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ABSTRACT 

The COVID-19 pandemic has affected countries worldwide, causing major disruptions in 

both health and economic systems. While lockdowns have been effective in controlling the 

spread of the virus, their negative impact on the economy has prompted the need for 

alternative, cost-balanced control measures. Contact tracing has emerged as a promising 

solution in identifying community outbreaks of COVID-19. To improve the efficacy of 

contact tracing, this study aimed to formulate a contact network model for COVID-19 

transmission. Conventional approaches were found to be inadequate in modelling the 

transmission of COVID-19, particularly in identifying the source of infection. To address 

this, the study utilized a bipartite network modelling approach to account for the 

heterogeneity of transmission routes, human hosts, and visited locations. The human host 

and visited location were identified as the two discrete entities in the research scenario. Using 

data from the Bintulu Health Office's contact tracing investigation forms, six network models 

were formulated. The link weight between the human host and location nodes was quantified 

using the summation rule, taking into consideration various factors such as environmental 

properties, building characteristics, human and pathogen characteristics, and transmission 

modes. The location and human nodes were then ranked using a web-based search algorithm 

based on their respective ranking values. The results of the study showed that the bipartite 

network modelling approach was successful in formulating the contact network model. 

Verification analysis revealed a root mean square error of 0.0002244 and 0.001419 for the 

location and human nodes, respectively, which were well within the threshold value of 0.05. 

The ranking between the target and validated models was found to have strong similarity 

with a good Spearman’s rank correlation coefficient of above 0.70 (p < 0.001), indicating a 

high degree of relevance in improving contact tracing for COVID-19. The study also found 
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that all parameters used in the model were relatively significant, and that the model had the 

ability to predict potential hotspots with 90% accuracy within a 600m radius for the 

subsequent week. These findings highlight the potential of the bipartite network modeling 

approach in improving contact tracing for COVID-19 and reducing the spread of the virus 

in high-risk areas. 

Keywords: Bipartite network modelling, COVID-19, hotspot, ranking 
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Mengenal pasti Titik Panas COVID-19 menggunakan Pendekatan Rangkaian Dwipartit 

ABSTRAK 

Pandemik COVID-19 telah menjejaskan negara di seluruh dunia, menyebabkan gangguan 

besar dalam kedua-dua sistem kesihatan dan ekonomi. Walaupun penguncian telah 

berkesan dalam mengawal penyebaran virus, kesan negatifnya terhadap ekonomi telah 

mendorong keperluan untuk langkah kawalan alternatif yang seimbang kos. Pengesanan 

kenalan telah muncul sebagai penyelesaian yang menjanjikan dalam mengenal pasti wabak 

komuniti COVID-19. Untuk meningkatkan keberkesanan pengesanan kenalan, kajian ini 

bertujuan untuk merumuskan model rangkaian hubungan untuk penularan COVID-19. 

Pendekatan konvensional didapati tidak mencukupi dalam memodelkan penularan COVID-

19, terutamanya dalam mengenal pasti punca jangkitan. Untuk menangani perkara ini, 

kajian itu menggunakan pendekatan pemodelan rangkaian dwipartit untuk mengambil kira 

kepelbagaian laluan penghantaran, hos manusia dan lokasi yang dilawati. Hos manusia dan 

lokasi yang dilawati dikenal pasti sebagai dua entiti diskret dalam senario penyelidikan. 

Menggunakan data daripada borang siasatan pengesanan kenalan Pejabat Kesihatan 

Bintulu, enam model rangkaian telah dirumuskan. Berat pautan antara hos manusia dan 

nod lokasi dikira menggunakan peraturan penjumlahan, dengan mengambil kira pelbagai 

faktor seperti sifat persekitaran, ciri bangunan, ciri manusia dan patogen, dan mod 

penghantaran. Lokasi dan nod manusia kemudiannya ditarafkan menggunakan algoritma 

carian berasaskan web berdasarkan nilai kedudukan masing-masing. Hasil kajian 

menunjukkan pendekatan pemodelan rangkaian dwipartit berjaya merumuskan model 

rangkaian kenalan. Analisis pengesahan mendedahkan ralat purata kuasa dua akar 

0.0002244 dan 0.001419 masing-masing untuk lokasi dan nod manusia, yang berada dalam 

nilai ambang 0.05. Kedudukan antara sasaran dan model yang disahkan didapati 
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mempunyai persamaan yang kukuh dengan pekali korelasi kedudukan Spearman yang baik 

melebihi 0.70 (p <0.001), menunjukkan tahap perkaitan yang tinggi dalam meningkatkan 

pengesanan kenalan untuk COVID-19. Kajian juga mendapati bahawa semua parameter 

yang digunakan dalam model adalah agak ketara, dan model itu mempunyai keupayaan 

untuk meramalkan potensi titik panas dengan ketepatan 90% dalam radius 600m untuk 

minggu berikutnya. Penemuan ini menyerlahkan potensi pendekatan pemodelan rangkaian 

dwipartit dalam meningkatkan pengesanan kenalan untuk COVID-19 dan mengurangkan 

penyebaran virus di kawasan berisiko tinggi. 

Kata kunci: Permodelan rangkaian bipartite, COVID-19, hotspot, kedudukan 
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CHAPTER 1  
 
 

INTRODUCTION 

1.1 Introduction 

Contact tracing is one of the pillars of control measures to contain the outbreak of 

infectious diseases (Eames & Keeling, 2003). Herein, identifying high-risk areas is crucial 

to the effectiveness of contact tracing. This study focused on high-risk areas of COVID-19 

transmission which can be denoted as hotspots or source of infection (Lessler et al., 2017). 

Many traditional approaches for contact tracing focused on the interaction between humans; 

however, the locations visited by the infected individuals are not factored. Moreover, 

conventional modelling, for instance, compartmental modelling, may not be suitable when 

integrating the spatial components because it is non-linear; hence, incorporating location or 

environmental properties becomes more complicated (Garnett, 2002; Nelson & Perelson, 

2002). Accordingly, there is a need to identify and use an appropriate approach to detect 

hotspots of COVID-19 transmission. 

The graph-theoretic network modelling approach that was recognised as a heuristic 

framework has the potential (Bunn, Urban & Keitt, 2000 in Liew, 2016, p. 1). Heuristics is 

a problem-solving technique that applies practical methods which do not promise an optimal 

solution but can generally produce solutions that are sufficient for practical use (Wahid & 

Hussin, 2016). This supports the present study to employ a bipartite network-based research 

methodology framework (BNM-RMF) (Liew, 2016) to address the research problem. To use 

that framework, the domain problem must be formulated into network models where the 

nodes and edges are well defined for location detection. The network structure is converted 

into a suitable format that can be used as input into the network model. Afterward, the model 
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is verified and validated, and analytical results were generated. It identifies the locations with 

high risks of COVID-19 transmission and rank those based on the estimated virus density. 

Such findings may serve an important cognizance for the authorities working on contact 

tracing and control measurements. 

This chapter discusses the background of the problem and presents the problem 

statement; research questions, objectives, scope, methodology and significance; and the 

thesis outline. 

1.2 Background of the Study 

The first case of COVID-19 was reported in Wuhan, China, in December 2019. 

Accordingly, China notified the outbreak to the World Health Organization (WHO) as 

pneumonia of unknown aetiology. The virus had been identified as a novel coronavirus 

(2019-nCoV) and further named COVID-19 on 11 February 2020. Chinese government’s 

attempts to contain the virus have failed, and it rapidly spread across the globe due to the 

high volume of air traffic and insufficiency of control measures. As many countries were 

already affected by the outbreak, WHO declared it as a pandemic on 11 March 2020, 3 

months after the first case was reported. According to an investigation, the origin of the 

pathogen of COVID-19 was from a bat (Jiancheng Zhang et al., 2020) and escalate to the 

human population. COVID-19-infected individuals can transmit the virus directly and 

indirectly. Direct transmission involves, whereas indirect transmission includes airborne and 

fomite means (WHO, 2020). In addition, mass gathering, especially religious gathering 

events, is the main cause of outbreak in many countries (Ebrahim & Memish, 2020; Jeong 

et al., 2020; Mat et al., 2020). In Malaysia, the second wave of the outbreak originated from 

a Muslim Tablighi event in Sri Petaling, Selangor, on 27 February 2020. This event consists 

attendees from many countries, which amplifies the transmission (Mat et al., 2020; Dass et 
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al., 2021). Moreover, this event became the cause of infection in Malaysia and other 

countries in Southeast Asia. Consequently, a nationwide lockdown had been implemented 

in Malaysia on 18 March 2020, named Movement Control Order, and slowed down the 

outbreak at that time (Gill et al., 2020). This Movement Control Order caused a huge impact 

on Malaysia’s economy. To curb the outbreak, control measures such as contact tracing, 

early detection of potential infection and quarantine are vital to limit the transmission (Xiao 

& Torok, 2020). 

Contact tracing is a disease surveillance approach to obtain the possible transmission 

path by identifying the person who may have contact with an infected person. The main 

purpose of contact tracing is to break the current transmission chain (WHO, 2017). Contact 

tracing has been proven effective and widely used in several communicable diseases, i.e. 

droplet-transmitted diseases such as SARS, Middle East respiratory syndrome (MERS) and 

H1N1 (Shankar et al., 2014; Kwok et al., 2019); airborne-transmitted diseases such as 

tuberculosis and measles (Begun et al., 2013; Thole et al., 2019); and sexually transmitted 

diseases such as HIV/AIDS (Hyman et al., 2003). The common characteristic of the 

abovementioned diseases is that they transmit via close contact; thus, contact tracing can 

identify the index patient and the possible exposed individuals and avoid the disease from 

spreading further. Besides, some studies of vector-borne diseases such as dengue and malaria 

are using contact tracing (Kok, 2017; Vazquez-Prokopec et al., 2017). Those studies focused 

on the location the patient visited to identify the place of infection. 

Generally, the contact tracing will be initiated when a patient is admitted to a hospital 

or a public health officer received a notification. The public health officer will interview the 

patient to obtain the contact and activity history. After identifying the close contacts, they 

will be asked to be home quarantined if they are identified as low risk; otherwise, they will 
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be referred to isolate in a hospital if they are categorised as high risk (WHO, 2017). The 

procedure mentioned is a manual contact tracing because it requires human resources to 

interview patients and trace their activities. The cost of manual contact tracing is high in 

terms of manpower and human lead error. The needed activity and contact history of the 

patient is up to 14 days (MOH, 2020); thus, patients tend to forget their activity/contact 

history, which will affect the efficiency of the procedure. To address the issues of manual 

contact tracing, a digital approach has been introduced. Digital contact tracing will make use 

of a mobile application to capture the activity and contact history of every citizen. This 

approach has been used in many countries during the COVID-19 pandemic (Jalabneh et al., 

2020). According to Jalabneh, 15 countries developed a mobile application to conduct 

contact tracing, which showed the importance of this approach in controlling the spread of 

COVID-19. The application will collect several personal information such as name, age and 

post-code, with some applications further recording global positioning system (GPS) and 

Bluetooth contact data. 

However, early transmission studies did not well integrate the contact tracing data 

collected manually or digitally because they focused on the prediction of outbreaks and 

simulation of the epidemic curve (Gill et al., 2020; Kucharski et al., 2020; Shen et al., 2020; 

Wu et al., 2020). These studies used the conventional approach to formulate a mathematical 

model, assuming the population is well-mixed. Due to this assumption, the model is difficult 

to incorporate with the mobility data (contact tracing) heterogeneously. Some studies 

considered the contact rate among the population distinctive based on age group (Prem et 

al., 2020; Zaplotnik et al., 2020; Juanjuan Zhang et al., 2020). These studies are beneficial 

in implementing control measures, i.e. school closing, work from home, or public place 

closure. Nonetheless, these studies are focused on the macro-level of the population, that is, 
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the national level, wherein contact tracing data were not utilised. In addition, transmission 

of the disease became complex when it involves transmission route, physical properties of 

the sites, human behaviour and characteristics of the pathogen (Killingley & Nguyen‐

Van‐Tam, 2013; Sze-To et al., 2014). These factors highly affect the stability of the 

pathogen of COVID-19. It is found viable for more than 1 day on the surface of an object 

(Bueckert et al., 2020; Chin et al., 2020) and in the air (Ahlawat et al., 2020; Anderson et al., 

2020; van Doremalen et al., 2020), resulting in onerous tracing of COVID-19 transmission 

compared with other diseases and difficulties in employing conventional approaches. 

Although other approaches, i.e. partial differential equation, agent-based modelling, or deep-

learning approaches, may solve this issue, these are non-linear and of high dimension and 

need more computational power (Cheng et al., 2003). Somehow, the outputs generated from 

deep-learning approaches lack sense, making it hard for decision-makers to interpret (Zohuri 

& Moghaddam, 2020). 

Recent researchers utilised network modelling approaches to address the limitations 

of the abovementioned approaches for the epidemiology domain (Eubank et al., 2004; 

Eubank, 2005; Eze et al., 2011; Gao et al., 2016; Kok et al., 2017). The network modelling 

approach originated from graph theory, which is a study to identify the relationship between 

the vertices and edges (Pavlopoulos et al., 2011; Gao et al., 2018). Any problems that can be 

simplified into vertex and edge are suitable for graph theory use. In terms of contact tracing, 

researchers used network modelling approaches to identify the transmission clusters between 

individuals (Eames & Keeling, 2003; Kiss et al., 2008; Begun et al., 2013). Eames and 

Keeling (2003) highlighted the effectiveness of the network model utilised with real-life data 

to identify the disease clusters, promptly eliminate the outbreak and reduce the burden on 

health resources. Although Begun et al. (2013) claimed that data on the effect of individual 
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behaviours and location visited by the close contacts are required to improve the efficacy of 

contact tracing, however, most of the network modelling of COVID-19 studies focused on 

the transmission between humans rather than their locations (Benlloch et al., 2020; 

Karaivanov, 2020; Xue et al., 2020). This is because formulating a contact network for 

human-to-human transmission is more convenient (Danon et al., 2011). 

The lack of a location component in the contact network makes the study of indirect 

transmission of diseases insufficient, especially for vector-borne and airborne diseases 

(Danon et al., 2011). As the host and location are discrete components, researchers employed 

a bipartite network model (BNM) to incorporate these into a contact network. Early studies 

of BNM focused on the interaction between the host and location in the network by 

examining the network properties such as node degree, centrality and connectivity (Ancel 

Meyers et al., 2003; Eubank et al., 2004). Although these studies only emphasise the network 

properties of BNM, they provided insights for other studies to use BNM in identifying the 

risk of infection for a host and the risk of transmission for a location. Eze et al. (2011) 

adopted BNM to create a contact network for malaria transmission and successfully replaced 

the mosquito node with a location node. The location node quantified by Eze et al. integrated 

the environmental properties of a location with the behaviour of mosquitoes such as life 

cycle, survival rate and biting rate. According to this study, a mosquito normally flies within 

a certain distance from a particular location; hence, the location node is more suitable in the 

network instead of the mosquito node. Similarly, Kok et al. (2017) used BNM to identify the 

hotspot of dengue in Malaysia by integrating the human mobility into the network. Both of 

these studies demonstrate the capability of BNM to address vector-borne diseases. One of 

their contributions is resolving the issue raised by Pellis et al. (2015), that is, to merge the 


