

Development of Axial-Flow Hydrokinetic Turbine Systems for Shallow Tropical Rivers

Tan Kheng Wee

Doctor of Philosophy 2023

Development of Axial-Flow Hydrokinetic Turbine Systems for Shallow Tropical Rivers

Tan Kheng Wee

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Renewable Energy System)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2023

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.

Signature

Name:

Tan Kheng Wee

Matric No.: 17010121

Faculty of Engineering

Universiti Malaysia Sarawak

Date: 17 July 2023

ACKNOWLEDGEMENT

I thank God for the opportunity to work on this research and the guidance in completing this thesis. I sincerely thank my beloved wife, Lorothy Anak Morrison Buah and our daughter Amberly Miah Tan for their love and support throughout my study and my late parents for their prayers and blessing.

To my supervisor, Dr Martin Anyi, I wish to thank you for your professional and selfless supervision, help, support and friendship. And to my co-supervisor, Dr Ngu Sze Song, I thank you for your help and support. Not forgetting Prof Dr Paul Hoole for his professional guidance, support and help at the beginning of my journey and my first journal publication. I also thank Dr Brian Kirke for your cooperation and help with my second journal publication during the crucial covid-19 pandemic. To assistant engineers Mr Firdaus and Mr Lawrence, I thank you for your support and help during the turbine prototype construction in the workshop and the field tests.

I also wish to thank my good friend, Mr Christopher Pui from Aquatic Enterprise Co., for donating four units of HDPE floats for the prototype construction and my family members and friends for their moral support.

I also want to thank the government of Malaysia for giving me a scholarship for my study. And finally, to the Centre for Graduate Studies and the management of the Universiti Malaysia Sarawak, I thank you for the advice and support given during my study at Universiti Malaysia Sarawak.

ABSTRACT

Currently, the majority population of the world without access to electricity are countries in the tropics. Although Malaysia was among the tropical country listed to achieve 100 % accessibility in 2015, the state of Sarawak still has about 5 % of its population that does not. Due to the uneconomical grid connection, the state government has implemented small-scale conventional Micro-Hydropower (MHP) and Solar Energy Systems (SES) because of their abundant resources. However, despite being the preferred choice, small-scale MHP is inapplicable in the area where the topography does not favour it. In the meantime, the offgrid rural communities rarely have the purchasing power to acquire expensive equipment manufactured in high-cost countries. Besides, few commercially available small-scale Hydrokinetic Turbines (HKT) were developed specifically for shallow rivers (less than 1 m), and their design might not be entirely suitable for tropical rivers. Subsequently, this research aimed to construct a low-cost axial-flow HKT acceptable for shallow rivers in the tropics and would produce 2 kWh of energy per day. Two prototypes are designed and built in this research. The first was to evaluate the concept of building an HKT solely with off-the-shelf materials while the second was to overcome the issues faced by the first. The second improved prototype, with a 0.585 m reprofiled fan rotor with swept-back blades as the turbine rotor, produced 92.29 W of power from a flow velocity of 1.26 m/s, and its estimated efficiency is 0.34. Therefore, it can generate more than 2 kWh per day and is considered sufficient for a typical rural household. Besides, the improved prototype only costs USD 750 and is a fraction of the cost of commercial HKT for shallow rivers. Nevertheless, the study also revealed the Smart Drive motor as a promising and versatile candidate to be used as a generator for small-scale HKT construction. It produces less noise and has lower cogging torque than the DC brushed motor used in the improved prototype. A basic guide is also

presented for small-scale HKT construction with the modified Smart Drive motor – with the 60 SP and 60P configuration – as an alternative generator.

Keywords: Affordable, hydrokinetic turbine, off-the-shelf materials, rural electrification, swept-back turbine rotor

Pembangunan Sistem Turbin Hidrokinetik Beraliran Paksi untuk Sungai Tropika yang Cetek

ABSTRAK

Pada masa kini, kebanyakan penduduk di dunia yang tidak mempunyai kebolehcapaian kepada tenaga elektrik adalah di kalangan negara-negara yang terletak di kawasan tropika. Walaupun Malaysia adalah di antara negara di kawasan tropika yang tersenarai untuk kebolehcapaian 100 % pada 2015, negeri Sarawak masih memiliki lebih kurang 5 % daripada penduduknya yang belum. Disebabkan oleh kos sambungan ke grid yang tidak ekonomi, kerajaan negeri telah melaksanakan sistem kuasa hidro mikro konvensional dan tenaga solar kerana memiliki sumber yang banyak. Walaupun sebagai pilihan utama, sistem kuasa hidro mikro tidak dapat diaplikasikan pada topografi yang tidak sesuai dengannya. Pada masa yang sama, masyarakat luar bandar yang di luar sambungan grid jarang memiliki kuasa membeli untuk mendapatkan peralatan mahal yang dihasilkan oleh negaranegara kaya. Tambahan pula, terdapat sangat sedikit bilangan turbin hidrokinetik yang dibangunkan khas untuk sungai yang cetek (kurang dari 1 m), dan reka bentuknya pula mungkin tidak sesuai untuk sungai di kawasan tropika. Seterusnya, kajian ini bertujuan untuk menghasilkan sebuah turbin hidrokinetik aliran paksi yang berkos rendah untuk sungai cetek di kawasan tropika serta dapat menjana tenaga 2 kWh setiap hari. Dua prototaip telah direka dan dibina di dalam kajian ini. Yang pertama bertujuan untuk penilaian pembinaan turbin hidrokinetik dengan hanya menggunakan bahan-bahan yang sedia ada di kedai manakala yang kedua adalah untuk mengatasi kelemahan yang didapati daripada yang pertama. Manakala untuk prototaip yang kedua, dengan penggunaan pemutar kipas bersaiz 0.585 m yang telah diprofil semula dan digunakan sebagai pemutar turbin telah menghasilkan kuasa sebanyak 92.29 W dari arus sungai 1.26 m/s, dan memiliki kecekapan anggaran sebanyak 0.34. Ia mampu untuk menghasilkan tenaga elektrik lebih daripada 2 kWh setiap hari dan dianggap mencukupi untuk sebuah rumah biasa di luar bandar. Di samping itu, prototaip yang kedua hanya dibina dengan kos USD 750 dan jauh lebih rendah berbanding dengan kos turbin hidrokinetik komersil untuk sungai yang cetek. Namun begitu, kajian ini turut mendedahkan bahawa motor Smart Drive adalah merupakan calon yang berpotensi dan serba boleh untuk digunakan sebagai penjana untuk pembinaan turbin hidrokinetik berskala kecil. Ianya kurang hingar dan memiliki penuugalan kilas yang lebih rendah berbanding dengan motor DC berberus yang digunakan di dalam prototaip yang ditambah baik, dan satu panduan turut dibentangkan untuk pembinaan sebuah turbin hidrokinetik menggunakan motor Smart Drive yang diubah suai dengan konfigurasi 60SP dan 60P sebagai penjana.

Kata kunci: Bahan-bahan sedia ada, bekalan elektrik luar bandar, mampu milik, pemutar turbin disapu balik, turbin hidrokinetik

TABLE OF CONTENTS

		Page
DEC	LARATION	i
ACK	NOWLEDGEMENT	ii
ABS	ГКАСТ	iii
ABSI	TRAK	V
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xiv
LIST	OF ABBREVIATIONS	xix
СНА	PTER 1: INTRODUCTION	1
1.1	Study Background	1
1.2	Problem Statement	5
1.3	Objectives	6
1.4	Hypothesis	7
1.5	Scope	8
1.6	Chapter Summary	9
СНА	PTER 2: LITERATURE REVIEW	10
2.1	Overview	10
2.2	The Need for Rural Electrification in Sarawak	10

2.2.1	Micro-Hydropower	13
2.2.2	Solar Energy System	17
2.2.3	Renewable Energy Potential and Challenges	18
2.3	Hydrokinetic Turbine	20
2.3.1	Design Principle	22
2.3.2	Configuration	24
2.3.3	Rotor	24
2.3.4	Electric Generator	25
2.4	Hydrokinetic Turbine for Rural Electrification	28
2.4.1	Hydrokinetic Turbine for Shallow Rivers	32
2.4.2	Issues Faced	34
2.4.3	Hydrokinetic Potential for Rural Electrification in Sarawak	35
2.4.4	Methods To Reduce Hydrokinetic Turbine Cost	38
2.5	Chapter Summary	40
CHA	PTER 3: MATERIALS AND METHODS	42
3.1	Overview	42
3.2	Research Framework and Flow of Study	42
3.3	Selection of HKT Design Reference	45
3.4	Selection of Field Test Site	47
3.5	Prototype for Proof of Concept	49

3.5.1	Design	51
3.5.2	Construction	56
3.5.3	Field Test	63
3.6	Improved Prototype	68
3.6.1	Design	70
3.6.2	Construction	75
3.6.3	Field Test	85
3.7	Generator Case Studies	87
3.7.1	Case Study 1: Off-The-Shelf/Recycled Motor/Generator Used for Small-	
	Scale RES Construction	88
3.7.2	Case Study 2: Off-The-Shelf/Recycled PMSM as Generator for Small-Scale	
	Turbine Construction	88
3.7.2.1	I Smart Drive Motor Output Testing	89
3.7.2.2	2 Smart Drive Motor Cogging Test	92
3.7.2.3	3 Smart Drive Generator Testing Under Different Stator Configurations	94
3.7.2.4	4 Smart Drive Generator for Small-Scale HKT Design	101
3.8	Chapter Summary	104
CHAI	PTER 4: RESULTS AND DISCUSSION	106
4.1	Overview	106
4.2	Prototype Field Test	106

4.2.1	Results and Discussion	106
4.2.2	Performance Evaluation	110
4.2.3	Conclusion	112
4.3	Improved Prototype Field Test	112
4.3.1	Results and Discussion	113
4.3.2	Performance Evaluation	116
4.3.3	Conclusion	124
4.3.4	Comparison with commercial small-scale HKT	125
4.4	Generator Case Studies	127
4.4.1	Case Study 1 Results and Discussion	127
4.4.2	Case Study 2 Results and Discussion	131
4.4.2.	1 Smart Drive Motor Output Testing	131
4.4.2.2	2 Smart Drive Motor Cogging Test	133
4.4.2.	3 Smart Drive Generator Testing Under Different Stator Configurations	134
4.4.2.4	4 Smart Drive Generator for Small-Scale HKT Design	142
4.5	Chapter Summary	143
CHA	PTER 5: CONCLUSION AND RECOMMENDATIONS	145
5.1	Conclusion	145
5.2	Contribution of The Study	147
5.3	Recommendations	147

REFERENCES	149
APPENDICES	167

LIST OF TABLES

Energy Generation Scenario in Sarawak

Table 2.1

Page

11

Table 2.2	Classification of hydropower plants	13
Table 2.3	MHP installed in Sarawak for rural electrification	14
Table 2.4	Type of generator used in wind and hydrokinetic turbine	27
Table 2.5	List of HKT designs for rural electrification	29
Table 2.6	HKT power output, required depth and prices current August 2020	32
Table 2.7	Research on hydrokinetic potential	38
Table 2.8	Suggested method to reduce the cost of HKTs	39
Table 3.1	Specification of the DC motor	73
Table 3.2	RPM and Output power of the 60SP	102
Table 3.3	RPM and Output power of the 60P	103
Table 4.1	Field test results comparison	115
Table 4.2	PMDCM armature circuit resistance measured	118
Table 4.3	Estimation of the PMDCG efficiency	119
Table 4.4	Corrected rotor and generator speed	120
Table 4.5	Estimated power at each section of the turbine	121
Table 4.6	Comparison between prototype and improved prototype	124
Table 4.7	Small-scale HKT power output, required depth, and prices	126
Table 4.8	List of RES using off-the-shelf/recycled motor/generator	128
Table 4.9	Output voltage of the Smart Drive motor as a generator without load	132
Table 4.10	Cogging torque measured for the Smart Drive motor	133
Table 4.11	Cogging torque measured for the PMDCM	134

Table 4.12The Smart Drive generator no-load tests135

Table 4.13	Summary of V/RPM for the no-load tests of the rewired stators	136
Table 4.14	Load test results for the 60-14s-1p-S connection	137
Table 4.15	Load test results for the 60-7s-2p-S connection	138
Table 4.16	Load test results for the 60-2s-7p-S connection	138
Table 4.17	Load test results for the 60-1s-14p-S connection	139
Table 4.18	The 60-2s-7p-S output power with two different loads	140
Table 4.19	The 60-1s-14p-S output power with five different loads	141
Table 4.20	Small-scale HKT design with 60SP and 60P for a 12 and 24 V system	143

LIST OF FIGURES

Figure 1.1	Categories of unelectrified villages	2
Figure 1.2	Sarawak 22 major river basins	3
Figure 1.3	Service level deemed sufficient for a typical rural household	8
Figure 2.1	A 10 kW MHP at a rural village in Sarawak	14
Figure 2.2	Centralized Solar Hybrid System in Bario, Sarawak	18
Figure 2.3	Classes of HKT	21
Figure 2.4	Power coefficient as a function of TSR for a two-bladed rotor	23
Figure 2.5	(a) Axial-flow turbines and (b) Cross-flow turbines	24
Figure 2.6	Typical performance of wind power machines	25
Figure 2.7	Rural communities reside along rivers in the Baram Basin	36
Figure 2.8	Rural communities reside along rivers in the Rajang Basin	37
Figure 3.1	The Research Framework	43
Figure 3.2	Study flow chart	44
Figure 3.3	Long Busang village	45
Figure 3.4	Locality of Long Busang in the Rajang Basin	46
Figure 3.5	Flash flood at Long Busang	48
Figure 3.6	Log jam at the upper reaches of the Balui River	48
Figure 3.7	First test site as indicated by the red marker	48
Figure 3.8	Visual of the actual test site near Danu village	48
Figure 3.9	Second test site as indicated by the red marker	49
Figure 3.10	Visual of the actual test site near Suba Buan village	49
Figure 3.11	Flow chart for the prototype design and construction	50
Figure 3.12	Smart Turbine	51

Figure 3.13	Flowwatt200	51
Figure 3.14	Plastic fan rotor with three swept-back blades	52
Figure 3.15	The predicted output power for the prototype	52
Figure 3.16	Ryobi Cordless Drill	53
Figure 3.17	A backpack brush cutter	53
Figure 3.18	Front view of Prototype	54
Figure 3.19	Side view of prototype	55
Figure 3.20	Twin-turbine rotors attached to the gearcases	56
Figure 3.21	Fabricated generator stand	57
Figure 3.22	Fabrication of the generator transmission	57
Figure 3.23	Testing the transmission with a cordless drill	58
Figure 3.24	Fabricated nose cone	58
Figure 3.25	Constructed frame for winching	59
Figure 3.26	Hand crank winch and pulleys fixed to the frame	59
Figure 3.27	Fixing the steel cable to the bottom of the swingable section	60
Figure 3.28	Fabricated cover for the swingable section	60
Figure 3.29	The completed prototype	61
Figure 3.30	The swingable section is fully retracted	61
Figure 3.31	Repeated test with motorcycle filament light bulbs	62
Figure 3.32	Repeated test with new LED light tubes	62
Figure 3.33	Putting the prototype onto the lorry	63
Figure 3.34	En route to the field test site	63
Figure 3.35	Lowering the prototype to the river using a ramp nearby	64
Figure 3.36	The prototype had to be carried out by four people	64
Figure 3.37	Testing the prototype buoyancy	65
Figure 3.38	The prototype is being guided to its field-testing spot	65

Figure 3.39	The prototype is secured to the testing position	66
Figure 3.40	The turbine tilted as the river was shallow	66
Figure 3.41	The prototype testing setup	67
Figure 3.42	The prototype RPM measurement	67
Figure 3.43	River flow velocity measurement with float method	68
Figure 3.44	Flow chart for the improved prototype design and construction	69
Figure 3.45	The fan rotor with two swept-back blades	71
Figure 3.46	Difference between the original and reprofiled fan rotor	71
Figure 3.47	Chords lengths and twist angles of the fan rotor	71
Figure 3.48	The predicted output power for the improved prototype	72
Figure 3.49	Permanent magnet DC motor with an internal gearing system	73
Figure 3.50	Schematic drawing of the improved prototype	76
Figure 3.51	Pulley attached and welded to the shaft	77
Figure 3.52	Fabrication of the transmission casing	77
Figure 3.53	Galvanised lip channel steel trimmed and welded	77
Figure 3.54	Oil seal attachment on the transmission casing	78
Figure 3.55	Casing coated with the anti-leaking sealant	78
Figure 3.56	The completed first stage of the transmission	79
Figure 3.57	Fabrication of the transmission supporting structure	80
Figure 3.58	Supporting structure for the generator	80
Figure 3.59	Testing the transmission	81
Figure 3.60	Side supporting structure for the transmission	82
Figure 3.61	Rear supporting structure for the transmission	82
Figure 3.62	Front deflector cum leg fabrication	83
Figure 3.63	Rear leg structure fabrication	83
Figure 3.64	Completed improved prototype	84

Figure 3.65	Completed improved prototype with leg structure removed	84
Figure 3.66	The improved prototype test with a load	85
Figure 3.67	The improved prototype was transported using a small pickup truck	86
Figure 3.68	The improved prototype field test setup	86
Figure 3.69	The 42-pole 60s Smart Drive motor	89
Figure 3.70	Permanent magnet block that contains 4 poles	90
Figure 3.71	Series connection for the 14 coils	90
Figure 3.72	Experimental setup to verify sinewave back-EMF	91
Figure 3.73	Testing the Smart Drive motor as a generator without load	92
Figure 3.74	(a) Cogging torque measurement setup for the Smart Drive motor(b) Cogging torque measurement setup for the PMDCM	93
Figure 3.75	Different stator wiring of the 42-pole Smart Drive motor	94
Figure 3.76	The Smart Drive 60s generator factory-wired stator (60-14s-1p-S)	95
Figure 3.77	Experiment set up for the no load test	96
Figure 3.78	Circuit diagram for the no load test	96
Figure 3.79	Smart Drive generator's RPM taken with a digital tachometer	97
Figure 3.80	Experiment set up for the test with a load	97
Figure 3.81	Circuit diagram for the test with a load	98
Figure 3.82	The Smart Drive 60s rewired stators	99
Figure 3.83	Circuit diagrams for the rewired stator	100
Figure 3.84	Different rewired Smart Drive generator output	101
Figure 4.1	First-day field test results	107
Figure 4.2	Second-day field test results with a single LED light as the load	108
Figure 4.3	Second-day field test results with two LED lights as the load	109
Figure 4.4	Submerged debris stuck on the turbine structure on day one	110
Figure 4.5	Submerged debris stuck on the turbine structure on day two	111

Figure 4.6	Field test results with the original fan rotor as the turbine rotor	113
Figure 4.7	Field test results with reprofiled fan rotor as the turbine rotor	114
Figure 4.8	River flow velocity measured	115
Figure 4.9	Block diagram of an HKT	117
Figure 4.10	Equivalent electrical circuit of a permanent magnet DC generator	117
Figure 4.11	Experiment on PMDCM armature circuit resistance measurement	118
Figure 4.12	Typical performances of hydrokinetic rotors	122
Figure 4.13	Projected output power of the improved prototype	123
Figure 4.14	Projected output energy of the improved prototype	123
Figure 4.15	Output voltage and back-EMF waveform of the Smart Drive motor	131
Figure 4.16	Output voltage of the Smart Drive motor as a generator without load	132
Figure 4.17	Measuring the weight of W ₁ for the Smart Drive motor	133
Figure 4.18	Measuring the weight of W ₁ for the PMDCM	134
Figure 4.19	The Smart Drive generator no-load tests	136
Figure 4.20	The 60-2s-7p-S connection test with two different loads	140
Figure 4.21	The 60-1s-14p-S connection test with five different loads	141

LIST OF ABBREVIATIONS

AC	Alternating Current
Back-EMF	Counter-Electromotive Force
DC	Direct Current
DPG	Diesel-Powered Generator
ER-PMSM	External Rotor Permanent Magnet Synchronous Motor
HDPE	High-Density Polyethylene
НКТ	Hydrokinetic Turbine
LEA	Local Electrical Authority
MHP	Micro-Hydropower
PMDCG	Permanent Magnet DC Generator
PMDCM	Permanent Magnet DC Motor
PMSM	Permanent Magnet Synchronous Motor
RES	Renewable Energy System
RPM	Revolutions per minute
SES	Solar Energy System
Solar PV	Solar Photovoltaic
TSR	Tip-Speed Ratio
UPVC	Unplasticised Polyvinyl Chloride

CHAPTER 1

INTRODUCTION

1.1 Study Background

According to the Our World in Data in 2016, only 87% of the world's population has access to electricity (Ritchie & Roser, 2020). The majority population without access are countries in central Africa and certain countries in Southeast Asia like Myanmar and Papua New Guinea. Malaysia was among the countries listed to achieve 100% accessibility in 2015 (The World Bank, 2022).

Malaysia is a federation comprising thirteen states and three federal territories. The state of Sarawak is the biggest, with a total land area of $124,450 \text{ km}^2$ – approximately 37 % of the total area of Malaysia – situated on the island of Borneo. It was reported about 48 % out of the 2.8 million population in Sarawak reside in rural areas (Yap et al., 2020) and live in 6,235 widely scattered villages (Shiun, 2016).

In 2017, according to Sarawak's Ministry of Utilities, the number of rural villages without access to electricity had been reduced to 1,623, involving 36,365 households, and are characterized into three categories under the State Rural Power Supply Program as shown in Figure 1.1. However, due to their small size of communities, scattered location, ruralness, and uneconomical grid connection, 5 % of Sarawak's population remains without access to 24-hour electricity from mains or solar power (Sarawak Energy, 2019). Therefore, due to these circumstances, the Local Electrical Authority (LEA) would turn to conventional Micro-Hydropower (MHP), Solar Energy Systems (SES) and even Diesel-Powered Generators (DPG) as a short-term solution to power up rural schools, clinics, administrative

offices or even small villages for several hours daily (Anyi et al., 2010; Fauzi Shahab, 2017; Saupi et al., 2018). Eventually, situations like this provide tremendous challenges to the state government as they involve huge costs to provide electricity to all the rural communities. The state government estimated RM 6.7 billion is needed to power up the entire Sarawak by 2025 (Toyat, 2018).

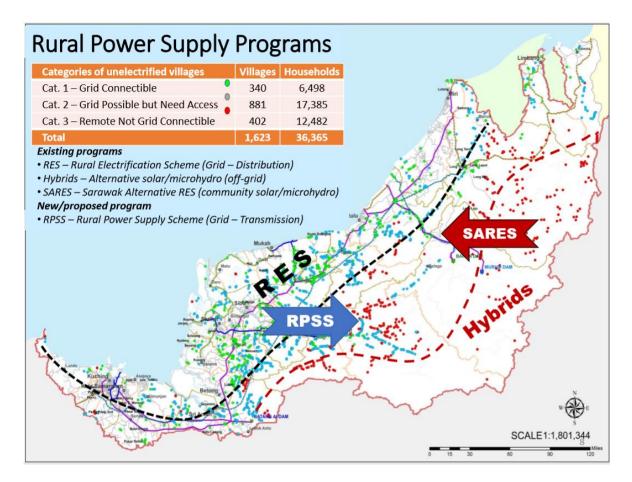


Figure 1.1: Categories of unelectrified villages (Fauzi Shahab, 2017).

Through Figure 1.1, the great concern would be category 3, which is considered remote and not grid connectible. From Figure 1.1, one can see that the majority of these villages (i.e., red dots) are scattered in the interior of Sarawak, particularly in the Rajang and Baram River basins, compared to Figure 1.2.

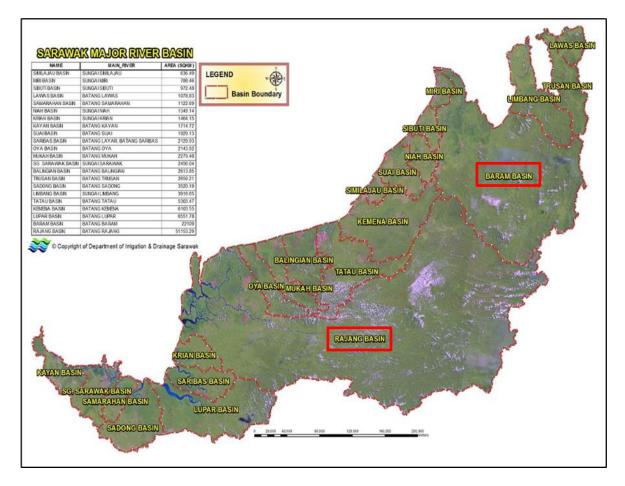


Figure 1.2: Sarawak 22 major river basins (DID of Sarawak, 2022a).

Sarawak receives an average annual rainfall of about 3850 mm, five times more than the world's average (Salleh et al., 2018). In addition, the hot and wet tropical climate has allowed a vast network of rivers to form and flow continuously throughout the year. The majority of the off-grid remote communities in Sarawak are located on the upper courses of rivers or tributaries because they rely on the river for water, food and transportation. Hence, MHPs have been considered the most suitable option for powering off-grid remote rural communities in Sarawak, where the topography is suitable (Anyi et al., 2010; Borhanazad et al., 2013; JOAS, 2015; Wan Zainal Abidin et al., 2009; Yeo et al., 2014).