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ABSTRACT 

There are several algorithms used to predict floods, including LSTM, BP, MLP, SARIMA, 

and SVM. While shallow neural networks are simple and efficient, they have limited 

memory and may not accurately capture long-term patterns or large-scale data. LSTM has 

gained attention among researchers in flood prediction for its ability to preserve historical 

data and solve complex time series problems. However, the study of this area is ongoing, 

with potential for further improvement. In current studies, researchers are exploring new 

directions by developing hybrid algorithms. The SNN, a third generation ANN, has been 

created to handle more complex data with a higher decision-making firing rate than ML and 

DL. In this study, a new hybrid DSNN algorithm will be utilised to predict floods in Kuala

Baram, Miri, Sarawak. Rainfall data from 30 years (1989-2019) was collected from DID to 

evaluate the effectiveness of the DSNN algorithm compared to traditional and shallow neural 

networks algorithms. Performance was measured using ACC, RMSE, SPE, SEN, PPV, 

NPV, and ASP. A comprehensive analysis of the proposed DSNN algorithm was conducted. 

Four different training batch ratios were used to validate: 80:10:10, 70:15:15, 60:20:20, and 

50:25:25. The results of the study showed that the DSNN algorithm outperformed the other 

algorithms with a higher ACC rate of 98.10%, an RMSE of 6.5%, a SEN of 93.50%, an SPE 

rate of 79.00%, and ASP of 89.60%. Overall, the DSNN algorithm with an 80:10:10 training 

sample ratio performed the best.  

Keywords: Deep Spiking Neural Network (DSSN), Flood Prediction, Leaky Integrate 

and Fire (LIF), Long Short-Term Memory (LSTM), Spiking Neural Network 

(SNN). 
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Pengukuran Prestasi Algoritma Deep Spiking Neural Network 
(DSNN) dalam Ramalan Banjir  

ABSTRAK 

Terdapat beberapa algoritma yang digunakan untuk meramal banjir, termasuk LSTM, BP, 

MLP, SARIMA, dan SVM. Walaupun rangkaian neural  adalah mudah dan cekap, ia 

mempunyai ingatan terhad dan mungkin tidak dapat mengesan corak jangka panjang atau 

data berskala besar secara tepat. LSTM telah menarik perhatian penyelidik dalam ramalan 

banjir kerana keupayaannya untuk mengekalkan data sejarah dan menyelesaikan masalah 

rangkaian masa yang kompleks. Walau bagaimanapun, kajian dalam bidang ini masih 

berterusan dengan potensi untuk peningkatan lebih lanjut. Dalam kajian semasa, para 

penyelidik sedang mengeksplorasi arah baru dengan membangunkan algoritma hibrid. 

SNN, generasi ketiga ANN, telah dicipta untuk mengendalikan data yang lebih kompleks 

dengan kadar keputusan yang lebih tinggi daripada ML dan DL. Dalam kajian ini, satu 

algoritma hibrid baru DSNN akan digunakan untuk meramal banjir di Kuala Baram, Miri, 

Sarawak. Data hujan selama 30 tahun (1989-2019) telah dikumpulkan dari DID untuk 

menilai keberkesanan algoritma DSNN berbanding dengan algoritma rangkaian neural 

tradisional. Prestasi diukur menggunakan ACC, RMSE, SPE, SEN, PPV, NPV, dan ASP. 

Analisis menyeluruh terhadap algoritma DSNN yang dicadangkan telah dijalankan. Empat 

nisbah latihan yang berbeza digunakan untuk pengesahan: 80:10:10, 70:15:15, 60:20:20, 

dan 50:25:25. Hasil kajian menunjukkan bahawa algoritma DSNN memberikan prestasi 

lebih baik berbanding algoritma lain dengan kadar ACC yang lebih tinggi, iaitu 98.10%, 

RMSE sebanyak 6.5%, SEN sebanyak 93.50%, kadar SPE sebanyak 79.00%, dan ASP 

sebanyak 89.60%. Secara keseluruhannya, algoritma DSNN dengan nisbah sampel latihan 

80:10:10 memberikan prestasi terbaik. 
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Kata kunci: Deep Spiking Neural Network (DSNN), Leaky Integrate and Fire (LIF), Long 

Short-Term Memory (LSTM), Ramalan banjir, Spiking Neural Network 

(SNN). 
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CHAPTER 1  
 
 

INTRODUCTION 

1.1 Study Background 

In 2021, Malaysia's massive floods resulted in an estimated total loss of RM6.1 

billion, with Selangor being the worst hit state (Abdullah, 2018; Bedi, 2022; Mohammed et 

al., 2018; Safiah Yusmah et al., 2020). According to an article in the New Straits Times by 

Dr. Mohd Uzidin (Bernama, 2022), the annual floods have adverse impacts on various 

aspects of life, including loss of lives, destruction of public assets, houses, transportation, 

infrastructure, manufacturing, and agriculture industries. These floods cause financial losses 

not only to business operators but also to citizens in general. The total loss due to floods adds 

up to more than RM2 billion, with houses (RM1.6 billion), automobiles (RM1.0 billion), the 

manufacturing sector (RM0.9 billion), commercial real estate (RM500 million), and 

agriculture (RM90.6 million) being the most affected. 

Flood is a natural disaster that hinders a country's development (Elias et al., 2013; 

Kourgialas & Karatzas, 2011). Flooding typically happens when swollen water from rivers 

or lakes overflows the levees, but it can also occur when rainwater collects on saturated 

ground with insufficient areas for infiltration. Some floods develop slowly, whereas flash 

floods can happen very fast. Floods are becoming more frequent due to climate change, and 

transformation of the earth's physical infrastructure as a consequence of technical and 

economic improvements (Elias et al., 2013).  Serious attention must be given to flood control 

measures and solutions developed to mitigate the negative impact of this disaster. Past 

research has run several statistical tests and analyses in Malaysia, including Sabah and 

Sarawak; the results show that since the 1920s, floods have been the most common natural 
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calamity, hitting many locations, particularly the low-lying areas (Pirah & Roslee, 2021; 

Tew et al., 2022). The expansion of the areas causes almost 9% of the entire disaster, while 

floods bring direct damages to nearly 22% of the total population (Yusoff et al., 2018). 

Furthermore, Malaysia's climate is experiencing an increase in the frequency of rainfall, with 

an average of roughly 2,500 mm per year in Peninsula Malaysia, 3,000 mm per year in 

Sabah, and 3,500 mm per year in Sarawak (Aliagha et al., 2015; Othman et al., 2014; Salleh 

et al., 2013; Tan et al., 2015). 

During the monsoon seasons, most Malaysian states receive considerable rainfall 

every year, resulting in flooding in numerous locations, particularly those in and around 

central business districts. The district of Baram River in Sarawak is vulnerable to flooding 

due to its proximity to the river mouth fronting the South China Sea. The Baram River is the 

second longest river in Sarawak with its source located hundreds of kilometres inland in the 

mountains near the Sarawak-Indonesia border (Ling et al., 2017). The river begins in Long 

Lamai and ends at Baram with water flowing into the South China Sea (KessLer & Jong, 

2015). Few studies on flood event prediction have used physical modelling techniques such 

as regression (Fenglin et al., 2023; Panahi et al., 2021; Rezaeianzadeh et al., 2018; Tsakiri 

et al., 2018; Viteri López & Morales Rodriguez, 2020) and hydrodynamic modelling (Boota 

et al., 2023; Fitzpatrick et al., 2023; Huang et al., 2023; Karim et al., 2023; Timbadiya & 

Krishnamraju, 2023).  

High-performance models can assist in predicting impending flooding events and 

mitigate the damaging effects. One of the most effective techniques is to use computer 

modelling. Computer modelling has been frequently utilised in research to tackle physical 

difficulties. Researchers can easily and quickly evaluate changes in real-life situations and 
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their impacts over time. With the advent of high-speed computers and sophisticated software 

packages, many digitalised models have been developed to forecast outcomes of floodings 

(Fotovatikhah et al., 2018; Jajarmizadeh et al., 2014; Teng et al., 2017). 

Deep Artificial Neural Network (ANN), also known as Deep Learning (DL), is the 

most well-known computerised modelling that solves problems using algorithmic 

techniques (Schmidhuber, 2015). Shallow and deep neural networks, with different credit 

assignment paths, link actions and outcomes utilising pattern recognition, generalisation, 

perception, and machine learning. DL consists of deep supervised learning, which 

encompasses recapitulating the history of Back-propagation, unsupervised learning, 

reinforcement learning and evolutionary computation, and indirect search for short programs 

encoding deep and large networks (Hinton, 2007; LeCun et al., 2015; Liu et al., 2017). 

Spiking Neural Network (SNN), the third generation of Artificial Neural Network (ANN), 

plays a vital role in biological information processing (Maass, 1997). The SNN model 

provides an in-depth description of biological neuronal behaviour. Researchers have used 

additional data to analyse the average firing rate for neuron computations. The structure of 

SNNs is optimised for the efficient processing of firing times; the transmission of 

information between neurons occurs via action potentials or spikes. 

In contrast, ANN models average individual spikes over time, dividing all 

interactions by the average neuron firing rate (Ikeda & Manton, 2009). They are also more 

computationally robust than ANN, which uses a mean firing rate (Ignatov et al., 2015). 

Therefore, due to the robustness of DL and SNN models, this study fits and integrates the 

DL model’s spike trains and hybrid training into Deep Spiking Neural Network (DSNN). 
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The study area is the Baram River, in Miri Division of Sarawak, and north-western 

Borneo. The Baram River flows around the Miri District, as shown in Figure 1.1 shows 

Baram river flow around the Miri, Sarawak. Figure 1.2 illustrate topographic map of Kuala 

Baram, Miri in 1960. Meanwhile, Figure 1.3 illustrates the city of Miri city in 1960. The 

Baram River basin, covering an area of approximately 10,000 square miles, has been a part 

of Sarawak since it was surrendered to the White Rajah of Sarawak by the then Sultan of 

Brunei in 1882. (30,000 km2). Figure 1.4 shows a closer view of the Batang Baram 

anchorage area, and Figure 1.5 shows the location of the Baram Miri Basin. 

 

Figure 1.1: Baram River Flow around the Miri, Sarawak (Dandot, 2006) 
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Figure 1.2: Topographic Map of Kuala Baram, Miri in 1960 (Dandot, 2006) 

 

 

Figure 1.3: Miri City in 1960 (Dandot, 2006) 


