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ABSTRACT 

Currently, the majority population of the world without access to electricity are countries in 

the tropics. Although Malaysia was among the tropical country listed to achieve 100 % 

accessibility in 2015, the state of Sarawak still has about 5 % of its population that does not. 

Due to the uneconomical grid connection, the state government has implemented small-scale 

conventional Micro-Hydropower (MHP) and Solar Energy Systems (SES) because of their 

abundant resources. However, despite being the preferred choice, small-scale MHP is 

inapplicable in the area where the topography does not favour it. In the meantime, the off-

grid rural communities rarely have the purchasing power to acquire expensive equipment 

manufactured in high-cost countries. Besides, few commercially available small-scale 

Hydrokinetic Turbines (HKT) were developed specifically for shallow rivers (less than 1 m), 

and their design might not be entirely suitable for tropical rivers. Subsequently, this research 

aimed to construct a low-cost axial-flow HKT acceptable for shallow rivers in the tropics 

and would produce 2 kWh of energy per day. Two prototypes are designed and built in this 

research. The first was to evaluate the concept of building an HKT solely with off-the-shelf 

materials while the second was to overcome the issues faced by the first. The second 

improved prototype, with a 0.585 m reprofiled fan rotor with swept-back blades as the 

turbine rotor, produced 92.29 W of power from a flow velocity of 1.26 m/s, and its estimated 

efficiency is 0.34. Therefore, it can generate more than 2 kWh per day and is considered 

sufficient for a typical rural household. Besides, the improved prototype only costs USD 750 

and is a fraction of the cost of commercial HKT for shallow rivers. Nevertheless, the study 

also revealed the Smart Drive motor as a promising and versatile candidate to be used as a 

generator for small-scale HKT construction. It produces less noise and has lower cogging 

torque than the DC brushed motor used in the improved prototype. A basic guide is also 
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presented for small-scale HKT construction with the modified Smart Drive motor – with the 

60 SP and 60P configuration – as an alternative generator. 

 

Keywords: Affordable, hydrokinetic turbine, off-the-shelf materials, rural electrification, 

swept-back turbine rotor 
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Pembangunan Sistem Turbin Hidrokinetik Beraliran Paksi untuk Sungai Tropika yang 

Cetek 

 

ABSTRAK 

Pada masa kini, kebanyakan penduduk di dunia yang tidak mempunyai kebolehcapaian 

kepada tenaga elektrik adalah di kalangan negara-negara yang terletak di kawasan tropika. 

Walaupun Malaysia adalah di antara negara di kawasan tropika yang tersenarai untuk 

kebolehcapaian 100 % pada 2015, negeri Sarawak masih memiliki lebih kurang 5 % 

daripada penduduknya yang belum. Disebabkan oleh kos sambungan ke grid yang tidak 

ekonomi, kerajaan negeri telah melaksanakan sistem kuasa hidro mikro konvensional dan 

tenaga solar kerana memiliki sumber yang banyak. Walaupun sebagai pilihan utama, sistem 

kuasa hidro mikro tidak dapat diaplikasikan pada topografi yang tidak sesuai dengannya. 

Pada masa yang sama, masyarakat luar bandar yang di luar sambungan grid jarang 

memiliki kuasa membeli untuk mendapatkan peralatan mahal yang dihasilkan oleh negara-

negara kaya. Tambahan pula, terdapat sangat sedikit bilangan turbin hidrokinetik yang 

dibangunkan khas untuk sungai yang cetek (kurang dari 1 m), dan reka bentuknya pula 

mungkin tidak sesuai untuk sungai di kawasan tropika. Seterusnya, kajian ini bertujuan 

untuk menghasilkan sebuah turbin hidrokinetik aliran paksi yang berkos rendah untuk 

sungai cetek di kawasan tropika serta dapat menjana tenaga 2 kWh setiap hari. Dua 

prototaip telah direka dan dibina di dalam kajian ini. Yang pertama bertujuan untuk 

penilaian pembinaan turbin hidrokinetik dengan hanya menggunakan bahan-bahan yang 

sedia ada di kedai manakala yang kedua adalah untuk mengatasi kelemahan yang didapati 

daripada yang pertama. Manakala untuk prototaip yang kedua, dengan penggunaan 

pemutar kipas bersaiz 0.585 m yang telah diprofil semula dan digunakan sebagai pemutar 
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turbin telah menghasilkan kuasa sebanyak 92.29 W dari arus sungai 1.26 m/s, dan memiliki 

kecekapan anggaran sebanyak 0.34. Ia mampu untuk menghasilkan tenaga elektrik lebih 

daripada 2 kWh setiap hari dan dianggap mencukupi untuk sebuah rumah biasa di luar 

bandar. Di samping itu, prototaip yang kedua hanya dibina dengan kos USD 750 dan jauh 

lebih rendah berbanding dengan kos turbin hidrokinetik komersil untuk sungai yang cetek. 

Namun begitu, kajian ini turut mendedahkan bahawa motor Smart Drive adalah merupakan 

calon yang berpotensi dan serba boleh untuk digunakan sebagai penjana untuk pembinaan 

turbin hidrokinetik berskala kecil. Ianya kurang hingar dan memiliki penuugalan kilas yang 

lebih rendah berbanding dengan motor DC berberus yang digunakan di dalam prototaip 

yang ditambah baik, dan satu panduan turut dibentangkan untuk pembinaan sebuah turbin 

hidrokinetik menggunakan motor Smart Drive yang diubah suai dengan konfigurasi 60SP 

dan 60P sebagai penjana. 

  

Kata kunci: Bahan-bahan sedia ada, bekalan elektrik luar bandar, mampu milik, pemutar 

turbin disapu balik, turbin hidrokinetik 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Study Background 

According to the Our World in Data in 2016, only 87% of the world’s population has 

access to electricity (Ritchie & Roser, 2020). The majority population without access are 

countries in central Africa and certain countries in Southeast Asia like Myanmar and Papua 

New Guinea. Malaysia was among the countries listed to achieve 100% accessibility in 2015 

(The World Bank, 2022). 

Malaysia is a federation comprising thirteen states and three federal territories. The 

state of Sarawak is the biggest, with a total land area of 124,450 km2 – approximately 37 % 

of the total area of Malaysia – situated on the island of Borneo. It was reported about 48 % 

out of the 2.8 million population in Sarawak reside in rural areas (Yap et al., 2020) and live 

in 6,235 widely scattered villages (Shiun, 2016). 

In 2017, according to Sarawak’s Ministry of Utilities, the number of rural villages 

without access to electricity had been reduced to 1,623, involving 36,365 households, and 

are characterized into three categories under the State Rural Power Supply Program as shown 

in Figure 1.1. However, due to their small size of communities, scattered location, ruralness, 

and uneconomical grid connection, 5 % of Sarawak’s population remains without access to 

24-hour electricity from mains or solar power (Sarawak Energy, 2019). Therefore, due to 

these circumstances, the Local Electrical Authority (LEA) would turn to conventional 

Micro-Hydropower (MHP), Solar Energy Systems (SES) and even Diesel-Powered 

Generators (DPG) as a short-term solution to power up rural schools, clinics, administrative 
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offices or even small villages for several hours daily (Anyi et al., 2010; Fauzi Shahab, 2017; 

Saupi et al., 2018). Eventually, situations like this provide tremendous challenges to the state 

government as they involve huge costs to provide electricity to all the rural communities. 

The state government estimated RM 6.7 billion is needed to power up the entire Sarawak by 

2025 (Toyat, 2018). 

 

Figure 1.1: Categories of unelectrified villages (Fauzi Shahab, 2017). 

 

Through Figure 1.1, the great concern would be category 3, which is considered 

remote and not grid connectible. From Figure 1.1, one can see that the majority of these 

villages (i.e., red dots) are scattered in the interior of Sarawak, particularly in the Rajang and 

Baram River basins, compared to Figure 1.2. 
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Figure 1.2: Sarawak 22 major river basins (DID of Sarawak, 2022a). 

 

Sarawak receives an average annual rainfall of about 3850 mm, five times more than 

the world’s average (Salleh et al., 2018). In addition, the hot and wet tropical climate has 

allowed a vast network of rivers to form and flow continuously throughout the year. The 

majority of the off-grid remote communities in Sarawak are located on the upper courses of 

rivers or tributaries because they rely on the river for water, food and transportation. Hence, 

MHPs have been considered the most suitable option for powering off-grid remote rural 

communities in Sarawak, where the topography is suitable (Anyi et al., 2010; Borhanazad et 

al., 2013; JOAS, 2015; Wan Zainal Abidin et al., 2009; Yeo et al., 2014). 


