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ABSTRACT Cefiderocol is a siderophore cephalosporin designed mainly for treatment of
infections caused by b-lactam and multidrug-resistant Gram-negative bacteria. Burkholderia
pseudomallei clinical isolates are usually highly cefiderocol susceptible, with in vitro resist-
ance found in a few isolates. Resistance in clinical B. pseudomallei isolates from Australia
is caused by a hitherto uncharacterized mechanism. We show that, like in other Gram-
negatives, the PiuA outer membrane receptor plays a major role in cefiderocol nonsuscepti-
bility in isolates from Malaysia.
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The initial treatment of melioidosis is with intravenous ceftazidime (CAZ) or meropenem
(MEM), to which most primary isolates of B. pseudomallei are susceptible (1). Nevertheless,

acquired resistance to both CAZ and MEM can evolve during therapy (1, 2). Cefiderocol (FDC)
was designed for the treatment of b-lactam-resistant and multidrug-resistant (MDR) Gram-
negative bacteria (3). It is a conjugate containing a cephalosporin moiety (combining struc-
tural components of CAZ and cefepime) and a siderophore (catechol) moiety (3, 4). The latter
mediates FDC access into the periplasm via the outer membrane (OM) ferric siderophore
receptor components of bacterial iron transport systems (5, 6). An Australian study showed
that B. pseudomallei clinical isolates are highly susceptible in vitro to FDC with few resistant
isolates (7). Of 246 clinical isolates tested, resistance to FDC was only observed in 3 isolates
using CLSI clinical breakpoints for Acinetobacter baumannii and Pseudomonas aerugi-
nosa (.4 mg/mL) or 4 isolates using the EUCAST clinical breakpoint for P. aeruginosa
(.2 mg/mL) (7).

In the present study, we determined the FDC susceptibilities of 272 B. pseudomallei iso-
lates from 16 countries with 16 isolates of unknown origin. Of the 272 strains, 160 (59%)
were from Australia, 55 (20%) were from Thailand, and the rest were from 14 other coun-
tries spanning Asia/Southeast Asia, Africa, the Americas and Pacific, and Indian Ocean
nations, and 16 isolates of unknown origin. FDC MICs were determined using broth micro-
dilution (BMD) that was performed as previously described using 96-well plates provided
by Shionogi & Co., Ltd. (Osaka, Japan) and prepared by International Health Management
Associates (IHMA; Schaumburg, IL, USA) (7). Experiments with virulent B. pseudomallei
were performed at BSL-3 in Select Agent-certified laboratory facilities at Northern Arizona
University and employing compliant standard operating procedures approved by the
Institutional Biosafety Committee. All isolates from this study were screened in biological
duplicate with FDC concentrations of 0.03 mg/mL to 32 mg/mL. MICs were read at 16 to
20 h, except for 4 strains that were slow growers and required a 44-h incubation time.
Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB) was used according to
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the manufacturer’s recommendation (8). These analyses demonstrate that 9 of 272 B. pseu-
domallei isolates displayed either resistance (3 isolates) or nonsusceptibility (6 isolates) to
FDC using the published CLSI breakpoints for A. baumannii (#4 mg/mL susceptible; 8 mg/
mL nonsusceptible; $16 mg/mL resistant) (Table 1) (9). In concordance with the previous
Australian study, these results show that FDC resistance is rare but does exist in geographi-
cally diverse B. pseudomallei populations.

Although FDC is highly active against several problem pathogens, including A. bauman-
nii and P. aeruginosa, resistance has been increasingly reported (10). Reduced susceptibility
or resistance to FDC in clinical isolates of various pathogens has been attributed to diverse
mechanisms, among which b-lactamases, siderophore receptors, and penicillin-binding pro-
tein 3 (PBP3) are frequently found, often acting in concert (10, 11). b-lactamases involved in
FDC resistance include Pseudomonas extended resistant (PER) spectrum b-lactamases in
A. baumannii (12, 13) and AmpC variants in P. aeruginosa, e.g., AmpCE247K (14). An analysis of
clinical A. baumannii isolates identified mutations in the pbp3 gene encoding the main
FDC PBP3 target (11, 13, 15). Laboratory experiments with P. aeruginosa and A. baumannii
demonstrated that the PiuA OM catechol receptor, a component of a cognate TonB bacte-
rial iron transport system, is involved in FDC uptake and resistance (16, 17). PiuA mutations
have also been identified in clinical isolates of A. baumannii (11, 13) and P. aeruginosa
in combination with an AmpCL147F mutation (18). Since the mechanisms of FDC resistance
in B. pseudomallei were unknown, our first objective in this study was to determine whether
the bacterium possesses a PiuA homolog that is involved in FDC uptake and resistance.

Online protein BLAST analyses (https://blast.ncbi.nlm.nih.gov/Blast.cgi) using P. aerugi-
nosa PAO1 PiuA (locus tag PA4514; www.pseudomonas.com) (19) as query identified a
putative PiuA candidate in B. pseudomallei 1026b (BP1026B_II1275; Burkholderia Genome
Database; www.burkholderia.com) (20). Protein sequence alignments and similarity predic-
tions of selected PiuA protein sequences were performed using MUSCLE on the EMBL-EBI
server (https://www.ebi.ac.uk/Tools/msa/muscle/) (21). These analyses revealed a 748-amino
acid protein, which is 49.7% identical to P. aeruginosa PiuA. It is encoded by a 2,247-bp cod-
ing region on chromosome 2, whose product in the Burkholderia Genome Database is anno-
tated as an OM ferric siderophore receptor (Fig. 1). This putative B. pseudomallei piuA gene
was then deleted from the Select Agent excluded strain Bp82 (https://www.selectagents
.gov) that is derived from the virulent 1026b (22), using published procedures (23) to arrive
at the unmarked DpiuAmutant Bp82.498 (Fig. 1). The presence of the desired deletion was
verified by PCR amplification and Sanger sequencing. Bp82 and its parental strain 1026b
exhibited an FDC susceptible phenotype (MIC# 0.03mg/mL) (Table 1), whereas the mutant,
Bp82.498, had an MIC of 4mg/mL, which was at least 128-fold higher than the Bp82 MIC.

TABLE 1 B. pseudomallei clinical isolates with increased cefiderocol MIC

MIC (mg/mL)a

Strain Country Yr isolated Sequence type FDC GEN AZM CAZ
1026bb Thailand 1993 ST102 0.03 64 .64 #4
MSHR1464 Australia 2003 ST131 32 .64 .64 ,4
MSHR1713 Australia 2003 ST131 32 .64 .64 ,4
MSHR7744 Australia 2013 ST131 8 8 .64 ,4
MSHR5087 Malaysia 2011 ST881 8 ,2 ,4 ,4
MSHR5089 Malaysia 2011 ST881 16 ,2 ,4 ,4
MSHR5091 Malaysia 2011 ST881 8 ,2 ,4 ,4
MSHR5093 Malaysia 2011 ST881 8 ,2 ,4 8
MSHR5095 Malaysia 2010 ST881 8 ,2 ,4 ,4
MSHR5105 Malaysia 2011 ST881 8 ,2 ,4 ,4
aBroth microdilution MICs determined with iron-depleted cation-adjusted Mueller-Hinton broth (FDC) or cation-
adjusted Mueller-Hinton broth (AZM, GEN, CAZ). FDC, cefiderocol; GEN, gentamicin; AZM, azithromycin; CAZ,
ceftazidime.

bGenome accession numbers: 1026b, GCF_000959125.1; MSHR1464, GCF_026315045.1*; MSHR1713,
GCF_026315025.1*; MSHR7744, GCF_026315005.1*; MSHR5087, GCF_028201395.1*; MSHR5089,
GCF_001980585.2*; MSHR5091, GCF_027946755.1*; MSHR5093, GCF_001980605.1; MSHR5095, SAMN14775583;
MSHR5105, GCF_001980675.1. Asterisks mark deposited assemblies that are new as part of this work.
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Having demonstrated that deletion of PiuA substantially increases the FDC MIC in an
engineered laboratory strain, we used BLAST to examine the genomes of the aforemen-
tioned 3 resistant and 6 nonsusceptible clinical B. pseudomallei isolates in comparison with
strain 1026b. Three of these are genetically related isolates (2 resistant, 1 nonsusceptible)
assigned to ST131 and obtained from a long-term chronic melioidosis infection of an
Australian patient with bronchiectasis (24, 25) and the other 6 are also genetically related
isolates (1 resistant, 5 nonsusceptible) assigned to ST881 and obtained from melioidosis
patients from Malaysia (26). ST881 is a dominant clone seen in Sarawak, Malaysian Borneo
and the 6 isolates were from 6 separate patients from 2 locations which are over 100 km
apart. The isolates from Malaysia all contain 1 synonymous piuA single nucleotide polymor-
phism (SNP) and an 11-nucleotide TCGGAGAAGGC insertion between piuA nucleotides 1602
and 1603 that results in a frameshift causing expression of a truncated, nonfunctional, 633-
amino acid PiuA. These results confirm that B. pseudomallei PiuA is involved in FDC uptake
and resistance. However, rather than the frameshift, the isolates from Australia contain 5 syn-
onymous SNPs in piuA that result in expression of the identical 748-amino acid PiuA observed
in 1026b.

Examination of the CAZ, azithromycin (AZM), and gentamicin (GEN) MICs provided
information about other possible FDC resistance mechanisms. All strains from Australia
and Malaysia examined in this study are CAZ susceptible, which indicates that neither
PenA b-lactamase overexpression (27, 28) or critical amino acid mutations (27, 29), nor
PBP3 target mutations (30) contribute to their FDC resistance. For the nonresistant FDC
isolates from Australia, lack of PenA and PBP3 involvement in FDC resistance was sup-
ported by sequence analyses. Both 1026b and the Australian isolates lacked the G to A
mutation at position 278 in the penA upstream sequence that is required for increased
penA transcription in acquired CAZ resistance (28). Compared to 1026b, the Australian
isolates contain 1 synonymous and 1 nonsynonymous (C233T) SNP in penA. The nonsynony-
mous SNP causes the known S72F PenA mutation that results in increased amoxicillin 1

clavulanic resistance but not CAZ resistance (31, 32). A comparison of the pbp3 gene of
1026b (30) and the Australian strains revealed 2 synonymous SNPs in pbp3. Lastly, it should
be noted that the only slow growers in the 272 panel of global isolates that were tested for
FDC susceptibility were 4 isolates from the same Australian patient (24, 25). Three of these
isolates had elevated FDC MICs (8, 32, and 32 mg/mL) (Table 1), whereas one isolate exhib-
ited a low MIC (0.06mg/mL). These results indicate no direct relation between growth rate
and FDC MIC.

The FDC-susceptible 1026b (MIC # 0.03 mg/mL) and the FDC-resistant (MIC = 16 to
32 mg/mL) isolates from Australia, MSHR1464 and MSHR1713, are GEN and AZM resistant
due to AmrAB-OprA efflux pump activity (33). The FDC susceptibility of 1026b expressing
AmrAB-OprA indicates that FDC is not prone to efflux by this pump. This is comparable to
P. aeruginosa, where expression of MexAB-OprM had no significant effect on FDC activity

FIG 1 Genomic organization of B. pseudomallei piuA. The piuA gene is located on chromosome 2 where it
seemingly forms an operon with two other genes, II1276 (BP1026B_II1276) encoding a hypothetical protein
and II1277 (BP1026B_II1277) encoding a putative hydroxylase. Bp82 is an attenuated derivative of 1026b,
hence the use of 1026b gene nomenclatures and sizes. Bp82.498 was derived by deletion of 1,838 bp DNA
from within piuA.
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(16). It is of note that the FDC and GEN MICs in the more recent Australian strain MSHR7744
are different from the genetically related MSHR1464 and MSHR1713 isolates obtained
10 years earlier from the same patient. We do not yet understand the underpinnings for
these observations, but they may be due to the genetic evolution that is well documented
in B. pseudomallei isolates from this patient (24, 25). The 6 isolates from Malaysia are GEN
and AZM susceptible because they are AmrAB-OprA deficient due to a nonsynonymous
mutation within amrB (26).

In conclusion, our results confirm that the PiuA OM siderophore receptor plays a
crucial role in B. pseudomallei’s FDC uptake and increased resistance. Clinical resistant isolates
with MICs $16mg/mL identified in a published study (7) and our studies presented here
indicate the presence of additional resistance mechanisms that are not linked to resident
b-lactamase and PBP3 expression. Further investigation will provide valuable insights into
the possible application of FDC for the treatment of melioidosis.

Data availability. Genome assemblies that are new as part of this work were deposited
to GenBank under accession numbers: GCF_026315045.1 (MSHR1464); GCF_026315025.1
(MSHR1713); GCF_026315005.1 (MSHR7744); GCF_028201395.1 (MSHR5087); GCF_001980585.2
(MSHR5089); and GCF_027946755.1 (MSHR5091).
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