

PREDICTING CHLOROPHYLL INTENSITY OF VARIOUS PLANTS USING IMPROVED CONVOLUTION NEURAL NETWORK

Michelle Nashrin Bawai

Bachelor of Engineering

Electrical and Electronics Engineering with Honours

2023

 Name :
 Michelle Nashrin Bawai
 Matric No. :
 72334

 Title :
 Predicting Chlorophyll Intensity of Various Plants using Improved Convolutional Neural Network

Supervisor : ____ Dr. Annie Joseph

Program: WK23

Please return this form to the Faculty of Engineering office at least TWO WEEKS before your hardbound report is due.

Students are not allowed to print/bind the final report prior to Supervisor's Approval (Section B).

The Faculty reserves the right to reject your hardbound report should you fail to submit the completed form within the stipulated time.

A. REPORT SUBMISSION (To be completed by student)	
I wish to submit my FYP report for review and evaluation.	
Signature:	Date:26 July 2023
B. SUPERVISOR'S APPROVAL (To be completed by supervi	isor)
The student has made necessary amendments and I hereby appro Faculty of Engineering, UNIMAS.	ove this thesis for binding and submission to the
ATT -	

Signature:		Date:	Officia
Name:	Dr Annie Anak Joseph		Channen me

UNIVERSITI MALAYSIA SARAWAK

C 1	
1 ÷rado	
uraue.	

Please tick (√) Final Year Project Report Masters PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the 26 of July 2023.

Student's Declaration:

I <u>MICHELLE NASHRIN BAWAI</u>, 72334, FACULTY OF ENGINEERING hereby declare that the work entitled <u>PREDICTING CHLOROPHYLL INTENSITY OF VARIOUS PLANTS USING</u> <u>IMPROVED CONVOLUTIONAL NEURAL NETWORK</u> is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

26 JULY 2023

MICHELLE NASHRIN BAWAI (72334)

Date submitted

Name of the student (Matric No.)

Supervisor's Declaration:

I <u>DR. ANNIE JOSEPH</u> hereby certifies that the work entitled <u>PREDICTING CHLOROPHYLL</u> <u>INTENSITY OF VARIOUS PLANTS USING IMPROVED CONVOLUTIONAL NEURAL</u> <u>NETWORK</u> was prepared by the above named student and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of <u>BACHELOR OF ELECTRICAL AND ELECTRONIC</u> <u>ENGINEERING WITH HONOURS</u>, and the aforementioned work, to the best of my knowledge, is the said student's work.

DR. ANNIE JOSEPH

Received for examination by:

Date: ______

(Name of the supervisor)

I declare that Project/Thesis is classified as (Please tick ($\sqrt{}$)):

RESTRICTED

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* (Contains restricted information as specified by the organisation where research was done)*

\checkmark OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS). ٠
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature _ 26 JULY 2023

Supervisor signature:

Current Address: LOT 8352. JALAN SETIA 3. TAMAN JELITA OFF TAMAN TUNKU 98000 MIRI. SARAWAK

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

PREDICTING CHLOROPHYLL INTENSITY OF VARIOUS PLANTS USING IMPROVED CONVOLUTIONAL NEURAL NETWORK

MICHELLE NASHRIN BAWAI

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering Electrical and Electronics Engineering with Honours

Faculty of Engineering

Universiti Malaysia Sarawak

2023

ACKNOWLEDGEMENT

All praises to the Lord for letting me to finish my Final Year Project and giving me strength and blessing throughout completing this report. I truly grateful for His unconditional affection, love, and without His blessing through this project, I would not be able to complete it successfully.

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr Annie Joseph for providing me invaluable guidance, patience, and consultations throughout this project. This project would not have been possible without her encouragement and dedication supervision. It has been a pleasure and honour to have her as my supervisor.

I offer my special thanks to the lecturers at UNIMAS Faculty of Engineering especially in the Department of Electrical and Electronic Engineering for their endless support as well. Without them, this project would not be the same as presented here.

Deepest appreciation and thanks to my beloved parents, Mr Bawai and Mrs Saloma, and brothers, Eliyafi and Raynold, for their support. Although we are far apart but their never-ending prayers, motivation, and support always strengthen me to finish this project well. I also would like to offer my special thanks to my fellow course mates and beloved friends who were with me and gave some suggestions on this project.

I would also to extend my thanks to my amazing church members, BEMCC whose have rendered their helps directly and indirectly in prayers throughout the process of completing this project and my degree journey. I experienced variety of challenges during this semester, and I am so glad to receive many supports from precious people whose deserved my greatest gratitude.

ABSTRACT

Chlorophyll pigment is beneficial during photosynthesis to absorb sufficient light energy and provide nutrients to the plant to grow healthy. A convenient assessment of chlorophyll content is essential in smart management agriculture. Several attempts have been made to implements computer vision to enhance the precision agriculture techniques. However, problems still arise as the applied algorithms of machine learning are time consuming, very complex architectures, high computational cost, as well as less generalization towards various plant species and size of datasets. Hence, in this project, a rapid and straightforward convolutional neural network (CNN) algorithm was proposed to predict chlorophyll intensity of various plant species based on leaf reflectance spectra. The datasets were taken from ANGERS Leaf Optical Properties Database (2003). The proposed model consists of Hybrid CNN as a feature extractor and support vector regression (SVR) network as a predictor. Hybrid CNN was designed by modifying the architectures of AlexNet and PNet using MATLAB R2023a. The performance of Hybrid CNN with SVR (CNN-SVR) was also compared with AlexNet, PNet, and SVR. Results showed that the best CNN also can be designed with one input, four convolutional, four max-pooling and three fully connected layers which can be found in Hybrid CNN-SVR. The experimental results show that the prediction accuracy of chlorophyll intensity is satisfying with a mean square error (MSE) of 0.1558 and 1.149 for training and testing sets, respectively.

ABSTRAK

Pigmen klorofil bermanfaat semasa proses fotosintesis untuk menyerap tenaga cahaya yang mencukupi dan membekalkan nutrien kepada tumbuhan untuk bertumbuh dengan sihat. Penilaian kandungan klorofil yang mudah adalah penting dalam pengurusan pertanian yang tepat. Beberapa percubaan telah dibuat dalam melaksanakan visi komputer untuk meningkatkan teknik ketepatan pertanian. Walau bagaimanapun, masalah masih timbul kerana algoritma pemelajaran mesin yang digunakan memakan masa, struktur yang sangat kompleks, kos komputasi yang tinggi, serta kurang generalisasi kepada pelbagai spesies tumbuhan dan saiz set data. Oleh itu, dalam projek ini, algoritma rangkaian neural berlingkaran (CNN) yang pantas dan mudah telah direka untuk meramalkan kandungan klorofil dalam pelbagai spesies tumbuhan berdasarkan spektrum pemantulan daun. Dataset diambil dari Pangkalan Data Harta Optik Daun ANGERS (2003). Model yang terlibat adalah Hybrid CNN sebagai pengekstrak ciri dan rangkaian regresi vektor sokongan (SVR) sebagai peramal. Hibrid CNN direka bentuk dengan mengubah suai seni bina AlexNet dan PNet menggunakan MATLAB R2023a. Prestasi Hibrid CNN dengan SVR (CNN-SVR) juga dibandingkan dengan AlexNet, PNet dan SVR. Hasil analysis menunjukkan bahawa CNN terbaik juga dapat direka bentuk dengan satu input, empat convolutional, empat max-pooling dan tiga lapisan sambungan penuh yang boleh didapati dalam Hybrid CNN-SVR. Keputusan eksperimen menunjukkan bahawa ketepatan ramalan kandungan klorofil adalah memuaskan dengan ralat min kuasa dua (MSE) masing-masing 0.1558 dan 1.149 untuk set latihan dan ujian.

TABLE OF CONTENTS

ACKNOWI	LEDGI	EMENT	ii
ABSTRAC	Г		iii
ABSTRAK			iv
TABLE OF	CONT	TENTS	v
LIST OF TA	ABLES	5	X
LIST OF FI	GURE	es	xi
LIST OF E	QUAT	IONS	xiii
LIST OF A	BBREV	VIATIONS	xiv
Chapter 1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	4
	1.3	Research Questions	6
	1.4	Objectives	6
	1.5	Hypothesis	7
	1.6	Project Motivation	7
	1.7	Project Scope	8
	1.8	Chapter Outline	8
Chapter 2	LITI	ERATURE REVIEW	10
	2.1	Overview	10
	2.2	Photosynthesis Pigments in a Leaf	10
		2.2.1 The Intensity of Leaf Chlorophyll	10
	2.3	Dataset of Plant Species	11
		2.3.1 Leaf Spectra of Various Plant Species	12
		2.3.2 Plant Species in ANGERS	13

2.4	Measu	uring Actual Chlorophyll Intensity	19
	2.4.1	SPAD Chlorophyll Meter	20
	2.4.2	Spectrophotometer	21
	2.4.3	Comparison between Conventional Non-Destruc	ctive
		Approaches to Measure the Actual Chlorophyll Inter	nsity
			22
2.5	Leaf F	Reflectance Spectrum as an Input Data	24
2.6	Reflec	ctance Spectra Feature Extraction	24
	2.6.1	Principle Component Analysis	25
	2.6.2	Linear Discriminant Analysis	25
	2.6.3	Artificial Neural Network	26
	2.6.4	Convolutional Neural Networks (CNN)	27
	2.6.5	Comparison between the Approaches of Reflect	ance
		Spectrum Feature Extraction	28
2.7	Deep	Learning Model	29
	2.7.1	AlexNet	29
	2.7.2	PNet	30
	2.7.3	VGGNet	31
	2.7.4	ShallowNet	32
	2.7.5	Comparison between the Approaches of CNN	33
2.8	Chlore	ophyll Intensity Prediction	34
	2.8.1	Random Forest	34
	2.8.2	Binary Classification	35
	2.8.3	Support Vector Regression	36
	2.8.4	Comparison between the Approaches of Chlorog	ohyll
		Intensity Prediction	37
2.9	Existi	ng Methods related to Chlorophyll Intensity Prediction	38

		2.9.1	Conventional Non-destructive Methods in Measuring	the
			Actual Chlorophyll Intensity	38
		2.9.2	Enhancing the Process of Feature Extraction	39
		2.9.3	Designing the Optimal Deep Learning Model	39
		2.9.4	Solving the Prediction Task	40
	2.10	Summ	ary	40
Chapter 3	MET	HODO	LOGY	42
	3.1	Overv	iew	42
	3.2	Main l	Phases of The Prediction System	42
	3.3	Softwa	are Tool	43
	3.4	Datase	et Preparation	43
	3.5	Datase	et Acquisition of Leaf Reflectance Spectrum	43
		3.5.1	Training and Testing Sets	44
	3.6	Leaf S	pectra Analysis	44
		3.6.1	Chlorophyll-specific Region	45
	3.7	Featur	e Extraction	47
		3.7.1	Introduction of Hybrid CNN	47
		3.7.2	Convolution Layer	53
		3.7.3	Pooling Layer	53
		3.7.4	ReLU and LeakyReLULayer	55
		3.7.5	Fully Connected Layer	55
		3.7.6	Optimizer	56
		3.7.7	Loss Function	57
		3.7.8	Summary of Hybrid CNN	58
	3.8	Predic	tion Task	59
	3.9	Chloro	ophyll Intensity Prediction System	60

	3.10	Gantt	Chart	61
	3.11	Sumn	nary	63
Chapter 4	RESU	ULTS A	ND DISCUSSION	64
	4.1	Overv	view	64
	4.2	Desig	n of Hybrid Convolutional Neural Network with S	upport
		Regre	ssion Vector	64
		4.2.1	Hybrid Convolutional Neural Network (CNN)	65
		4.2.2	Support Vector Regression (SVR)	66
		4.2.3	The combination of Hybrid CNN with SVR	67
	4.3	Comp	leted Training of Hybrid CNN with SVR	67
		4.3.1	Hyperparameters for Hybrid CNN	68
		4.3.2	Optimizer for Hybrid CNN	72
	4.4	Perfor	mance Evaluation of Hybrid CNN-SVR	73
		4.4.1	Performance Indicator on Hybrid CNN-SVR an Existing Models	d The 73
		4.4.2	Scatter Plots on Hybrid CNN-SVR and The E. Models	xisting 75
	4.5	Sumn	nary	76
Chapter 5	CON	CLUSI	ONS	77
	5.1	Overv	view	77
	5.2	Concl	usion	77
	5.3	Limita	ations and Challenges	79
	5.4	Future	e Works and Recommendations	79
	5.5	Summ	nary	80
REFERENC	CES			81
Appendix A				87

Appendix B

LIST OF TABLES

Table	Page
Table 2.1: ANGERS Plant Species	13
Table 2.2: Comparison of Conventional Non-Destructive Approaches to Measure	
Chlorophyll Intensity	23
Table 2.3: Comparison of Reflectance Spectrum Feature Extraction Approaches	28
Table 2.4: Comparison of CNN Approaches	33
Table 2.5: Comparison of Chlorophyll Intensity Prediction Approaches	37
Table 3.1: Specifications of the Workstation Used	43
Table 3.2: Basic Statistics of Wavelength and Reflectance within The Chlorophyll-	
Specific Region	46
Table 3.3: Comparison of Parameters for Original AlexNet and Modified AlexNet	50
Table 3.4: Gantt Chart of FYP1 Progress	61
Table 3.5: Gantt Chart of FYP2 Progress	62
Table 4.1: Layer Properties of Hybrid CNN	66
Table 4.2: Comparison of Training Setting with Various Hyperparameters	68
Table 4.3: Comparison of Training Completion Time with Four Different Models	74
Table 5.1: Objectives and Accomplishments of The Project	77

LIST OF FIGURES

Figure

Page

Figure 1.1: General Convolutional Neural Network Structure Diagram [6]	2
Figure 1.2: General Leaf Spectra based on Light Absorption (Image credits: Eric	
Brown de Colstoun)	3
Figure 1.3: Affected Respiration and Photosynthesis Rates as Climate Warming is	
Increasing [14]	4
Figure 2.1: ANGERS Leaf Optical Properties Database (2003)	12
Figure 2.2: SPAD-502 Chlorophyll Meter [25]	20
Figure 2.3: Data acquisition of a leaf using spectrophotometer [16]	22
Figure 2.4: Reflectance Spectrum as an Input Data for CNN Model [22]	24
Figure 2.5: Structure of ANN-BP for Chlorophyll Intensity Prediction [30]	26
Figure 2.6: General Structure of CNN layers for Feature Extraction [32]	27
Figure 2.7: Process at Convolution Layer [32]	28
Figure 2.8: Diagram of AlexNet Architecture [33]	30
Figure 2.9: Sample of PNet Architecture for Photosynthetic Pigment Prediction [11]	31
Figure 2.10: Diagram of VGGNet Architecture	32
Figure 2.11: Diagram of ShallowNet Architecture [4]	33
Figure 2.12: Illustration of Random Forest (RF) combines Multiple Randomized	
Decision Trees into an Output [35]	35
Figure 2.13: Illustration of Binary Classification for Two Classes	36
Figure 2.14: Illustration of Linear SVR	37
Figure 3.1: (a) Samples List of Leaf Reflectance Spectra (b) Folders of Various Plan	ts
Species	44
Figure 3.2: Regions of VIS-NIR-SWIR of ANGERS Dataset [40]	45
Figure 3.3: A sample of Tabular Format of Wavelength and Reflectance in a txt File	46
Figure 3.4: A sample of Leaf reflectance spectrum within the chlorophyll-specific	
region	47
Figure 3.5: (a) AlexNet Architecture (b) PNet Architecture	48
Figure 3.6: Customisation of Modified AlexNet and PNet Architecture	51
Figure 3.7: Stack Diagram of Hybrid CNN Model	52

Figure 3.8: Convolutional Layer of CNN [42]	53
Figure 3.9: General Operation Illustration of Max Pooling [43]	54
Figure 3.10: Max Pooling Layer [42]	54
Figure 3.11: Comparison of Before and After Applying Dropout [44]	56
Figure 3.12: Conceptual Diagram of Hybrid CNN	58
Figure 3.13: General Structure of SVR Network	59
Figure 3.14: Flowchart of Proposed Chlorophyll Intensity Prediction Model	60
Figure 4.1: The Architecture of Hybrid CNN in MATLAB's Live Editor	65
Figure 4.2: The 'fitsvm' Function in SVR Network	67
Figure 4.3: Training Settings 1 on Hybrid CNN	69
Figure 4.4: Training Settings 2 on Hybrid CNN	70
Figure 4.5: Training Settings 3 on Hybrid CNN	70
Figure 4.6: Training Settings 4 on Hybrid CNN	71
Figure 4.7: Comparison of MSE with SGDM, RMSProp and Adam Optimizers or	n
Hybrid CNN	72
Figure 4.8: Comparison of MSE for Training and Testing Sets on AlexNet, PNet,	SVR
and Hybrid CNN	73
Figure 4.9: The Scatter Plots of Actual and Predicted Chlorophyll Intensity for Tr	raining
and Testing Sets on AlexNet, PNet, SVR, and Hybrid CNN-SVR	75

LIST OF EQUATIONS

Equation		Page
(1)-(2)	Chlorophyll Reflectance Index	22
(3)	Linear Activation Function	49
(4)	ReLU Activation Function	55
(5)	LeakyReLU Activation Function	55
(6) – (13)	Adam Optimizer	56 – 57
(14)	Loss Function MSE	57

LIST OF ABBREVIATIONS

1D	-	One-Dimensional
3D	-	Three-Dimensional
Adam	-	Adaptive Momentum Estimation Optimizer
ANN	-	Artificial Neural Network
BP	-	Back Propagation
BPNN	-	Back Propagation Neural Network
CNN	-	Conventional Neural Network
CNN-SVR	-	Conventional Neural Network with Support Vector Regression
CO ₂	-	Carbon Dioxide Gas
FDA	-	Fisher Linear Discriminant Analysis
FYP1	-	Final Year Project 1
FYP2	-	Final Year Project 2
INRA	-	Institution for Agriculture Research
LCC	-	Leaf Chlorophyll Content
LCD	-	Liquid Crystal Display
LDA	-	Linear Discriminant Analysis
LED	-	Light-Emitting Diode
MAE	-	Mean Absolute Error
MATLAB	-	Matrix Laboratory
MLP	-	Multi-Layer Perceptron
MSE	-	Mean Square Error
nm	-	nanometer
ODbL	-	Open Database License

PCA	-	Principle Component Analysis
RBF	-	Radial Basis Function
ReLU	-	Rectified Linear Unit
RF	-	Random Forest
RMSProp	-	Root Mean Squared Propagation
SGDM	-	Stochastic Gradient Descent with Momentum
SPAD	-	Soil Plant Analysis Development
SVM	-	Support Vector Machine
SVR	-	Support Vector Regression
USDA	-	United States Department of Agriculture

CHAPTER 1

INTRODUCTION

1.1 Background

Every plant contains vital green pigments known as chlorophyll which can indicate the concentration of the elements for the synthesis of chlorophyll such as nitrogen, iron, and magnesium [1][4]. Furthermore, chlorophyll is beneficial during photosynthesis to absorb sufficient light energy and provide nutrients to the plant. Thus, the crop diseases and yield predictions are assuredly assessed depending on the intensity of the green pigments in the leaves [5].

Various advanced computer technological methods have been proposed previously to predict the intensity of chlorophyll based on the plant leaves. Conventional methods for chlorophyll intensity prediction are either destructive or non-destructive [5]. For the destructive method, the pigments are crushed and extracted from the leaf sample using solvent extraction and subsequent spectroscopic chlorophyll analysis. However, this method needs cautious disposal of the extraction solvent waste, the high number of samples required, and the estimation parameters are restricted and time consuming [6].

Meanwhile, for the non-destructive method, the chlorophyll intensity is quantified by using specialised devices such as chlorophyll fluorescence [6], spectrometer [7], and Soil Plant Analysis Development (SPAD) [8]. These methods are categorised as conventional non-destructive measurement devices. The measurement of chlorophyll intensity using these conventional methods are mainly done by analysing the leaf surface without destroying the samples. Nonetheless, the devices required large samples to maintain culture sterility [6], as well as are still costly and difficult in generating reflectance spectrum data for both personal and commercial purposes. Due to these reasons, several alternative with advanced non-destructive approaches were developed to reduce the involvement of massive labour and rapid progress.

In previous studies, Artificial Neural Network (ANN) is commonly applied for commercial agricultural purposes in order to predict leaf area, classify the leaf and predict the crops yield, chlorophyll content quantification and fruits weight [2]-[4]. It is also widely used due to the higher accuracy in deciding the prediction results based on the digital image data of the plants [5]. The architecture of ANN consists of three layers of processes which are the input layer, the implicit layers, and the output layer. Nonetheless, as the development of machine learning approaches is getting fast to be improved, there are several drawbacks discovered in the application of ANN for agricultural field. For instance, feature extraction task is much complicated as the developer needs to manually design the best features using raw digital image data [7].

Figure 1.1: General Convolutional Neural Network Structure Diagram [6]

Therefore, ANN model is less automated compared to the famous architecture deep learning which is Conventional Neural Network (CNN) model. CNN model can reduce the developer's effort and knowledge limitations in designing the feature extraction. Morphological image segmentation led directly to the term of convolutional. A convolutional matrix is used to detect edges, blur, and sharpen an image [7]. In recent studies, the algorithms of CNN on plant were mainly aiming the nutrient deficiency [9], species classification [10], disease and health detection [9],[10], and photosynthetic pigments quantification [13] based on digital images and reflectance spectra data.

CNN commonly is utilized to handle digital image data with two or three dimensions. Based a previous study, photosynthetic pigments of a plant have been predicted by processing plant leaves digital images using CNN. Hence, CNN can produce simultaneous predictions of the three different pigment contents including chlorophyll, carotenoid, and anthocyanin. The results showed that the performance of CNN is remarkable in representing the relationship of non-linear models between the photosynthetic pigment contents and its plant digital images. Leaf reflectance spectrum is a one-dimensional (1D) data [12].

Figure 1.2: General Leaf Spectra based on Light Absorption (Image credits: Eric Brown de Colstoun)

CNN have certain accuracy and generalization in many domains and have the potential to solve problems stated. CNN has the difficulty in designing the optimal architecture as the accuracy of CNN is determined by CNN architecture in terms of its kernel sizes, number of layers, types of layers and connection sequence of these layers. However, this concern can be solved with number of finding, readings, and understanding [13]related to the prediction techniques of this photosynthetic pigment so an effectively

and user-friendly system can be utilized easily as well as, giving the contribution to agriculture industry.

In this research, a non-destructive and real-time model of CNN is proposed as a main tool to predict the intensity of chlorophyll content.

1.2 Problem Statement

Recently, plant physiological has been triggered by climate warming. It affects the physiological processes in plants such as photosynthesis, respiration, and decomposition. The recent temperature predictions of 2 °C until 5 °C warming is most likely experienced by many plants in the ecosystem [14]. Thus, the plants have to make immediate physiological adjustments toward warmer conditions in order to maintain the gain of carbon. However, plants do have its own considerable capacities that can affect their growths. Warmer climates have led the plants to reduce their growth, photosynthetic capacity, carbon gain, and respiration rates. Therefore, the intensity of chlorophyll content affects the production of carbon dioxide (CO₂). Figure 1.3 shows the illustration of affected respiration and photosynthesis rates as the temperature is getting warmer which increased the rate of CO₂ exchange in the atmosphere.

Figure 1.3: Affected Respiration and Photosynthesis Rates as Climate Warming is Increasing [14]