rate of 0.001 and then decreased by a factor of 10 every 5
epochs. We run the training using an NVIDIA GeForce RTX
3060 graphic card.

3. EXPERIMENTS

Our study is based on the largest available benchmark for
multi-crop and disease identification, namely PlantVillage
(PV), proposed by [14]. We sampled images of 10 crop-
disease compositions from the PV dataset, and from the
selected crop-disease compositions, 7 crop-disease composi-
tions were selected as seen composition, S which was used as
the training set, while the remaining 3 crop-disease compo-
sitions were sampled as unseen composition, U which used
only in the testing set. The 7 crop-disease compositions in
the training set are Tomato bacterial spot, Cherry healthy,
Grape black rot, Corn common rust, Potato early blight,
Squash powdery mildew and Pepper healthy. The 3 unseen
crop-disease compositions in the testing set are Tomato early
blight, Pepper bacterial spot and Corn healthy.

3.1. Comparing with State-of-the-Arts

Table 1. Performance comparison between SOTA models and
our proposed model.

Model Unseen Average Acc(%) Seen Average Acc (%)
P D PD PD

ViT single network [12] 66.83 26.33 3.00 100.00
CMTL-ViT [8] 69.67 31.17 2.67 100.00
Proposed model 77.50 26.50 11.67 100.00

P is crop species identification. D is disease symptoms identifica-
tion. PD is identification for both crop and disease concepts together
(crop-disease identification).

In this experiment, we analyse the performance of our
proposed model against ViT single network from [12] and
CMTL network architecture proposed by [8]. ViT single net-
work consists of two separate single networks for crop ViT
model and disease ViT model (16 image patches with 224 ×
224 image size) to perform plant and disease identification in-
dividually. The CMTL network architecture is able to simul-
taneously predict the concepts of plant species and diseases
with a conditional link between them. To enable a fair com-
parison, we replace its base CNN model with ViT, and named
it CMTL-ViT so that the depth of the feature learning layers
is the same as our model and the performance comparison
can focus on the design of the classification head. The re-
sults were tabulated in Table 1. The accuracy of plant disease
identification for all models is calculated by post-prediction.
Specifically, the plant disease classification will only be con-
sidered correct if the prediction of both crop species and dis-
ease is considered to be the top-1 accuracy for each concept.

From the Table 1, all models able to perform well in seen
composition and our proposed model outperformed all SOTA
models in unseen composition plant disease identifications.
ViT single network and CMTL-ViT only able to achieve
top-1 accuracy of 3.00% and 2.67% respectively in unseen
composition crop disease identifications which are relatively
poor when compared with our proposed model. This there-
fore proves that by taking into account the features of unseen
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Fig. 3. Feature embedding visualization of (a) ViT single net-
work, (b) CMTL-ViT and (c) proposed model using t-SNE.

compositional classes, the transferability of the models can
be improved. Furthermore, our pairwise feature generation
module is able to generate reliable data for unknown com-
positions, thus increasing the diversity of the training data,
which improves model generalisation.

Qualitative analysis. From Fig. 3, it can be seen that the
features learned in our proposed model are more semantically
separable than the existing ViT single network and CMTL-
VIT methods. This indicates that the features learned by
our method are more discriminative compared to the existing
methods. It also shows the importance of including the un-
seen classes to enrich the class diversity in the training data
to improve the model generalization.

3.2. Ablation Study

Table 2. Ablation studies for our proposed model with differ-
ent network elements and training schemes.

Proposed model Unseen Ave Acc(%)
P D PD

two-head classifier 77.50 26.50 11.67
two-head classifier + RC 61.17 21.17 20.33

two-head classifier + RC + MWS 74.50 32.67 22.00
single-head classifier 77.00 34.33 23.83

single-head classifier + RC 71.33 37.33 28.00
single-head classifier + RC + MWS 80.50 60.17 51.50

RC is residual connection. MWS is moving weighted sum.

Two-head vs. single-head classifier In this section, we per-
form a performance comparison and ablation study with the
implementation of a single-head classifier. A single-head
classifier classifies crop and disease features under a single
objective function combining both crop and disease concepts.
From Table 2, we notice that the single-head classifier is able
to further improve unseen composition crop disease identifi-
cation (PD) from 11.67% to 23.83%. This is explained by the
disease identification performance of the single-head classi-
fier, which is able to achieve a higher accuracy of 34.33%
compared to the two-head classifier of 26.50%. This is prob-
ably due to the fact that, in this scenario, the differentiation
of disease symptoms may appear to be more difficult than
that of crop species, as the visual appearances of the different
disease symptoms may be very similar [8]. The combined
crop and disease features formed by the single-head classi-

fier could then, in turn, serve as an important cue to make
the crop-disease features more distinctive between different
classes.

Residual connection. We propose a residual connection
between the seen crop features, ĉc and synthetic disease
features, t̂d, and vice versa, in order to promote a deeper
knowledge sharing between the two concepts. The results
presented in Table 2 show that the residual connection is able
to improve our proposed model for both two-head classifier
(11.67% to 20.33%) and single-head classifier (23.83% to
28.00%). We also note that despite the decrease in disease
detection (D) for the two-headed classifier with residual con-
nection, the overall crop disease identification was improved,
confirming that the features with residual connection are more
generalised and can better adapt to the unseen composition.

Moving weighted sum. We compare our final loss, Lfinal

with that without the moving weighted sum loss, which is
L

′

final = LCE1 + LCE2 + LCE1 com + LCE2 com. The
result in Table 2 shows that our proposed model with moving
weighted sum achieved the highest best performance for both
the two-head classifier (20.33% to 22.33%) and the single-
head classifier (28.00% to 51.50%). This therefore implies
the importance of optimizing both the crop and disease ViT
model up to a certain stage before starting to learn the syn-
thetic crop-disease composition.

Batch size. We perform a grid search for each batch size
from 2 to 128. We found that our model achieved best per-
formance around batch size of 42, and it suffers performance
drops when the batch size is reduced. This is probably due to
the fact that the total composition, C available in our training
set is 42 and our model can better learn the synthetic com-
bined features when it sees all compositions including seen
and unseen ones in each training batch.

4. CONCLUSION

To the best of our knowledge, this paper is the first to ad-
dress unseen classes for multiple crop-disease identification.
We have shown that our proposed model, which is able to
enrich the class diversity in the training data by leveraging
visual crop and disease features from the seen classes, can
improve the model generalisation and outperform the exist-
ing approaches. We have also conducted ablation studies to
analyse and improve the proposed model. For future work, we
will extend our work to integrate the open-set and continual
learning to adapt to a more challenging and realistic setting.
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