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ABSTRACT 

Excessive heavy metals discharge into the environment has become a great concern 

worldwide and needs an effective long-term solution. Melia azedarach tree is a member of 

the Meliaceae family and is used as a source of hard wood; however, the leaves and twigs 

are burnt due to lack of industrial applications. In this study, biomass from Melia azedarach 

leaves and twigs was used to prepare activated carbons via molten salt synthesis with ZnCl2 

as activator, for the removal of Cu(II), Pb(II) and Ni(II) ions from aqueous medium. Both 

activated carbons were characterised, evaluated for batch adsorption and fitness with the 

kinetic and isotherm models. The central composite design (CCD) was applied to optimise 

the removal of Cu(II), Pb(II) and Ni(II) by relating the mutual interactions of the factors 

including adsorbent dosage, initial metal concentration and contact time. The surface area of 

activated carbon from Melia azedarach leaves (121.592 m2g-1) and twig (91.423 m2g-1) was 

substantially larger than the feedstock leaves (1.02 m2g-1) and twigs (0.485 m2g-1). The batch 

adsorption from both activated carbons for Pb(II) and Ni(II) removal followed the Freundlich 

isotherm, while Cu(II) adsorption followed the Temkin isotherm. Applying central 

composite design in response surface methodology, the optimised removal efficiency for 

Cu(II), Pb(II), and Ni(II) using Melia azedarach leaves activated carbon as adsorbent was 

determined to be 98.63%, 99.52% and 88.18% respectively while optimised adsorption 

capacity was found to be 192.12 mgg-1, 170.94 mgg-1, 160.77 mgg-1. On the other hand, the 

optimised removal efficiency for Cu(II), Pb(II), and Ni(II) using Melia azedarach twigs 

activated carbon as adsorbent was found to be 99.66%, 95.05% and 97.53% respectively 

while optimised adsorption capacity was determined to be 172.32 mgg-1, 254.59 mgg-1, 

232.16 mgg-1 , optimised through central composite design in response surface methodology. 

The activated carbon derived from Melia azedarach biomass has demonstrated the capacity 
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to be a value-added product as an adsorbent capable of adsorbing heavy metals from aqueous 

medium. 

Keywords: Agricultural and horticultural wastes, biomass utilisation, green adsorbents, 

response surface methodology, water pollution 
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Melia azedarach Karbon Teraktif untuk Penyingkiran Logam Berat: Kajian Metodologi 

Permukaan Isoterma, Kinetik dan Gerak Balas 

ABSTRAK 

Pelepasan logam berat yang semakin meningkat ke alam sekitar telah menjadi kebimbangan 

besar yang memerlukan penyelesaian yang boleh dipercayai dan jangka panjang. Berikutan 

sintesis garam lebur dengan ZnCl2 sebagai pengaktif, biojisim daripada daun dan ranting 

Melia azedarach digunakan untuk menyediakan karbon teraktif untuk penyingkiran ion 

Cu(II), Pb(II), dan Ni(II) daripada medium akuas. Kedua-dua karbon teraktif telah 

dicirikan, dinilai untuk penjerapan kelompok, dan kesesuaian dengan model kinetik dan 

isoterma. Reka bentuk komposit pusat (CCD) digunakan untuk mengoptimumkan 

penjerapan kelompok dengan mengaitkan interaksi bersama faktor termasuk dos penjerap, 

kepekatan logam awal dan masa sentuhan. Luas permukaan karbon teraktif daun Melia 

azedarach (121.592 m2g-1) dan ranting (91.423 m2g-1) jauh lebih besar daripada daun (1.02 

m2g-1) dan bahan suapan ranting (0.485 m2g-1). Penjerapan kelompok oleh kedua-dua 

karbon teraktif untuk penyingkiran Pb(II) dan Ni(II) mengikuti isoterma Freundlich, tetapi 

penjerapan Cu(II) mengikuti isoterma Temkin. Pada pembolehubah proses yang 

dioptimumkan, penyingkiran optimum Cu(II) 99.50%, Pb(II) ialah 100%, dan Ni(II) ialah 

89.17% oleh karbon teraktif daun Melia azedarach. Manakala kapasiti penjerapan 

optimumnya didapati ialah 189.44 mgg-1 untuk Cu(II), 171.83 mgg-1 untuk Pb(II) dan 158.56 

mgg-1 untuk Ni(II). Dengan karbon teraktif ranting Melia azedarach, penyingkiran optimum 

ialah 99.50% Cu(II), 100% Pb(II), dan 89.17% Ni(II). Manakala kapasiti penjerapan 

optimum ranting Melia azedarach didapati 189.44 mgg-1 untuk Cu(II), 171.83 mgg-1 untuk 

Pb(II) dan 158.56 mgg-1 untuk Ni(II). Kajian ini penting kerana karbon teraktif yang 

diperoleh daripada biojisim Melia azedarach telah menunjukkan kapasiti untuk menjadi 
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produk nilai tambah sebagai penjerap yang mampu menyerap logam berat daripada 

medium akueus. 

. Kata kunci: Sisa pertanian, penggunaan biojisim, penjerap hijau, metodologi permukaan 

tindak balas, pencemaran air 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Study Background 

Heavy metals contamination of the surface and groundwater has rapidly become an 

environmentally growing worldwide issue and threatening to human health (Razak et al., 

2020). Sources of heavy metals contamination in the environment include industries like 

metallurgies, ceramics (Ngaini et al., 2021), paints, adhesives (Ghasemi et al., 2020), 

electroplating, mining, battery manufacturing (Wang & Wang, 2018), printing, fuels 

(Venkateswarlu et al., 2019), petroleum refineries, computer and television screens, roof and 

stained glass windows production (Kaya et al., 2020) and pesticides (Ullah et al., 2020). In 

addition to these, coal combustion and household wastes (Sen et al., 2018), typically contain 

significant amounts of metals with the potential to be poisonous, demanding extensive waste 

treatment (Adenuga et al., 2019).  

Heavy metals like copper, lead and nickel, can accumulate in living tissues through 

the food chain, which eventually: causing damage to biosphere (Razak et al., 2020). In 

humans, heavy metal poisoning can cause high blood pressure, nausea, vomiting, 

disorientation, liver failure, brain haemorrhage, heart and renal disorders (Amin et al., 2019). 

According to the United States Environmental Protection Agency (US-EPA), the maximum 

contamination level in drinking water for Pb(II) is 0.05 mgL-1 (Aboli et al., 2020) and 0.25 

mgL-1 for Cu(II) (Razak et al., 2020). While, based on World Health Organisation (WHO) 

guidelines, the limit for Ni(II) is 0.02 mgL-1 (Guo et al., 2020). In tandem to US-EPA 

guidelines, the permissible limits for Pb(II), Cu(II) and Ni(II) in wastewater are 0.01 mgL-1, 
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2.5 mgL-1 and 2 mgL-1 respectively (Biswas et al., 2019). In order to preserve a healthy 

ecosystem, it is necessary to treat the heavy metal contaminated wastewater, before being 

released into water bodies (Taşar & Özer, 2020). 

Several techniques have been employed for the removal of heavy metals from 

wastewater from either via physical (i.e. evaporation-condensation, reverse osmosis, 

membrane filtration) or chemical methods (i.e. ion exchange, chemical precipitation, solvent 

extraction) (Ibrahim et al., 2020). These traditional methods, nevertheless, have significant 

drawbacks (Herrera-Barros et al., 2020) such as solvent extraction restrictions, higher 

preparation costs, several phases involved and poor quality discharge (Adenuga et al., 2019; 

Crini & Lichtfzsouse, 2019). The coagulation and flocculation methods have several 

drawbacks, including insufficient heavy metal removal, high chemical use and increased 

sludge generation (Jin et al., 2020; Surendran & Baral., 2018). 

Chemical methods which involve chemical precipitation is a slow process involving 

different chemicals in large quantities; and huge amounts of sludge that needs further 

treatment (Sen et al., 2018; Zamora-ledezma et al., 2021). While, ion-exchange process 

involves high capital involvement and high operation cost, suitable for low concentrations 

only, highly sensitive to effluents pH and requires physiochemical pre-treatment to avoid 

damage to beads of organic matters (Adenuga et al., 2019; Siong et al., 2021). Meanwhile, 

the physical approaches, which involve a process based on membrane-based technologies, 

has several limitations such as high energy requirements, higher operation and maintenance 

costs, and limited flowrates (Siong et al., 2021; Wang et al., 2018). Electrochemical 

technologies involves huge capital investments, high operation costs due to electricity 
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supply; and ineffective at lower metal ion concentrations (Chen et al., 2020; Zamora-

ledezma et al., 2021).  

Adsorption is one of the versatile and efficient approaches often employed for the 

treatment of heavy metal-contaminated wastewater due to its operational simplicity, sludge-

free operation and adsorbent reusability in long-term applications (Cao et al., 2019). 

Commercial activated carbon has been utilised for decades due to its qualities including high 

surface area, adsorption capacity, ion selectivity, thermal stability, resistance to 

transportation losses, ease of activation and regeneration (Ghasemi et al., 2020). However, 

its high cost is the principal obstacle to the industrial application for wastewater treatment 

(Ansari et al., 2018). Therefore, it is worthwhile to conduct extensive research on the 

preparation of low-cost adsorbents with specific properties and their utilisation for the 

removal of various pollutants in aqueous media (Georgieva et al., 2020). Agricultural and 

horticulture waste materials render prospective adsorbents for heavy metals removal from 

wastewater and an economical alternate to comparatively expensive activated carbon with 

comparable qualities by utilising widely available free resources (Hashem et al., 2020). 

Adsorbents made from agricultural and horticulture wastes have been demonstrated to be 

fairly effective in extracting heavy metals from wastewater even at very low concentrations 

(Surendran & Baral, 2018).  

1.2 Melia azedarach 

Melia azedarach tree is found all over the world including Asia, Europe, north and 

south America however it is native to India, Pakistan, Australia and south east Asia (Majid 

et al., 2021). A few previous studies have utilised various parts of Melia azedarach biomass 


