

Simulation and Experimental Validation of Hydrogen Evolution Reaction using Titanium Carbide Supported, Platinum Doped Tetrahedral Amorphous Carbon Electrode

Harunal Rejan Ramji

Doctor of Philosophy 2023

Simulation and Experimental Validation of Hydrogen Evolution Reaction Using Titanium Carbide Supported, Platinum Doped Tetrahedral Amorphous Carbon Electrode

Harunal Rejan Ramji

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Chemical Engineering)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2023

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Name: Harunal Rejan Ramji Matric No.: 18010089 Faculty of Engineering Universiti Malaysia Sarawak Date : 24/7/23

ACKNOWLEDGEMENT

I would like to take this opportunity to thank Assoc. Prof. Dr Nicolas Glandut and Prof Dr Joseph Absi in University of Limoges for their guidance in understanding electrochemistry and mastering COMSOL for the purpose of this research. My thanks also to Prof Dr Amir Azam Khan and Assoc. Prof. Dr Lim Soh Fong for arranging this dual PhD programme and making it possible for the collaboration to happen.

My sincere gratitude to UNIMAS and UNILIM for giving me the opportunity to conduct my research and complete my study in Limoges and Kota Samarahan, and for all the support given during my period of study.

Finally, I would like to thank my dearest parents Ramji Sedek and Jamilah Razali for their endless support for me in pursuing knowledge. To my beloved wife and daughter Nur Ain Farhanah and Airina Madina for being there for me throughout my journey in completing this thesis. Last but not least to those who have contributed directly or indirectly to this thesis. Thank you all.

ABSTRACT

This work presented the use of commercial software COMSOL Multiphysics to simulate and solve the Volmer - Heyrovsky -Tafel mechanistic steps for hydrogen evolution reaction (HER). The first study will address the reliability of COMSOL to provide accurate and precise results for electrochemistry problem. The developed model is for classical cyclic voltammetry of redox reaction (E). In this study, mesh refinement with its consequent number of elements (*noe*), computation time (t_{com}), and current, $I_{(t)}$ was compared on the 1dimension (1D), 2-dimension (2D) axisymmetric, and 3-dimension (3D) model. This study proved the software's consistency to produce less than 3% error between simulation and analytical results across all dimensions. By using a relative tolerance (*rtol*) value of 1×10^{-8} with very concentrated custom meshing, a 3D model yielded a result with an error of 2.5% compared to analytical solution. It has the drawback of taking 40 times longer to complete. A slight discrepancy between 2D axisymmetric and 3D simulation results on finest meshing recorded to have less than 3% difference due to CPU memory limit. The use of adaptive meshing on 2D axisymmetric and 3D model with coarse initial mesh reduces the error significantly by 32% and 50%, respectively. At the same time, the computation time, t_{com} increased by nearly ten times on the 2D axisymmetric model and five times on the 3D model. On the "finer" initial mesh, the simulation has reduced the error to near 0%. The *rtol* study shows that the value of 1×10^{-4} is adequate for 2D axisymmetric and 1×10^{-5} for both 1D and 3D. Further investigations on complex electrochemistry using this platform are well justified and highly recommended. Given the reliability of COMSOL presented in the first study, the second study implement similar approach to model the experiment by Glandut et. al (2015) on Titanium carbide (TiC) support, tetrahedral amorphous carbon doped platinum (taC:Pt) electrode for hydrogen evolution reaction. The developed model was tested for surface diffusion in 2D and surface diffusion with edge effect in 3D. The simulation results show that kinetic parameters permutation with surface diffusivity shows some increased in current output but was unable to achieve the current output obtained from the experiment. However, the introduction of edge effect on the side of taC:Pt on TiC support would significantly increase the current output with great coherency to the experimental result. The edge exhibits kinetic properties unlike both TiC or taC:Pt. The kinetic parameters were determined using the simulation and a dataset was found to show great coherency with the experimental result. Surface diffusion was rendered negligible because negligible compared to the high kinetic parameters on the edge in comparison to the TiC and taC:Pt surface.

Keywords: Simulation, COMSOL, redox reaction, mesh refinement, hydrogen evolution reaction (HER), surface diffusion, edge effect

Simulasi dan Pengesahan Eksperimen Tindak Balas Evolusi Hidrogen Menggunakan Titanium Carbide Disokong, Elektrod Karbon Amorfus Tetrahedral Doped Platinum

ABSTRAK

Kerja ini membentangkan penggunaan perisian komersial COMSOL Multiphysics untuk mensimulasikan dan menyelesaikan langkah mekanistik Volmer - Heyrovsky -Tafel untuk tindak balas evolusi hidrogen (HER). Kajian pertama akan menangani kebolehpercayaan COMSOL untuk memberikan keputusan yang jitu dan tepat untuk menyelesaikan masalah elektrokimia. Model yang dibangunkan adalah untuk voltammetri kitaran. Dalam kajian ini, penghalusan jejaring dengan bilangan unsur (noe), masa pengiraan (t_{com}), dan arus, $I_{(t)}$ telah dibandingkan pada paksisimetrik 1-dimensi (1D), 2-dimensi (2D), dan 3 -model dimensi (3D). Kertas kerja ini membuktikan ketekalan perisian untuk menghasilkan ralat kurang daripada 3% antara simulasi dan keputusan analisis merentas semua dimensi. Dengan menggunakan nilai toleransi relatif (rtol) 1×10^{-8} dengan jejaring tersuai yang sangat padat, model 3D menghasilkan keputusan dengan ralat 2.5%. Ia mempunyai kelemahan iaitu mengambil masa 40 kali lebih lama untuk disiapkan. Sedikit percanggahan antara paksisimetri 2D dan simulasi 3D menghasilkan jalinan terbaik yang direkodkan mempunyai perbezaan kurang daripada 3% disebabkan oleh had memori CPU. Penggunaan jejaring adaptif pada model axisymmetric 2D dan 3D dengan jejaring awal kasar mengurangkan ralat dengan ketara masing-masing sebanyak 32% dan 50%. Pada masa yang sama, tcom meningkat hampir sepuluh kali ganda pada model axisymmetric 2D dan lima kali pada model 3D. Pada jaringan awal yang "lebih halus", simulasi telah mengurangkan ralat kepada hampir 0%. Kajian rtol menunjukkan bahawa nilai 1×10^{-4} adalah memadai untuk axisymmetric 2D dan 1×10^{-5} untuk kedua-dua 1D dan 3D. Siasatan lanjut mengenai elektrokimia kompleks menggunakan platform ini adalah wajar dan sangat disyorkan. Memandangkan kebolehpercayaan COMSOL yang dibentangkan dalam kajian pertama, kajian kedua melaksanakan aplikasi yang hampir serupa untuk memodelkan eksperimen oleh Glandut et. al (2015) mengenai sokongan Titanium karbida (TiC), elektrod platinum dop karbon amorfus tetrahedral (taC:Pt) untuk tindak balas evolusi hidrogen. Model yang dibangunkan telah diuji untuk resapan permukaan dalam 2D dan resapan permukaan dengan kesan tepi dalam 3D. Keputusan simulasi menunjukkan bahawa pilihatur parameter kinetik dengan keresapan permukaan menunjukkan beberapa peningkatan dalam arus litar tetapi tidak dapat mencapai arus yang diperolehi daripada eksperimen. Walau bagaimanapun, pengenalan kesan tepi pada sisi taC:Pt pada sokongan TiC akan meningkatkan arus litar dengan ketara dengan keselarasan yang besar kepada hasil eksperimen. Tepi mempamerkan sifat kinetik tidak seperti kedua-dua TiC atau taC:Pt. Parameter kinetik ditentukan menggunakan simulasi dan set data didapati menunjukkan keselarasan yang besar dengan keputusan eksperimen. Penyebaran permukaan tidak berguna kerana parameter kinetik yang sangat tinggi di tepi berbanding dengan permukaan TiC dan taC: Pt.

Kata kunci: Simulasi, COMSOL, reaksi redox, penghalusan jejaring, reaksi evolusi hidrogen, keresapan permukaan, kesan tepi

Simulation et validation expérimentale de la réaction d'évolution de l'hydrogène à l'aide d'une électrode de carbone amorphe tétraédrique supportée par du carbure de titane et dopée au platine

RÉSUMÉ

Ce travail a présenté l'utilisation du logiciel commercial COMSOL Multiphysics pour simuler et résoudre les étapes mécanistes Volmer - Heyrovsky -Tafel pour la réaction d'évolution de l'hydrogène (HER). La première étude portera sur la fiabilité de COMSOL à fournir des résultats exacts et précis pour un problème d'électrochimie. Le modèle développé est pour la voltamétrie cyclique sous diffusion sphérique semi-infinie. Dans cette étude, le raffinement du maillage avec son nombre conséquent d'éléments (noe), son temps de calcul (t_{com}) et son courant, $I_{(t)}$ a été comparé sur la 1 dimension (1D), la 2 dimension (2D) axisymétrique et la 3 modèle tridimensionnel (3D). Cet article a prouvé la cohérence du logiciel pour produire moins de 3% d'erreur entre la simulation et les résultats analytiques dans toutes les dimensions. En utilisant une valeur de tolérance relative (rtol) de 1×10^{-8} avec un maillage personnalisé très concentré, un modèle 3D a donné un résultat avec une erreur de 2,5 %. Il a l'inconvénient de prendre 40 fois plus de temps à compléter. Un léger écart entre les résultats de simulation 2D axisymétrique et 3D sur le maillage le plus fin enregistré a moins de 3 % de différence en raison de la limite de mémoire CPU. L'utilisation du maillage adaptatif sur le modèle 2D axisymétrique et 3D avec un maillage initial grossier réduit l'erreur de manière significative de 32 % et 50 %, respectivement. Dans le même temps, le t_{com} a été multiplié par près de dix sur le modèle axisymétrique 2D et par cinq sur le modèle 3D. Sur le maillage initial "plus fin", la simulation a réduit l'erreur à près de 0%. L'étude rtol montre que la valeur de 1×10^{-4} est adéquate pour le 2D axisymétrique et 1×10^{-5} ⁵ pour le 1D et le 3D. D'autres investigations sur l'électrochimie complexe utilisant cette plate-forme sont bien justifiées et fortement recommandées. Compte tenu de la fiabilité de COMSOL présentée dans la première étude, la seconde étude met en œuvre une application quasi similaire pour modéliser l'expérience de Glandut et. al (2015) sur support en carbure de titane (TiC), électrode en platine dopé au carbone amorphe tétraédrique (taC:Pt) pour la réaction de dégagement d'hydrogène. Le modèle développé a été testé pour la diffusion de surface en 2D et la diffusion de surface avec effet de bord en 3D. Les résultats de la simulation montrent que la permutation des paramètres cinétiques avec la diffusivité de surface montre une certaine augmentation de la sortie de courant mais n'a pas été en mesure d'atteindre la sortie de courant obtenue à partir de l'expérience. Cependant, l'introduction d'un effet de bord du côté de taC:Pt sur le support TiC augmenterait considérablement la sortie de courant avec une grande cohérence avec le résultat expérimental. Le bord présente des propriétés cinétiques contrairement à TiC ou taC:Pt. Les paramètres cinétiques ont été déterminés à l'aide de la simulation et un ensemble de données a été trouvé pour montrer une grande cohérence avec le résultat expérimental. La diffusion de surface a été rendue inutile en raison des paramètres cinétiques extrêmement élevés sur le bord par rapport à la surface TiC et taC:Pt.

Mots clés: Simulation, COMSOL, réaction redox, raffinement de maillage, réaction de dégagement d'hydrogène (HER), diffusion de surface, effet de bord.

TABLE OF CONTENTS

		Page
DECI	ARATION	i
ACKI	NOWLEDGEMENT	ii
ABST	TRACT	iii
ABST	'RAK	v
RÉSU	MÉ	vii
TABI	LE OF CONTENTS	ix
LIST	OF TABLES	xiv
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	xxiii
CHA	PTER 1 INTRODUCTION	1
1.1	Recent development of hydrogen in Malaysia	1
1.2	Recent development of hydrogen in France and Europe	7
1.3	Global outlook on hydrogen technologies	9
1.4	Problem statement	11
1.4.1	TiC/taC:Pt experimental background	14
1.4.2	COMSOL Multiphysics as a reliable tool in electrochemistry	15
1.5	Objectives	17
1.6	Chapter summary	18

CHAI	PTER 2 LITERATURE REVIEW	19
2.1	Hydrogen production	19
2.1.1	Electrolyzers and electrochemical water splitting mechanism	24
2.2	Hydrogen evolution reaction (HER)	26
2.2.1	Volmer–Heyrovsky–Tafel mechanisms	27
2.2.2	Simultaneous reactions	31
2.3	Electrocatalysts	38
2.3.1	Doped/undoped graphene, carbon, amorphous carbon (G, C, aC)	41
2.3.2	Titanium carbide	43
2.3.3	Molybdenum (Mo)	45
2.3.4	Tungsten (W)	47
2.3.5	Others (nitrides, oxides, noble metals)	48
2.4	Computational simulation in electrochemistry	55
2.4.1	Density functional theory (DFT) and ab-initio	55
2.4.2	Finite difference (FD) and finite element (FE)	58
2.5	Chapter summary	61
CHAI	PTER 3 METHODOLOGY	62
3.1	Design and modeling of redox reaction in electrochemistry using	
	COMSOL Multiphysics	62
3.1.1	Model definition	63
3.1.2	Model equations	64

3.1.3	Boundary conditions	65
3.1.4	Geometry and meshing	72
3.1.5	Time dependent solver and the relative tolerance (rtol)	76
3.2	Design and modeling of Volmer-Heyrovsky-Tafel (VHT) mechanistic	
	steps for hydrogen evolution reaction (HER)	77
3.2.1	Model definition	79
3.2.2	Model equations	80
3.2.3	Boundary conditions	81
3.2.4	Geometry and meshing	92
3.3	Safety measures when dealing with hydrogens	94
3.4	Chapter summary	95
CHAI	PTER 4 DATA ACCURACY AND PRECISION OF COMSOL	
	MULTIPHYSICS SIMULATIONS FOR THE REDOX	
	REACTION	97
4.1	Introduction	97
4.2	Effect of meshing on the 1D simulation	99
4.3	Effect of meshing on the 2D asymmetric and 3D simulation	100
4.4	Adaptive meshing	105
4.5	Relative tolerance	108
4.6	Discussion	112
4.7	Chapter summary	116

xi

CHA	CHAPTER 5 PARAMETRIC STUDY AND ANALYSIS OF VOLMER-		
	HEYROVSKY-TAFEL (VHT) STEPS FOR THE		
	HYDROGEN EVOLUTION REACTION (HER)	118	
5.1	Introduction	118	
5.2	Volmer-Heyrovsky (VH) irreversible reactions	120	
5.2.1	Effect of Volmer: standard rate constant, k_v and charge transfer		
	coefficient, β_{ν} .	122	
5.2.2	Effect of Heyrovsky: k_h and β_h .	125	
5.3	Volmer-Tafel (VT Irreversible)	129	
5.4	The VHT mechanism with reversible reaction	131	
5.4.1	Comparison between reversible and irreversible reactions on HER		
	performances	139	
5.5	Kinetic parameters permutation	141	
5.6	Chapter summary	145	
CHA	PTER 6 HYDROGEN EVOLUTION REACTION ANALYSIS OF		
	ARRAYED PLATINUM-DOPED TETRAHEDRAL		
	AMORPHOUS CARBON ON TITANIUM CARBIDE	146	
6.1	Introduction	146	
6.2	The effect of surface diffusion	150	
6.3	The edge effect between TiC substrate and taC:Pt	164	
6.4	Chapter summary	174	

СНА	PTER 7	CONCLUSION AND FUTURE OUTLOOKS	176
7.1	Conclus	sion	176
7.2	Recomm	nendations for future works	177
REF	ERENCE	S	180
APP	ENDICES	5	199

LIST OF TABLES

Table 1.1:	Volumetric and gravimetric energy densities of common fuels (Mazloomi and Gomes, 2012).	12
Table 2.1:	Hydrogen colours and methods of production.	19
Table 2.2:	Summary of hydrogen production technologies (Holladay, 2009).	23
Table 2.3:	Summary of VHT elementary steps for HER/HOR on single element electrodes and systems	30
Table 2.4:	Materials nanoscopic dimensions and classification	39
Table 2.5:	Summary of electrocatalysts by category and its performance.	51
Table 3.1:	Parameters employed for the redox reaction in the COMSOL simulation	69
Table 3.2:	Variables employed in the COMSOL simulation	71
Table 3.3:	Parameters employed for VHT mechanistic steps in the COMSOL simulation	89
Table 3.4:	Variables employed for VHT mechanistic steps in the COMSOL simulation	91
Table 3.5:	Geometry and information of the 1D, 2D and 3D model.	94
Table 4.1:	Summary of meshes on I_p and t_{com} for 1D, 2D axisymmetric, and 3D simulation.	98
Table 4.2:	Meshing on the non-localized region (region far from the electrode) on I_p accuracies and time taken for 2D axisymmetric simulation	103
Table 4.3:	CPU specifications for this study	105
Table 5.1:	Summary showing the effect of VHT forward and backward reactions on components involved for each steps.	119
Table 5.2:	General values of the parameters adopted in the parametric study	121
Table 5.3:	Complete dataset for varied k_{-v} used in the simulation.	135
Table 5.4:	VH dataset for Figure 5.11.	139
Table 5.5:	VH permutated dataset for Figure 5.12.	141

Table 5.6:	Summary on the effect of VHT kinetic parameters on the concentration of Hs, c_{Hs} , overpotential, η and Tafel plots.	144
Table 6.1:	Kinetics parameters of TiC electrode and taC electrode	147
Table 6.2:	Different sets of kinetic parameters for TiC	148
Table 6.3:	Kinetic parameters for different datasets with permutation combinations.	152
Table 6.4:	Set of surface diffusion values adopted in the simulation for surface TiC and taC:Pt	155
Table 6.5:	Kinetics parameters of TiC electrode and taC:Pt electrode	167
Table 6.6:	Summary of the HER performances of the electrocatalyst	169

LIST OF FIGURES

Figure 1.1:	Sarawak first integrated hydrogen refueling station and hydrogen bus (Sarawak Energy, 2020)	4
Figure 1.2:	Two electrolyzers are used to produce hydrogen via electrolysis (The Borneo Post, 2020)	4
Figure 1.3:	Hydrogen car, Hyundai Nexos owned by Sarawak Energy (Sarawak Energy, 2020)	5
Figure 1.4:	The Fuel Cells and Hydrogen Joint Undertaking (FCH-JU) public private partnership (PPP) (www.fcu.europa.eu).	8
Figure 1.5:	FCH 2 JU core objectives (www.fcu.europa.eu).	9
Figure 1.6:	Examples of developed hydrogen technology in automotive, aviation and naval engineering.	10
Figure 1.7:	HER and OER of electrocatalytic water splitting. (Zhu et al., 2019)	13
Figure 1.8:	Tafel plots for taC only, TiC only and TiC-taC array. (Glandut et al., 2015).	15
Figure 2.1:	Examples of four main sources of hydrogen (DiChristopher, 2021)	19
Figure 2.2:	Schematic of CO ₂ capture process using methyl diethanolamine solvent (Antonini et al., 2021)	20
Figure 2.3:	Nuclear water splitting pathways (Naterer et al., 2013)	21
Figure 2.4:	Outline of hydrogen production via solar energy (Ngoh and Njomo, 2021)	22
Figure 2.5:	Pourbaix diagram of water showing the pH dependence of OER and HER. Left-faced arrows indicate the respective potential of OER and HER in neutral (pH 7) and in alkaline (pH 14) solution. (Anantharaj and Noda, 2020)	25
Figure 2.6:	Schematic diagram of Volmer-Heyrovsky and Volmer-Tafel steps on catalyst surface (Chen et. al (2019))	26
Figure 2.7:	Overpotential against kinetic current for 2-steps of Volmer-Heyrovsky (VH), Volmer-Tafel (VT), Heyrovsky-Tafel (HT) and 3-steps of Tafel-Volmer-Heyrovsky (TVH) in quasi steady-state (Vilekar et. al., 2010).	28

Figure 2.8:	Comparison of the linear sweep voltammograms obtained experimentally (bold curve) and the results from simulation (dotted line) of gold RDE at 2000 rpm, 30 °C and 0.1M NaClO ₄ for different pH (Kahyarian et al., 2017).	33
Figure 2.9:	Plots of experimental and best fits lines form model of Ag(100) at 1.2V, in 0.03 mol/dm ³ H ₂ SO ₄ solution (a) potentiostatic current transient for HER (b) Hydrogen and anions coverages against time, s (Ruderman et al., 2013).	34
Figure 2.10	:Simulated current-overpotentials curves when the HER proceeds through VH mechanism. (1) no HAR (2) 1×10^{-8} (3) 3×10^{-8} (4) 1×10^{-7} with all rate constant in mol/cm ² . (Kichigin & Shein, 2020)	37
Figure 2.11	:Illustrative figure of a (a) 2D graphene sheet (b) 1D carbon nanotube and (c) 0D quantum dot.	40
Figure 2.12	Graphical sketch showing the difference in a crystalline and amorphous materials during electrolysis (Anantharaj and Noda, 2019). 42	
Figure 2.13	(a) Linear sweep voltammetry (LSV curves) without iR correction of electrocatalysts with a scan rate of 10 mV/s; (b) corresponding Tafel slopes. (Yoon et al., 2020)	44
Figure 2.14	: a) The polarization curves of MoSe ₂ /MoO ₂ /Mo, MoSe ₂ /Mo, MoO ₂ /Mo, Mo foil, and commercial Pt/C. b) The polarization curves of MoO ₂ /Mo selenized at different times. c) Tafel plots of the catalysts shown in (a). (Jian et al., 2018)	45
Figure 2.15	Graphene coated molybdenum carbide (MoC/G) (Yang & Saidi, 2020):	46
Figure 2.16	:Illustration showing the fabrication process of Ni/WC@NC. (Ma et al., 2018)	47
Figure 2.17	:(a) Polarization curve of Ni/WC@NC in 0.5 M H ₂ SO ⁴ electrolyte at 5 mV s ⁻¹ , along with those of Ni@NC, WC@NC, N-doped C and Pt/C for comparison. (b) Tafel plots of Pt/C, Ni/WC@NC, Ni@NC and WC@NC. (Ma et al., 2018)	48
Figure 2.18	:Overpotentials @ 10 mA/cm ² for several studies working with TiC (blue) and doped/undoped graphene or amorphous carbon (orange) electrocatalysts as function of time ranging from 2014-2021.	50
Figure 2.19	:An example of top (a) and side (b) view of the model system for the electrochemical double layer above a Pt (111) electrode (Skulason et al., 2007)	56

Figure 2.20	An example of DFT results on *H adsorption on Bimetallic catalyst (Lee et al., 2019)	57
Figure 2.21	An example of 1D model by using FEM to investigate interfacial pH during HER. (Carneiro et al., 2016)	58
Figure 2.22	: Examples of FEM results) on (a) A 3D model of encapsulated Au nanoparticles between two MoS ₂ monolayer. (b) Example of simulated electric field of Au@MoS ₂ . (c) Comparison of the theoretical calculation under the tensile and compressive strain for Au NP sandwiched between two monolayer MoS ₂ . (Tu and Wu, 2021)	59
Figure 3.1:	Schematic diagram of redox reaction near an electrode	62
Figure 3.2:	Methodology flow diagram for the simulation	63
Figure 3.3:	(a) 3D geometry showing an exposed electrode as an active surface (red highlighted region) within a near hemispherical domain giving the impression of far from the electrode condition; (b) reduction of 3D to 2D axisymmetric with the blue highlighted region that shows the related domain; (c) 1D model reduced from the 2D axisymmetric domain.	64
Figure 3.4:	Employing transport of diluted species (tds) modules to represent species O (tds) and species R $(tds2)$	66
Figure 3.5:	The example of selected option in the COMSOL UI.	66
Figure 3.6:	Flux window for species O in COMSOL UI.	68
Figure 3.7:	Potential, $E_{(t)}$ vs. time, t graph	70
Figure 3.8:	Flux window for species O in COMSOL UI.	72
Figure 3.9:	Measurement of the 1D model with predefined meshing (a) normal (b) extremely fine setting	73
Figure 3.10	(a) Geometry and measurement of the 2D axisymmetric model (b) the measurement of the electrode	73
Figure 3.11	(a) Overview of the mesh on 3D simulation (b) concentrated mesh on the electrode	74
Figure 3.12	Screen capture showing the geometry and meshing windows in COMSOL UI.	75
Figure 3.13	The time dependent window under the solver subset that shows the space where time.	76

Figure 3.14	Simulation model verification and validation adopted in the modelling process (based on Robinson, 2000).	77
Figure 3.15	Schematic diagram of a VHT reaction on an electrocatalyst surface.	78
Figure 3.16	(a) Optical micrograph of the TiC/taC:Pt electrode (b) 2D model with smaller square on the bottom left hand-corner is the ta-C (c) 3D model showing the added depth on the ta-C giving the edge effect (d) 1D model.	79
Figure 3.17	Concentration profiles of dissolved H_2 at different current densities with 100 μ m diffusion layer thickness (Kempainen et al., 2016)	82
Figure 3.18	The general form PDE window showing the input parameters and selected discretization.	84
Figure 3.19	The general form PDE window showing the input parameters and selected discretization.	85
Figure 3.20	Screen capture showing the parameters and the equations employed for taC surface in 3D model.	86
Figure 3.21	:Sketching of the 3D TiC/taC domain.	92
Figure 3.22	:Geometry and meshing of 2D and 3D models.	93
Figure 4.1:	Schematic diagram differentiating accuracy and precision (Stallings & Wilmore, 1971)	97
Figure 4.2:	Current, $I_{(t)}$ (A) vs. Potential, $E_{(t)}$ (V) of different meshing on 1D	99
Figure 4.3:	Diagram of the cylindrical integration along the z-axis in a 2D axisymmetric model	101
Figure 4.4:	Concentration profile at $t = 20$ s, $E^0 = 0$ V on 2D axisymmetric and 3D simulations	102
Figure 4.5:	Current, $I_{(t)}$ (A) vs. Potential, $E_{(t)}$ (V) of different meshing on 2D axisymmetric	103
Figure 4.6:	Current, $I_{(l)}$ (µA) vs. Potential, $E_{(l)}$ (V) of different meshing on 2D axisymmetric	104
Figure 4.7:	The extension of the time dependent window giving the option for adaptive meshing and its entity selection.	106
Figure 4.8:	Adaptive meshing on 1D simulation (a) Initial mesh of 15 <i>noe</i> (b) Final mesh of 30 <i>noe</i> .	107

Figure 4.9:	Adaptive meshing on 2D axisymmetric simulation (a) Initial mesh of 23638 <i>noe</i> (b) Final mesh of 40450 <i>noe</i> (c) Initial mesh of 466 <i>noe</i> (d) Final mesh of 1424 <i>noe</i> .	107
Figure 4.10	Adaptive meshing on 3D simulation (a) Initial mesh of 5736 <i>noe</i> (b) Final mesh of 18908 <i>noe</i> .	107
Figure 4.11	(a) Plot of relative tolerance (<i>rtol</i>) for current, $I_{(t)}$ vs potential, $E_{(t)}$ and (b) Computation time, t in s, and peak current value at -0.02 V, I_{p} -0.02 in μ A vs relative tolerance (<i>rtol</i>) for 1-D model	109
Figure 4.12	(a) Plot of relative tolerance (<i>rtol</i>) for current, $I_{(t)}$ against potential, $E_{(t)}$ and (b) Computation time, t in s, and peak current value at -0.02 V, I_p -0.02 in μ A against relative tolerance (<i>rtol</i>) for 2D axisymmetric.	110
Figure 4.13	(a) Plot of relative tolerance (<i>rtol</i>) for current, $I_{(t)}$ against potential, $E_{(t)}$. (b) Computation time, <i>t</i> in s, and peak current value at -0.02 V, I_{p} -0.02 in μ A against relative tolerance (<i>rtol</i>) for 3D.	111
Figure 4.14	Comparison of current, $I_{(t)}$ vs. potential $E_{(t)}$ of the 1D, 2D axisymmetric, and 3D model on recommended meshing.	113
Figure 4.15	Plot of I_p against max element size for 1D, 2D axisymmetric, and 3D model.	114
Figure 4.16	Plot of I_p and percentage error, % against max element size for 1D model.	114
Figure 4.17	Plot of I_p and percentage error, % against max element size for 2D axisymmetric and 3D model.	115
Figure 4.18	t _{com} against noe on 1D, 2D axisymmetric, and 3D model	115
Figure 5.1:	Cyclic voltammogram recorded on a polycrystalline Pt electrode at 50 mVs^{-1} in a 0.5 M H ₂ SO ₄ solution degassed with argon (Dubouis and Grimaud, 2019)	118
Figure 5.2:	Comparison on the Volmer standard rate constant, $k_v = (1 \times 10^{-6}, 1 \times 10^{-4}, 1 \times 10^{-2})$ m ³ /mol.s against overpotential, η , on the (a) concentration profile of Hs, c_{Hs} (mol/m ²) (b) current density, <i>j</i> (mA/cm ²) and (c) the corresponding Tafel plots in A/cm ² .	123
Figure 5.3:	Comparison on the Volmer charge transfer coefficient, $\beta_v = (0.25, 0.5, 0.75)$ against overpotential, η , on the (a) concentration profile of Hs, $c_{Hs} \text{ (mol/m^2)}$ (b) current density, $j \text{ (mA/cm^2)}$ and (c) the corresponding Tafel plots in A/cm ² .	124
Figure 5.4:	Comparison on the Heyrovsky standard rate constant, $k_h = (1 \times 10^{-8}, 1 \times 10^{-6}, 1 \times 10^{-4})$ m ³ /mol.s against overpotential, η , on the (a)	

	concentration profile of Hs, c_{Hs} (mol/m ²) (b) current density, <i>j</i> (mA/cm ²) and (c) the corresponding Tafel plots in A/cm ² .	127
Figure 5.5:	Comparison on the Heyrovsky charge transfer coefficient, $\theta_h = (0.25, 0.5, 0.75)$ against overpotential, η , on the (a) concentration profile of Hs, $c_{Hs} \pmod{m^2}$ (b) current density, $j \pmod{2}$ and (c) the corresponding Tafel plots in A/cm ² .	128
Figure 5.6:	Comparison on the Tafel standard rate constant, $K_t = (1 \times 10^3, 1 \times 10^6)$ m ³ /mol.s against overpotential, η , on the (a) concentration profile of Hs, c _{Hs} (mol/m ²) (b) current density, <i>j</i> (mA/cm ²) and (c) the corresponding Tafel slope in A/cm ² .	130
Figure 5.7:	Concentration of Hs at $\eta = 0$ V, c_{Hs0} (mol/m ²) against the ratio of Volmer kinetics, κ_V .	133
Figure 5.8:	Concentration of Hs at $\eta = 0$ V, c_{Hs0} (mol/m ²) against the ratio of Volmer kinetics, κ_V .	134
Figure 5.9:	Plot of different $k_{-\nu}$ ranging from (a) 1×10^{0} s ⁻¹ to 1×10^{4} s ⁻¹ and (b) the close-up plot ranging from $(1 \times 10^{-6}$ to $1 \times 10^{-2})$ s ⁻¹ for concentration of Hs, c_{Hs} (mol/m ²) against the overpotential, η (V).	136
Figure 5.10	The corresponding current density, $j (\text{mA/cm}^2)$ of Figure 6.9 for (a) $k_{-\nu}$ ranging from (1×10 ⁻⁶ to 1) s ⁻¹ and (b) the close-up plot at lower overpotentials, η (V).	137
Figure 5.11	The corresponding Tafel plots in A/cm ² for Figure 6.10.	138
Figure 5.12	:Comparison on the VHT reversible and irreversible reactions on the (a) concentration profile of Hs, c_{Hs} (mol/m ²) (b) current density, <i>j</i> (mA/cm ²) and (c) the corresponding Tafel plots in A/cm ² against overpotential, η (V).	140
Figure 5.13	Comparison on the permutated datasets on the (a)concentration profile of Hs, c_{Hs} (mol/m ²), (b) current density, j (mA/cm ²) and the corresponding (c) Tafel plots in A/cm ² .	143
Figure 6.1:	Tafel plots plot of fitted line from simulation and the experimental curve for \log_{10} of current density, (<i>j</i> in A/cm ²) against the cell overpotential, η in V.	146
Figure 6.2:	Comparison between simulated TS for TiC assuming VH and VHT reversible reactions.	148
Figure 6.3:	Corresponding (a) c_{Hs} (mol/m ²) vs η (V) and (b) the <i>j</i> (mA/cm ²) vs η (V) for TiC and taC:Pt from tafel plots Figure 6.2.	149
Figure 6.4:	Illustration of VH steps with surface diffusion	150

Figure 6.5:	Tafel plots for Datasets (Table 6.3) with different permutations kinetic parameters.	153
Figure 6.6:	Corresponding (a) c_{Hs} (mol/m ²) vs η (V) and (b) the <i>j</i> (mA/cm ²) vs η (V) for TiC and taC:Pt from Tafel plots Figure 6.5.	154
Figure 6.7:	Tafel plots for (a) Dataset 1 and (b) Dataset 2 while employing variation 1 on surface diffusion, D_{surf} values	156
Figure 6.8:	Plots of (a) the Tafel plots (b) j (mA/cm ²) vs η and (c) c_{Hs} vs η for dataset 1 with variation 2	157
Figure 6.9:	Plots of (a) the Tafel plots (b) j (mA/cm ²) vs η and (c) c_{Hs} vs η for dataset 2 with variation 2	158
Figure 6.10	Concentration profile of Hs, c_{Hs} on the TiC/taC:Pt surface for Dataset 1 and 2 when $D_{taC} = D_{TiC} = 1 \times 10^{-6} \text{ m}^2/\text{s}.$	160
Figure 6.11	\log_{10} (<i>j</i> in A/cm ²) vs potential of TiCtaC electrode with surface diffusion.	161
Figure 6.12	Concentration of Hs, c_{Hs} (mol/m ²) against overpotential, η plotted from $(R_v+R_h)_{exp}$.	163
Figure 6.13	\log_{10} of current density vs Hs concentration at $\eta = -0.2$ V	164
Figure 6.14	Tafel plots for 3D simulation (no kinetic parameters permutation) with edge effect and surface diffusion, $D_{surf} = 1 \times 10^{-12}$, 1×10^{-9} , 1×10^{-6} m ² /s.	166
Figure 6.15	Tafel plots for 3D simulation (taC:Pt kinetic parameters permutation) with edge effect and surface diffusion, $D_{surf} = 1 \times 10^{-12}$, 1×10^{-9} , 1×10^{-6} m ² /s.	166
Figure 6.16	(a) HER polarisation curves and (b) Tafel plots of TiC, taC:Pt, TiC/taC:Pt and Pt/C.	168
Figure 6.17	Concentration of adsorbed hydrogen on the electrocatalyst surface.	170
Figure 6.18	Topview of 3D simulation with surface diffusion and edge effect: The concentration profiles for Hs at $\eta = (0, -0.3, -0.5)$ V and the extracted c_{Hs} curves at different point of the electrocatalyst surface.	171
Figure 6.19	The concentration profiles for Hs at $\eta = (0, -0.3, -0.5)$ V and the extracted c_{Hs} curves at different point of the catalyst surface.	172
Figure 6.20	Comparison with the experimental plot on the HER polarization curves using eq. (7.4) for surface diffusion and eq. (6.5) for edge effect. (a) current density, j (mA/cm ²) vs overpotential, η and (b) Tafel plots.	173