

Performance-based Durability Specifications of Fly Ash Concrete for Chloride-induced Environment

Ir. Jamil Bin Matarul

Doctor of Philosophy 2023

Performance-based Durability Specifications of Fly Ash Concrete for Chloride-induced Environment

Ir. Jamil Bin Matarul

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Concrete Materials)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2023

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.

Signature

Name:

Ir. Jamil Bin Matarul

Matric No.: 15010039

Faculty of Engineering

Universiti Malaysia Sarawak

Date : 15th October 2023

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious and the Most Merciful, I would like to express my sincere gratitude to all those who helped me directly or indirectly in completing the research for attaining a degree of Doctor of Philosophy within the stipulated time.

First and foremost, I would like to express my heartfelt gratitude to Prof. Dr. Mohammad Abdul Mannan and Prof. Dr. Azmi Ibrahim for their willingness to provide me with guidance and advice in order for me to complete this research. Without their guidance and comments, this research would not be completed well on time.

Additionally, special thanks to the every important people in my life, especially my mother, who always been there for me for my entire life, pray for my success, and provide a moral support; my wives for their kindness, understanding, time, and moral support; and my children for taking their time to complete this study successfully.

Special thanks also to all the participants from UNIMAS, UiTM, CMS Concrete Products Sdn. Bhd., Local Consultants, Sejingkat Power Plant, Gobel Industry Sdn. Bhd. JPS Sarawak, JKR Sarawak, DBKU and all respondents who are willing to answer the survey questionnaires for cooperation, time and manpower to conduct the investigation. Without permission, guidance and expertise from them, the study will not be organised beautifully.

ABSTRACT

Existing standard concrete practices under implementation of Standard Specifications for Building Works (SSBW) promptly altered from prescriptive specifications to Performancebased Durability Specifications (PBDS) as advocated by Eurocode 2. This study was carried out to overcome the chloride-induced attack problem on reinforced concrete (RC) structures settled under XS3 class exposure by utilising fly ash waste, producing non-destructive test (NDT) models and developing PBDS indicators model. The Taguchi Approach was used in this study with a combination of survey questionnaires, field investigation, experimental works and Statistical Product and Service Solutions (SPSS) modelling. The experimental work includes compressive strength (Cu), water absorption (WA), void of permeable voids (VPV) and ultrasonic pulse velocity (UPV) tests. Which, tested on tree different grades of ready-mix concretes, as well as concrete blended with Class-F fly ash with a 10% percentage increment up to 60%. Experimental work revealed that the Class-F fly ash was optimised at 30%. NDT models as represented by equation correlations of Cu1 = 31.699UPV1 - 84.641, Cu2 = 30.998UPV2 - 79.275 and Cu3 = 36.438UPV3 - 100.337. Developed PBDS indicators model equation was WA = 0.843VPV - 0.078UPV + 0.104. Meanwhile, "EXCELLENT" concrete quality rating bounded to Quality Rating Durability Compliance (QRDC) indicator values for UPV, VPV, WA and Cu should be more than 4.5 km/s, less than 10%, less than 7% and at least 55 MPa, respectively. The outcome indicators were found provide a flexible interface for client, designer or decision maker to make an accurate decision based on concrete performance, environmental sustainability and public user's safety.

Keywords: Chloride-induced, fly ash, NDT models, performance-based

Spesifikasi Ketahanan Konkrit Berasaskan Prestasi Disebabkan oleh Klorida Persekitaran

ABSTRAK

Amalan konkrit standard sedia ada di bawah pelaksanaan Spesifikasi Standard untuk Kerja Bangunan (SSBW) adalah perlu diubah daripada spesifikasi preskriptif kepada Spesifikasi Ketahanan Berasaskan Prestasi (PBDS) seperti yang dianjurkan oleh Eurocode 2. Kajian ini dijalankan untuk mengatasi masalah serangan akibat klorida pada tetulang struktur konkrit (RC) di bawah pendedahan kelas XS3 dengan menggunakan sisa abu terbang, menghasilkan model ujian tidak merosakkan (NDT) dan membangunkan model penunjuk PBDS. Kajian dilaksanakan dengan menggabungkan pendekatan Taguchi bersama soal selidik tinjauan, penyiasatan lapangan, kerja amali makmal dan pemodelan Penyelesaian Produk dan Perkhidmatan Statistik (SPSS). Kerja amali makmal termasuk kekuatan mampatan (Cu), penyerapan air (WA), lompang telap kosong (VPV) dan ujian halaju nadi ultrasonik (UPV). Diuji pada tiga gred konkrit berbeza siap campur yang diadun dengan abu terbang Kelas-F dengan peratusan penggantian sebanyak 10% hingga 60%. Kerja amali makmal mendedahkan bahawa abu terbang telah dioptimumkan pada 30%. Model NDT seperti vang diwakili oleh korelasi persamaan Cu1 = 31.699UPV1 – 84.641, Cu2 = 30.998UPV2 - 79.275 and Cu3 = 36.438UPV3 - 100.337. Persamaan model penunjuk PBDS ialah WA = 0.843VPV - 0.078UPV + 0.104. Sementara itu, penarafan kualiti konkrit "CEMERLANG" mengikut nilai penunjuk Pematuhan Ketahanan Penarafan Kualiti (QRDC) untuk UPV, VPV, WA dan Cu hendaklah masing-masing lebih daripada 4.5 km/s, kurang daripada 10%, kurang daripada 7% dan sekurang-kurangnya 55 MPa. Hasil kajian mendapati penunjuk penarafan kualiti konkrit yang dibangunkan adalah mudah diguna pakai oleh pelanggan, pereka bentuk atau pembuat keputusan untuk membuat keputusan

yang tepat berdasarkan prestasi konkrit, kelestarian alam sekitar dan keselamatan pengguna awam.

Kata kunci: Kakisan-klorida, abu terbang, model NDT, berasaskan prestasi

TABLE OF CONTENTS

					Page
DEC	LARATION				i
ACK	NOWLEDGEMENT				ii
ABS	ТКАСТ				iii
ABS	ТRAK				iv
ТАВ	LE OF CONTENTS				vi
LIST	COF TABLES				xiii
LIST	OF FIGURES				xvii
LIST	COF ABBREVIATIONS				xxii
СНА	PTER 1 INTRODUCTION				1
1.1	Study Background				1
1.2	Prescriptive Specification V	ersus	Performance-based	Durability	
	Specifications				1
1.3	Standard Practices in Marine Stru	ctures			3
1.4	Problem Statement				7
1.5	Objectives of the Study				11
1.6	Hypothesis of the Study				12
1.7	Significance of the Study				12

1.8	Scope of Works	13
1.9	Chapter Summary	14
CHA	PTER 2 LITERATURE REVIEW	17
2.1	Introduction	17
2.2	Chloride-induced Corrosion on Reinforced Concrete Marine Structures	18
2.2.1	Mechanism of Chloride-induced Corrosion	18
2.2.2	Chloride Ions Transport Mechanism	22
2.2.3	Factors Affecting Chloride Resistance	31
2.3	Fly Ash Concrete Optimisation	39
2.3.1	Fly Ash Concrete applications	39
2.3.2	Fly Ash Availability in Sarawak	41
2.3.3	Effects of Fly Ash on Concrete Strength	43
2.3.4	Effect of Fly Ash on Concrete Durability	44
2.3.5	Fly Ash Concrete Optimisation	45
2.4	Sarawak's Standard Concrete Practices	48
2.4.1	EN Standards	49
2.4.2	Malaysia's EN Standard Transition	50
2.4.3	JKR Standards	54
2.4.4	SIRIM Standards	58
2.5	Performance-based Durability Specifications Approach	61

2.5.1	Principles of PBDS	61
2.5.2	Types of Performance Testing in PBDS	64
2.5.3	International PBDS by Absorption Tests	66
2.5.4	International PBDS by NDT Techniques	72
2.6	Concrete Durability Indicator Test Methods	74
2.6.1	Ultrasonic Pulse Velocity (UPV)	74
2.6.2	Absorption	84
2.7	Optimization of Concrete Durability Properties using Taguchi's Approach	88
2.7.1	Taguchi's Philosophy	88
2.7.2	Taguchi's Approach Application	89
2.7.3	Standardised Design of Experiments (DOE)	91
2.8	Summary of Research Gaps	95
CHA	PTER 3 RESEARCH METHODOLOGY	97
3.1	Introduction	97
3.2	Conceptual Framework Study (CFS)	97
3.3	Data Sources	99
3.3.1	Desk Study	101
3.3.2	Survey Questionnaires	101
3.3.3	Field Investigation	103
3.4	Ready-mixed Concrete	103

3.5	Raw Material	106
3.5.1	Cement	106
3.5.2	Fly Ash	107
3.5.3	Fine Aggregate	108
3.5.4	Coarse Aggregate	108
3.5.5	Admixtures	109
3.6	Preparation of Concrete Specimens	109
3.7	Testing Procedures	113
3.7.1	Slump	114
3.7.2	Compressive Strength	114
3.7.3	UPV	115
3.7.4	WA and VPV	116
3.8	Taguchi's Approach Implementation	116
3.9	Data Analysis and Modelling	118
3.9.1	Descriptive Statistics	119
3.9.2	Inferential Statistic	120
CHAI	PTER 4 PERCEPTIONS OF CONSTRUCTION INDUSTRY PLAYERS	
	ON CHLORIDE-INDUCED CORROSION RC STRUCTURES	
	IN SARAWAK	122
4.1	Introduction	122
4.2	Standardised Design of Experiments (DOE) on Locality Condition	122

ix

4.3	Materials and Method		
4.3.1	Materials	123	
4.3.2	Method	123	
4.4	Results and Discussion	127	
4.4.1	Uncontrollable Variable	127	
4.4.2	Controllable Variable	134	
4.5	Chapter Summary	144	
CHAI	PTER 5 OPTIMISATION OF READY-MIXED CONCRETE		
	PARTIALLY REPLACED OF CEMENT WITH CLASS-F FLY		
	ASH	147	
5.1	Introduction	147	
5.2	Concrete Optimisation Via Taguchi's Approach	147	
5.3	Concrete Work Specifications Improvement		
5.4	Materials and Method 1		
5.5	Famous Ready-mixed Grade Concretes Without Fly Ash 14		
5.6	Ready-mixed Concrete Optimised by Fly Ash	155	
5.7	Results Validation	163	
5.8	Performance Verification	164	
5.9	Concrete Standard Specifications Improvement	166	
5.10	Chapter Summary	168	

CHAPTER 6 PERFORMANCE NDT GUIDELINES FOR CORRELATION			
	BETWEEN Cu AND UPV	169	
6.1	Introduction	169	
6.2	Quality Assessment / Quality Control (QA/QC) Monitoring Improvement	169	
6.3	Results and Discussion	170	
6.3.1	Normalise Test Analyses	170	
6.3.2	Correlation Test Results	174	
6.3.3	NDT Modelling by ANOVA analyses	175	
6.4	Results Validation	176	
6.4.1	Grade Designations M1 and M3 (Primary finding)	176	
6.4.2	Final NDT models	177	
6.5	Performance Modelling Enhancement	179	
6.6	Quality Assessment / Quality Control (QA/QC) Improvement	184	
6.7	Chapter Summary	185	
CHAI	PTER 7 PERFORMANCE-BASED DURABILITY SPECIFICATIONS	188	
7.1	Introduction	188	
7.2	Preliminary Results	188	
7.2.1	Water Absorption Test	190	
7.2.2	Volume of Permeable Voids Test	191	
7.2.3	Sorptivitiy Test	192	
7.3	Performance-based Durability Modelling	193	

7.3.1	Normalise Test Analyses	193
7.3.2	Performance-based Durability Modelling by ANOVA analyses	194
7.3.3	Local Quality Rating Durability Compliance	195
7.4	Results Validation	197
7.5	Performance Verification	198
7.6	Performance-based Durability Specifications Indicators Optimisation	201
7.7	Performance-based Durability Specifications Indicators Implementation	202
7.8	Chapter Summary	202
СНАН	TER 8 CONCLUSION AND RECOMMENDATIONS	204
8.1	Conclusion	204
8.2	Recommendations	206
REFE	REFERENCES	
APPENDICES		229

LIST OF TABLES

Table 1.1:	List of National Concrete Durability Standards or	
	Designations	3
Table 1.2:	List of Specific Design Guidelines for Marine Structures	4
Table 1.3:	Summary of National Specifications or Guidelines Integrating Fly Ash to Combat Chloride-induced Attack on Marine Structures	6
Table 2.1:	List of Chapter Sections	17
Table 2.2:	Summary of Various Chloride Exposures Identical to Transport Mechanisms	22
Table 2.3:	Summary of Transport Mechanisms Categories	23
Table 2.4:	Performance Comparison of Absorption and Diffusion Transport Mechanisms	30
Table 2.5:	Comparison of National Severity Corrosive Exposure Environment	34
Table 2.6:	Chemical Composition of Sejingkat's Class-F Fly Ash Comparable to National Standards Requirements	42
Table 2.7:	Comparison Prices between Fly Ash and OPC	43
Table 2.8:	Worldwide Optimised Fly Ash (Class-F) Studies to Combat Chloride-induced Attack	46
Table 2.9:	List of Malaysia's Standard Publications by Government Agencies	48
Table 2.10:	Eurocodes According to Component Design Stages	49
Table 2.11:	National Annex and Non-Contradictory Complementary Information Description	50
Table 2.12:	Current MS EN Standards Published by SIRIM Berhad	51
Table 2.13:	Total Available Material Specifications and Standard Test Methods Published by SIRIM Berhad	58
Table 2.14:	Standard Test Methods for Hardened Concrete	59

Table 2.15:	Standard Test Methods for NDT Techniques	60
Table 2.16:	Material Specification for Fly Ash	60
Table 2.17:	Types of Performance Testing Used in PBDS	65
Table 2.18:	Concrete Performance Properties of Interest	66
Table 2.19:	Common Absorption Tests	68
Table 2.20:	Water Absorption (WA) Tests	69
Table 2.21:	Sorptivity Tests	71
Table 2.22:	Correlation to Longer-term Chloride Diffusion Resistance	72
Table 2.23:	NDT Techniques	73
Table 2.24:	List of National Standard UPV Test Method	75
Table 2.25:	Types of UPV Test Method Measurement Arrangements	78
Table 2.26:	Most Valuable UPV Applications Adopted by Researchers	80
Table 2.27:	The Effect of Temperature on Pulse Transmission	83
Table 2.28:	Concrete Quality as Determined by Several Standards and Research as a Function of UPV	84
Table 2.29:	Quality Classification for Concrete Durability based on VPV Values	87
Table 2.30:	Taguchi's Philosophy Principles	88
Table 2.31:	List of Fly Ash Concrete Studies using Taguchi's Approach with ANOVA Analysis (2011-2022)	90
Table 2.32:	Chronological Steps with Description of a 5-step DOE by Taguchi's Approach	92
Table 3.1:	Data Sources	99
Table 3.2:	Variables Mapping to Question Numbers Accordingly	102
Table 3.3:	Concrete Ready-mixed Designs	104
Table 3.4:	Modified Concrete Ready-mixed Designs Using Fly Ash Cement Replacement Method	105
Table 3.5:	Chemical Composition of OPC (CEM I 42.5)	106

Table 3.6:	Total Concrete Cubes Specimens	110
Table 3.7:	List of Concrete Testing According to Standard Test Method Reference	113
Table 3.8:	Summary of Taguchi's Approach Implementation According to Thirteen Operational Steps	118
Table 3.9:	Conventional Approach to Interpreting a Correlation Coefficient	120
Table 4.1:	RC Structures Affected by Chloride-induced Corrosion	128
Table 4.2:	Status of Local Treatments Compliance to Present Standard Specifications	140
Table 5.1:	Summary of Descriptive Data Analysis for Individual and Combination Grade Concretes	152
Table 5.2:	Summary of Descriptive Data Analysis of Compressive Strength Test Results	155
Table 5.3:	Validation of Compressive Strength for Grade Designation M3 with 30% Fly Ash Replacement	163
Table 5.4:	Summary of Worldwide Available Data Based on Percentage Ranges of Optimised Fly Ash to Combat Chloride-induced Attack for RC Structures in Marine Environment	165
Table 6.1:	Summary of Normality Tests by Combined Grade Designations of Cu, UPV, WA and VPV Test Results	171
Table 6.2:	Summary of Descriptive Data Analyses of UPV, WA and VPV Test Results	172
Table 6.3:	Summary of Normality Tests by Individual Grade Designation of Cu, UPV, WA and VPV Test Results	173
Table 6.4:	Summary of Normality Tests by Individual Grade Designation of Cu Test Results (After Data Screening)	174
Table 6.5:	Summary of R and R-square for Cu versus UPV, WA and VPV Respectively on Grade Designations M1, M3 and M5	174
Table 6.6:	Summary of Simple Linear Regression for Cu Versus UPV on Grade Designations M1, M3 and M5	175

Table 6.7:	Validation Test Results of Simple Linear Regression for Cu versus UPV on Grade Designations M1, M3 and M5	178
Table 6.8:	Summary of Simple Linear Regression for 14D and 28D Models on Grade Designations M1, M3 and M5	180
Table 7.1:	Ready-mixed Concrete Designs (Primary tests)	189
Table 7.2:	Summary of Normality Tests for Combined Grade Designations of Cu, UPV, WA and VPV Test Results (After Screening)	194
Table 7.3:	Summary of Performance-based Durability Models	195
Table 7.4:	Proposed QRDC Indicators for UPV, VPV, WA and Cu Variables	196
Table 7.5:	Summary of Validation Test Results of Predicted and Actual WA	197
Table 7.6:	Comparison of Recommended VPV Values between CCAA 2009 and Study on QRDC Indicators	198
Table 7.7:	Summary of Worldwide Available Data Based on Minimum Compressive Strengths to Combat Chloride- Induced Attack for RC Structures	200

LIST OF FIGURES

Figure 1.1:	Development of Cities and Towns Along the Coastal Areas of Sarawak	8
Figure 1.2:	Marine Structures Affected by Chloride-induced Attack in Kuching and Samarahan Areas	9
Figure 2.1:	Electrochemical Mechanism of Chloride Induced Corrosion on RC Structures	21
Figure 2.2:	Movement of Water Level and Ions within Concrete Pores	27
Figure 2.3:	Effect of Boiling on Absorption	28
Figure 2.4:	The Effect of Water Absorption on Chloride Resistance as Measured by the Salt Ponding Test	29
Figure 2.5:	Influence of Water Absorption on Chloride Resistance based on Chloride Ions Diffusion Coefficient Test	29
Figure 2.6:	Typical Diagram of Corrosive Exposure Environments Caused by Sea Water Chloride	33
Figure 2.7:	Pore Sizes in Concrete	38
Figure 2.8:	Relationship between JKR's Concrete Works Standard Specifications and MS EN Standard Codes	55
Figure 2.9:	Concrete Testing Flow Chart	56
Figure 2.10:	JKR's Table D1 of Cement and Combination Types	57
Figure 2.11:	Application Principle of Equivalent Performance-based Durability Concept In-case Concrete Exposed to Carbonation	63
Figure 2.12:	Experimental Setup for Early Age Monitoring of Cement- based Materials	64
Figure 2.13:	Schematic Diagram of UPV Test Apparatus	77
Figure 2.14:	Effects of Water-cement Ratio on UPV Results	82
Figure 2.15:	Porosity States	86

Figure 2.16:	Flowchart of the Systematic and Efficient Work Plan to the Application of Taguchi's Approach	94
Figure 3.1:	Simplified Flowchart	98
Figure 3.2:	Packaging of OPC of CEM I 42.5 R	107
Figure 3.3:	Packaging of Fly Ash (35 kg per Bag)	107
Figure 3.4:	Sample of Fine Aggregate	108
Figure 3.5:	Sample of Coarse Aggregates	108
Figure 3.6:	M150 and M40RA Admixtures	
Figure 3.7:	Raw Materials, Machineries and Samples of Mixing Fly Ash Concrete Conducted	
Figure 3.8:	Apparatus and Various Samples of Slump Tests Conducted at Site and Laboratory	111
Figure 3.9:	Preparation of Concrete Specimens	112
Figure 3.10:	Apparatus and Sample of Curing Specimens for Test Conducted	113
Figure 3.11:	Machineries Compressive Load Test Conducted	115
Figure 3.12:	Apparatus and UPV Test Conducted	116
Figure 3.13:	Machineries, Apparatus and VPV test conducted	117
Figure 4.1:	Overall Issues Determination and Treatments Conducted	125
Figure 4.2:	Operational Performance Optimisation Variables Identification Conducted	126
Figure 4.3:	Percentages of Respondents Participating in Answering Questionnaires	128
Figure 4.4:	Model Diagram for Local Chloride-induced Marine Environment Exposure Classes	130
Figure 4.5:	Splash and Spray Zones Most Severely Affected by Chloride-induced Corrosion at Sambir RC Wharf	131
Figure 4.6:	Splash and Spray Zones Most Severely Affected by Chloride-induced Corrosion at Sematan RC Wharf	132

Figure 4.7:	Splash and Spray Zones Most Severely Affected by Chloride-induced Corrosion at Sebuyau RC Fisheries Wharf	133
Figure 4.8:	Splash and Spray Zones Most Severely Affected by Chloride-induced Corrosion at Water Front Esplanade Extension	133
Figure 4.9:	Percentages of Respondents' Awareness of Chloride Effects on RC Structures	134
Figure 4.10:	Respondent's Perception on Corrosion Factors	135
Figure 4.11:	Respondents' Opinions on the Importance of Producing Guidelines on Chloride-induced Resistance for RC Structures	136
Figure 4.12:	Percentage of Maximum Distances Considered for Chloride-induced Exposure Designs on RC Structures	137
Figure 4.13:	Percentages of Respondents Selecting Minimum Grade Concretes to Combat Chloride Deterioration	138
Figure 4.14:	Percentages of Respondents Recommending Minimum Thicknesses of Concrete Cover to Combat Chloride Deterioration	139
Figure 4.15:	Percentages of Respondents Adopting Design Service Life	139
Figure 4.16:	Percentages of Various Concrete Grades Supplied by RMC and NRMC in Sarawak	141
Figure 4.17:	Percentages of Recommended Type of Cement/Material that May Reduce Chloride Deterioration	143
Figure 4.18:	Location of Ash Pond Near to Sejingkat Power Plant	143
Figure 4.19:	Proposed Local Model Diagram of Chloride-induced Marine Environment Exposure	144
Figure 5.1:	Famous Ready-mixed Grade Concretes Compressive Strength Development	150
Figure 5.2:	Grade Concretes Combination of M1-M3-M5 with 4% Outliers Data	153
Figure 5.3:	Grade Concretes Combination of M1-M3-M5 with Improved Outliers Data	154

Figure 5.4:	Effect of Fly Ash on Concrete Compressive Strength by Age (Grade Designation M1)	157
Figure 5.5:	Effect of Fly Ash on Concrete Compressive Strength by Age (Grade Designation M5)	157
Figure 5.6:	Effect of Fly Ash on Concrete Compressive Strength by Age (Grade Designation M3)	158
Figure 5.7:	Comparison Between Concrete Compressive Strength and Ultrasonic Pulse Velocity at 56 Days Age (Grade Designation M3)	159
Figure 5.8:	Effect of Fly Ash on Ultrasonic Pulse Velocity at 56 and 90-days Age (Grade Designation M3)	160
Figure 5.9:	Effect of Fly Ash on Ultrasonic Pulse Velocity Throughout 180 days (Grade Designation M3)	161
Figure 5.10:	Effect of Fly Ash on Water Absorption at 56 and 90-days Age (Grade Designation M3)	162
Figure 5.11:	Effect of Fly Ash on Water Absorption Throughout 180 days (Grade Designation M3)	162
Figure 5.12:	Proposed Amended Table D1 on Fly Ash Optimise Composition	167
Figure 6.1:	7D Model Complies with +10% of Modelling Limitation	179
Figure 6.2:	Grade Designation M1 for 7D, 14D and 28D Models Compliance to +10% of Modelling Limitation	181
Figure 6.3:	Grade Designation M3 for 7D, 14D and 28D Models Compliance to +10% of Modelling Limitation	183
Figure 6.4:	Grade Designation M5 for 7D, 14D and 28D Models Compliance to +10% of Modelling Limitation	184
Figure 6.5:	Proposed Embedding of a Real NDT Monitoring System into JKR's Concrete Testing Flow Chart	186
Figure 7.1:	150 mm Concrete Cube Cut Horizontally into Three Equal Pieces (Parts)	189
Figure 7.2:	WA Values in the Middle Part of M4, M5, and M6 at Different Ages	190
Figure 7.3:	VPV Values in the Middle Part of M4, M5, and M6 at Different Ages	191

Figure 7.4:Sorptivity Values in the Middle Part of M4, M5, and M6 at
Different Ages

192

LIST OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
ABNT	Brazilian National Standards Organization
ACI	American Concrete Institute
AECB	Atomic Energy Control Board
ANOVA	Analysis of Variance
AS	Australian Standard
ASTM	American Society for Testing and Materials
AVPV	Apparent Volume of Permeable Voids
BDS	Bulgarian Institute for Standardization
BS	British Standards
BSI	British Standards Institution
CCAA	Cement Concrete & Aggregates Australia
CCANZ	Cement & Concrete Association of New Zealand
CEN	Committee of European Norms
CFG	Carbon Fibre Sheets/Glass
CFS	Conceptual Framework Study
CIA	Concrete Institute of Australia
CNS	Colloida Nano Silica
COST	National Standard UPV Test Method (Russia)
COVENIN	National Standard UPV Test Method (Venezuela)
СР	Concrete of Practice
CSN	National Standard UPV Test Method (Czech Republic)