

Synthesis and Characterisation of Conjugated Bis-Schiff Base and The Boron Difluoride Complexes as Dye-Sensitiser for Dye Sensitised Solar Cell (DSSC) Application

Nursyafira Adzira Binti Halmi

Master of Science 2023

Grade:	

Please tick $(\sqrt{})$ Final Year Project Report Masters PhD

DECLARATION OF ORIGINAL WORK

Student's Declaration:

I NURSYAFIRA ADZIRA BINTI HALMI (19020014), FACULTY OF RESOURCE SCIENCE AND TECHNOLOGY (PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY/INSTITUTE) hereby declare that the work entitled SYNTHESIS AND CHARACTERISATION OF CONJUGATED BIS-SCHIFF BASE AND THE BORON DIFLUORIDE COMPLEXES AS DYE-is my original work. I have not copied from any other students' work or from any other sources except where due is my original reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

NURSYAFIRA ADZIRA BINTI HALMI (19020014)

Student's Name and Matric No.

29 AUGUST 2023

Supervisor's Declaration:

Tay Meng Guan

(SUPERVISOR'S NAME) hereby certifies that the Ι SYNTHESIS AND CHARACTERISATION OF CONJUGATED BIS-SCHIFF BASE AND THE BORON DIFLUORIDE work entitled, COMPLEXES AS DYE-SENSITISER FOR DYE SENSITISED SOLAR CELL(DSSC) APPLICATION

(TITLE) was prepared by the above named student, and was submitted to the "FACULTY/INSTITUTE" as a

* partial/full fulfillment for the conferment of ______ MASTER DEGREE

(PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said

student's work

Received for examination by:

Tay Meng Guan

(Supervisor's Name)

Date:___ 29 Aug 2023

Date submitted

I declare this Project/Thesis is classified as (Please tick ($\sqrt{}$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be uploaded to this **url: ir.unimas.my (UNIMAS Repository)** officially in Perpustakaan Tunku Abdul Rahman Ya'kub with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- Perpustakaan Tunku Abdul Rahman Ya'kub has the lawful right to make copies only for the purpose of academic and research and not for other purpose.
- Perpustakaan Tunku Abdul Rahman Ya'kub has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student, neither third party on this Project/Thesis, once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

rof, Dr. Tav Student's signature Supervisor's signature: A300 Kota S (Date) 29 Aug 2023 (Date) 29 AUGUST 2023

Current Address: NO.6, LOT 9937, TAMAN MATANG BARU, JALAN MATANG BARU, 93050,

KUCHING, SARAWAK

Notes:

If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument was duly prepared by Perpustakaan Tunku Abdul Rahman Ya'kub]

Synthesis and Characterisation of Conjugated Bis-Schiff Base and The Boron Difluoride Complexes as Dye-Sensitiser for Dye Sensitised Solar Cell (DSSC) Application

Nursyafira Adzira Binti Halmi

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Inorganic Chemistry)

Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK 2023

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

Name:

Nursyafira Adzira Binti Halmi

Matric No.: 19020014

Faculty of Resource Science and Technology

Universiti Malaysia Sarawak

Date: 31 August 2023

ACKNOWLEDGEMENT

First and foremost, I would like to give my greatest thanks to Allah S.W.T. for His blessing and guidance to me throughout my up-and-down journey to complete this master's degree. Without His will, this will never happen at all. To my dear self, thank you so much for not giving up despite all those hardships and challenges you have been through in this journey. Although sometimes things seem impossible and you almost giving up so many times, thank you for still standing up and continue this journey.

Next, my sincere thanks go to my supervisor Associate Professor Dr Tay Meng Guan for his continuous guidance, invaluable assistance, and knowledge that he has shared with me during my research. This work would not have been possible without the constant support and encouragement from my supervisor. All his help and constructive comments have been so much help throughout the experimental and theses writing to the success of this research.

To my beloved family, especially my parents, thank you for your endless support, love, prayers, and encouragement. Thank you for always supporting me in whatever path I choose in life. To my siblings, although you guys never show it, I know I will always have your supports in whatever I do in life. Thank you for your helps directly or indirectly. I appreciate it so much.

To my friend and best co-worker, Sya, thank you so much for being there throughout my journey since degree year until my master's year. Without you, this journey will not be as fun as it is. Thank you for our lunches, playtime, mall time. During my ups and down you were always there by my side encouraging and supporting me. For sharing your every bit of knowledge with me and all your help thank you. I will cherish these memories forever. Also, not forgetting my dearest colleagues, Kak Choomie, Victoria, Ciki, Aina, Michelle, Kak Seha for all the fun time we had together. Although it was only for a short time before you guys go on your own separate journeys, thank you for the friendship and memories that I will not forget. My sincere thanks to my best buddies for life, Amm, Noi, Nana, Uul, and Yaya for their emotional supports to me throughout my study journey especially for being good listener for me during my stressful times. Another circle of friends who have been there from since degree time, Nisa, Pjot, Nisa your support was always there with me and Sya even if we were far apart, thank you.

In addition, not to forget our UNIMAS technical staffs and lab assistant, Encik Ismadi, Encik Rajuna, Kak Ros, Kak Leida, Encik Raymond, Kak Yati, Encik Leo, Encik Wahab and Encik Ben for all their assistance and guidance in the instrumentation and lab supplies.

Finally, sincere gratitude to Zamalah UNIMAS and Yayasan Sarawak for providing financial helps throughout my study. Also, thank you to Universiti Malaysia Sarawak and Hexagon Highs for the opportunity to be appointed as the research assistance for their projects under the research grants [GL/F07/HEXA/2021] and [GL/F07/HEXA/02/2021]. Thank you to UNIMAS for providing facilities for my study since foundation up until today.

ABSTRACT

Schiff base and their metal complexes have been widely used as photovoltaic materials due to their excellent π -electron transfer properties along the molecule. In this study, a total of eleven conjugated symmetrical bis-Schiff base and its complexes with different π -spacers have been synthesised and spectroscopically characterised in order to investigate their conversion efficiency in dye-sensitiser solar cell (DSSC). All compounds were substituted either without any substituent or with hydroxy (-OH) or methoxy (-OMe) as the electron donor and difluoro boron (BF2) as the electron acceptor. The symmetrical bis-Schiff base compounds (1a - 4c) were synthesised by using condensation reaction and further proceeded to undergo complexation with boron trifluoride diethyl ether to produce boron difluoride complexes (1d and 2d). All compounds were adapted with some modifications from existing works but have not been tested as dye-sensitiser for DSSC. All the synthesised compounds were applied as dye-sensitiser in DSSC using titanium (IV) oxide (TiO₂) coated on a fluoride doped tin oxide (FTO) glass as the working electrode and electric paint containing carbon black and graphite coated indium tin oxide (ITO) glass as the counter electrode. The power conversion efficiencies (PCE) of the eleven bis-Schiff base compounds were tested using a 100W LED light with multimeter and resistance set up. The efficiencies result was compared to N3 Dye as the benchmark standard. The results showed that the compound with aromatic ring bridge as the π -spacer in *para*- position and methoxy (-OMe) substituent gave the highest efficiency at 0.0691% whereas compound with aromatic ring and difluoro boron (BF₂) gave the lowest efficiency at 0.0012%. The presence of strong electron donor and extended π -conjugation effect in the structure allows effective charge transfer along the molecule which affects the conversion efficiency of DSSC device.

Keywords:Conversion efficiency, dye-sensitised solar cells, dye-sensitiser, symmetrical
bis-Schiff-base, π -conjugated system

Sintesis dan Pencirian Bes-Schiff Simetri yang Berkonjukasi serta Kompleks Boron Difluorida sebagai Pewarna Foton untuk Sel Solar Peka Pewarna

ABSTRAK

Bes Schiff serta kompleks logamnya telah digunakan dengan meluas sebagai bahan fotovolta kerana sifat perpindahan elektron- π di sepanjang molekul. Sejumlah sebelas bes Schiff simetri terkonjugat dan kompleksnya dengan penjarak- π yang berbeza telah disintesis dan dicirikan secara spektroskopi untuk mengkaji kecekapan penukaran mereka di dalam sel solar peka pewarna. Kesemua sebatian telah digantikan sama ada tanpa apa-apa bahan ganti atau dengan hidroksi (-OH) atau metoksi (-OMe) sebagai penderma elektron dan boron difluorida sebagai penerima elektron. Sebatian bes Schiff simetri (1a - 4c) telah disintesis melalui tindak balas pemeluwapan dan seterusnya manjalani pengkompleksan dengan boron trifluorida dietil eter untuk menghasilkan kompleks boron difluorida (1d dan 2d). Kesemua sebatian telah diadaptasikan dengan sedikit ubah suai dari karya sedia ada tetapi belum diuji sebagai pewarna foton untuk DSSC. Kesemua sebatian yang telah disintesis telah digunakan sebagai pewarna foton untuk DSSC menggunakan titanium dioksida (TiO_2) yang disalut di atas kaca oksida timah terdop fluorida (FTO) sebagai elektrod kerja dan cat elektrik yang mengandungi hitam karbon dan grafit disalut di atas kaca oksida indium timah sebagai elektrod pembalas. Kecekapan penukaran kuasa (PCE) bagi kesebelas bes Schiff telah diuji menggunakan persediaan lampu LED 100W dengan multimeter beserta rintangan. Hasil kecekapan telah dibandingkan dengan pewarna N3 sebagai tanda aras piawai. Keputusan menunjukkan bahawa sebatian yang mengandungi titian gelang aromatik sebagai penjarak- π diposisi para- beserta bahan ganti metoksi (-OMe) memberikan kecekapan tertinggi sebanyak 0.0691% manakala sebatian yang mengandungi titian gelang dan boron difluorida (BF₂) memberikan kecekapan terendah

sebanyak 0.0012%. Kehadiran penderma elektron yang kuat beserta kesan konjugasi- π yang diperpanjangkan di dalam struktur mengizinkan perpindahan cas yang berkesan disepanjang molekul mempengaruhi kecekapan penukaran peranti DSSC.

Kata kunci: Kecekapan penukaran, sel solar peka perwarna, pewarna foton, bes Schiff simetri, sistem π -konjugasi

TABLE OF CONTENTS

		Page
DEC	LARATION	i
ACK	NOWLEDGEMENT	ii
ABS	TRACT	iv
ABS	TRAK	vi
ТАВ	LE OF CONTENTS	viii
LIST	T OF TABLES	xiii
LIST	T OF FIGURES	xiv
LIST	T OF SCHEMES	xvii
LIST	TOF ABBREVIATIONS	xviii
CHA	PTER 1 INTRODUCTION	1
1.1	Solar energy	1
1.2	Photovoltaics technology	2
1.3	Operation principle of DSSC	5
1.4	Essential requirements of dye sensitiser for DSSC	7
1.5	Introduction and applications of Schiff base and its' metal complexes	9
1.6	Boron difluoride complexes	11
1.7	Problem statement	13

1.8	Objectives	14
1.9	Scope of the thesis	15
CHA	PTER 2 LITERATURE REVIEW	16
2.1	Components of DSSC and their vital role in solar conversion efficiency	16
2.1.1	Glass substrate material	16
2.1.2	Metal oxide semiconductor	18
2.1.3	Dye-sensitiser	20
2.1.4	Electrolyte	24
2.1.5	Counter electrode	25
2.2	Synthesis of Schiff base	26
2.2.1	Conventional methods	26
2.2.1.	1 Two-steps technique	27
2.2.1.	2 One-pot technique	28
2.2.2	Microwave irradiation method	31
2.3	Complexation of Schiff base	32
2.4	Schiff base metal complexes as sensitiser	37
CHA	PTER 3 METHODOLOGY	43
3.1	Materials and reagent	43
3.2	Characterisation	43
3.3	Preparation of symmetrical bis-Schiff base ligands	44
3.3.1	(N^1E, N^4E) - N^1, N^4 -dibenzylidenebenzene-1,4-diamine, (1a)	44

3.3.2	2,2'-((1E,1'E)-(1,4-phenylenebis(azanylylidene))bis(methanylylidene))diphenol,	
	(1b)	45
3.3.3	(N^1E, N^4E) - N^1, N^4 -bis(4-methoxybenzylidene)benzene-1,4-diamine, (1c)	46
3.3.4	(N^1E, N^2E) - N^1, N^2 -dibenzylidenebenzene-1,2-diamine, (2a)	47
3.3.5	2,2'-((1 <i>E</i> ,1' <i>E</i>)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))diphenol,	
	(2b)	48
3.3.6	(N^1E, N^2E) - N^1, N^2 -bis(4-methoxybenzylidene)benzene-1,2-diamine, (2c)	49
3.3.7	(N,N'E,N,N'E)-N,N'-(ethane-1,2-diylidene)dianiline, (3a)	50
3.3.8	2,2'-((1 <i>E</i> ,1' <i>E</i>)-ethane-1,2-diylidenebis(azanylylidene))diphenol, (3b)	51
3.3.9	(N,N'E,N,N'E)- N,N' -(ethane-1,2-diylidene)bis(4-methoxyaniline), (3c)	52
3.3.10	(N,N'E,N,N'E)-N,N'-(butane-2,3-diylidene)dianiline, (4a)	53
3.3.11	2,2'-((1 <i>E</i> ,1' <i>E</i>)-butane-2,3-diylidenebis(azanylylidene))diphenol, (4b)	54
3.3.12	(N,N'E,N,N'E)- N,N' -(butane-2,3-diylidene)bis(4-methoxyaniline), (4c)	55
3.4	Preparation of symmetrical bis-Schiff base ligands boron complex	56
3.4.1	3,3'-(1,4-phenylene)bis(2,2-difluoro-2H-benzo[e][1,3,2]oxazaborinin-3-ium-2-	
	uide), (1d)	56
3.4.2	3,3'-(1,2-phenylene)bis(2,2-difluoro-2H-benzo[e][1,3,2]oxazaborinin-3-ium-2-	
	uide), (2d)	57
3.5	Fabrication of dye-sensitised solar cell (DSSC)	57
3.5.1	Preparation of TiO ₂ working electrode	58
3.5.2	Preparation of N3 standard dye	59

Х

3.5.3	Preparation of symmetrical bis-Schiff base ligands and complexes as dye	
	sensitiser	59
3.5.4	Preparation of working electrode	59
3.5.5	Preparation of counter electrode	60
3.5.6	DSSC electrolyte	60
3.5.7	DSSC assembly	60
3.5.8	Photoelectrochemical measurement	61
CHAP	TER 4 RESULTS AND DISCUSSIONS	63
4.1	Synthesis of symmetrical bis-Schiff base compounds	63
4.1.1	Synthesis pathway and mechanism of bis-Schiff base compounds	63
4.1.2	Synthesis and characterisation of conjugated symmetrical bis-Schiff	
	base compounds	65
4.1.3	IR spectra of conjugated symmetrical bis-Schiff base compounds	82
4.1.4	NMR spectra of conjugated symmetrical bis-Schiff base compounds	85
4.1.5	UV-Visible of conjugated symmetrical bis-Schiff base compounds	89
4.1.6	CHN analysis of conjugated symmetrical bis-Schiff base compounds	90
4.1.7	GC-MS analysis of conjugated symmetrical bis-Schiff base compounds	91
4.2	Complexation of boron difluoride with symmetrical bis-Schiff base compounds	93
4.2.1	IR spectra of boron difluoride symmetrical bis-Schiff base compounds	94
4.2.2	UV-Visible analysis of boron difluoride symmetrical bis-Schiff base compounds	96
4.2.3	CHN analysis of boron difluoride symmetrical bis-Schiff base compounds	98

4.3	Attempts synthesis of unsymmetrical bis-Schiff base with push pull effects	99
4.4	Application of symmetrical bis-Schiff base compounds and complexes in DSS	SC 105
СНА	PTER 5 CONCLUSION AND SUGGESTION FOR FUTURE WORK	120
5.1	Conclusion	120
5.2	Suggestion for future work	121
REFERENCES 124		
APPENDICES 143		143

LIST OF TABLES

Page

		-
Table 4.1:	Selected IR data of symmetrical bis-Schiff base compounds 1a-4c	83
Table 4.2:	¹ H NMR data of symmetrical bis-Schiff base compounds 1a-4c	85
Table 4.3:	¹³ C NMR data of symmetrical bis-Schiff base compounds 1a-4c	87
Table 4.4:	UV-Visible absorption data of symmetrical bis-Schiff base compounds 1a-4c	89
Table 4.5:	CHN elemental analysis results of symmetrical bis-Schiff base compounds 1a-4c	91
Table 4.6:	GC-MS analysis of symmetrical bis-Schiff base compounds 1a-4c	91
Table 4.7:	FTIR analysis of symmetrical bis-Schiff base free ligands and boron difluoride complexes	95
Table 4.8:	UV-Visible analysis of symmetrical bis-Schiff base ligands and boron difluoride complexes	97
Table 4.9:	CHN analysis of symmetrical bis-Schiff base ligands and boron difluoride complexes	99
Table 4.10:	Power conversion efficiency results of symmetrical bis-Schiff base ligands and boron difluoride complexes	111

LIST OF FIGURES

Figure 1.1:	Thin film technology	3
Figure 1.2:	Best research cell efficiencies obtained from NREL (Retrieved from https://www.nrel.gov/pv/)	5
Figure 1.3:	Simple energy level diagram for DSSC operation principle	6
Figure 1.4:	Structure of metal complex of (a) salen and (b) salphen	11
Figure 1.5:	Four series of Schiff base derivatives with different substituent	14
Figure 2.1:	Arrangement of DSSC device	16
Figure 2.2:	Energy level of electron movement in DSSC	20
Figure 2.3:	Chemical structure of the bis-chalcone compounds with para- and meta- position of central phenyl ring (Teo et al., 2017)	23
Figure 2.4:	Prototype of Schiff bases with different bridge in between (Zhang et al., 2018)	23
Figure 2.5:	The unsymmetrical bis-chalcone with different electron donors and acceptors (Phan et al., 2019)	33
Figure 2.6:	Structure of difluoro boron complex of Schiff base reported by Sun and co-workers (2017)	35
Figure 2.7:	The structure of asymmetric Zn(II), Cd(II) and Hg(II) benzimidazole- based complexes (Wang et al., 2017)	39
Figure 2.8:	The structure of N719 dye	40
Figure 2.9:	The general structure of pyridine-based Schiff base ligand and their metal complexes (Gencer Imer et al., 2018)	41
Figure 2.10:	The chemical structure of Zn(II) metal Schiff base complex (Kilinc et al., 2019)	42
Figure 3.1:	Complete assembly of DSSC	58
Figure 3.2:	Graphical representation of DSSC assembling process	61
Figure 4.1:	Four series of conjugated symmetrical bis-Schiff base compounds	63
Figure 4.2:	Molecular structure of compound 3a, 3b and 4b	66

Figu	re 4.3:	Gas chromatogram of benzimidazole and Schiff base formation of 2a	68
Figu	ıre 4.4:	IR spectrum of compound 3a	69
Figu	ire 4.5:	1H NMR spectrum compound 3a	70
Figu	ıre 4.6:	Gas chromatogram of compound 3a	71
Figu	ıre 4.7:	Mass spectrum of compound 3a and aniline	72
Figu	ıre 4.8:	UV-visible spectrum of compound 3a	73
Figu	ure 4.9:	The chemical structure of (<i>N</i> , <i>N'E</i> , <i>N</i> , <i>N'E</i>)- <i>N</i> , <i>N'</i> -(butane-2,3-diylidene)- dianiline (4a)	74
Figu	re 4.10:	Chemical structure of compounds 3b and 4b	75
Figu	re 4.11:	Chemical structure of cyclisation product	75
Figu	re 4.12:	IR spectrum of compound 3b	76
Figu	ıre 4.13:	IR spectrum of compound 4b	77
Figu	ıre 4.14:	¹ H NMR spectrum of compound 3b	78
Figu	ıre 4.15:	¹ H NMR spectrum of compound 4b	79
Figu	ıre 4.16:	¹³ C NMR spectrum of compound 3b	80
Figu	ıre 4.17:	¹³ C NMR spectrum of compound 4b	80
Figu	ıre 4.18:	Mass spectrum of compound 3b	81
Figu	ıre 4.19:	Mass spectrum of compound 4b	81
Figu	re 4.20:	IR spectrum of symmetrical bis-Schiff base of compound 1a	84
Figu	re 4.21:	¹ H NMR spectrum of compound 1a	86
Figu	re 4.22:	¹³ C NMR spectrum of compound 1a	88
Figu	re 4.23:	UV-Visible spectrum of compound 1a	90
Figu	re 4.24:	Gas chromatogram of compound 1a	92
Figu	ıre 4.25:	Mass spectrum of compound 1a	93
Figu	ure 4.26:	Successful formation of N,O- chelating boron difluoride complex (a) and unsuccessful formation of boron difluoride complex (b)	94
Figu	re 4.27:	IR spectrum of compound 1d	96

Figure 4.28:	UV-Visible spectrum of compound 1d	98
Figure 4.29:	Postulated structure of 1d (a) and 2d (b)	99
Figure 4.30:	Proposed structure of unsymmetrical bis-Schiff base compound with push pull effects	100
Figure 4.31:	¹ H NMR of unsymmetrical bis-Schiff base attempt	103
Figure 4.32:	Gas chromatogram of unsymmetrical bis-Schiff base attempt	104
Figure 4.33:	Setup of photoelectrical measurement of DSSC	105
Figure 4.34:	The distance and brightness intensity (lux) for DSSC measurement	106
Figure 4.35:	Current and power vs voltage curves of N3 dye sensitiser	110
Figure 4.36:	J/V measurement of symmetrical bis-Schiff base compounds and complexes as dye-sensitiser	113
Figure 4.37:	J/V measurement of series 1 compounds (above) and series 2 compounds (below)	115
Figure 4.38:	J/V measurement of symmetrical bis-Schiff base with different π -spacer	116
Figure 4.39:	Illustrations of ortho-, para- and meta- conjugation paths	117
Figure 4.40:	The electron delocalisation pathway in <i>para</i> -position and <i>meta</i> -position phenyl bridge	117
Figure 4.41:	The structure of 1c with its characteristics	119
Figure 5.1:	Recommended Schiff base structure for future work	122
Figure 5.2:	Recommended Schiff base boron difluoride structure for future work	123

LIST OF SCHEMES

Page

Scheme 1.1:	The formation of Schiff base	9
Scheme 2.1:	Synthesis of the ligands H ₂ pmptsc (Roth et al., 2007)	27
Scheme 2.2:	Synthesis pathway of dihydropyrano[3,2-c]chromene in one-pot (Wang et al., 2010)	28
Scheme 2.3:	General pathway for one-pot synthesis of anthranilamide Schiff base (Ebrahimi et al., 2013)	29
Scheme 2.4:	Synthesis scheme of SA1 (Abdalhadi et al., 2020)	29
Scheme 2.5:	One-pot three component synthesis of target compounds 4a-u (Salve et al., 2017)	30
Scheme 2.6:	General pathway of Salicylaldazine via microwave irradiation (Kassim et al., 2019)	32
Scheme 2.7:	Preparation of boranil complex (Shanmugapriya et al., 2016)	34
Scheme 2.8:	Formation of the trinuclear fluoroborate complex (Sen, 2019)	36
Scheme 2.9:	Structure of difluoro boron complex of Schiff base based on N,O-chelating (Sen et al., 2020)	37
Scheme 4.1:	Conjugated symmetrical bis-Schiff base compound formation mechanism (1a)	64
Scheme 4.2:	Chemical reaction of compound 1a	66
Scheme 4.3:	Chemical reaction of compound 2a	67
Scheme 4.4:	Possible formation of reaction between o-phenylenediamine and aldehydes	68
Scheme 4.5:	Reaction of 2-aminophenol with glyoxal (3b) and diacetyl (4b)	75
Scheme 4.6:	Attempt of synthesizing intermediate M1 by reacting 2-aminophenol with terephthaldehyde	101
Scheme 4.7:	Attempt of synthesizing unsymmetrical bis-Schiff base using one pot technique	102

LIST OF ABBREVIATIONS

%	Percent
°C	Degree celcius
¹³ C	Carbon
${}^{1}\mathrm{H}$	Proton
Ag	Silver
AM	Air mass
BF_2	Boron difluoride
BF ₃ .Et ₂ O	Boron trifluoride diethyl ether
Br	Bromine
Br⁻	Bromide
С	Carbon
C=N	Azomethine
C=0	Carbonyl
Cd	Cadmium
CDCl ₃	Deuterated chloroform
CdO	Cadmium oxide
-CH ₃	methyl
CHCl ₃	Chloroform
Cl	Chlorine
Co	Cobalt
-COOH	Carboxyl
CSP	Concentrated solar power
d	Doublet

DAMN	Diaminomaleonitrile
DCM	Dichloromethane
DIPEA	N,N-Diisopropylethylamine
DMSO	Dimethyl sulfoxide
DSSC	Dye-sensitised solar cell
e	electron
EL	electroluminescent
eV	Electronvolt
F	Fluorine
FF	Fill factor
fs	Femtosecond
FTIR	Fourier-transform infrared
FTO	Fluorine-doped tin oxide
g	Gram
G	global
Ga ₂ O ₃	Gallium(III) oxide
GC/MS	Gas chromatogram/Mass spectroscopy
H_2O_2	Hydrogen peroxide
Hg	Mercury
НОМО	Highest occupied molecular orbital
Hz	Hertz
I ⁻ / I ₃ ⁻	Iodide/triiodide
I ₂	Iodine
ICT	Intramolecular charge transfer
In ₂ O ₃	Indium(III) oxide

IR	Infrared
ITO	Indium tin oxide
\mathbf{J}_{sc}	Short circuit current
KBr	Potassium bromide
КОН	Potassium hydroxide
kWh/m ²	Kilowatt hours per square metre
LED	Light-emitting diode
LUMO	Lowest unoccupied molecular orbital
m	Multiplet
m/z	Mass-to-charge ratio
mA	Milliampere
МеОН	Methanol
MHz	Megahertz
ml	Millilitre
mmol	Millimole
mV	Millivolt
Ν	Nitrogen
N_2O_2	Dinitrogen dioxide
NaOH	Sodium hydroxide
Nb ₂ O ₅	Niobium pentoxide
Ni	Nickel
NLO	Non linear optics
nm	Nanometre
NMR	Nuclear magnetic resonance
0	Oxygen