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Preface 

Welcome to the proceedings of the Seventh International Conference on Soft 

Computing in Data Science (SCDS 2023). SCDS 2023 was a virtual conference co-

hosted by China’s Baoji University of Arts and Sciences. ‘Science in Analytics: 

Harnessing Data and Simplifying Solutions’ was the conference’s theme. SCDS 2023 

aimed to provide a knowledge-sharing platform for Big Data Analytics and Artificial 

Intelligence theory and applications. Big Data Analytics enables businesses to better 

leverage data for data-driven decisions and AI for optimal performance. The world is 

shifting toward automation and innovation through Artificial Intelligence. Experts in 

https://doi.org/10.1007/978-981-99-0405-1


 

industry are capitalizing on emerging technologies such as artificial intelligence, big 

data, and cloud computing. 

Thepapersintheseproceedingsaddressissues,challenges,theory,andnovelapplication

sofbigdataanalyticsandartificialintelligence,includingbutnotlimitedtoArtificial 

Intelligencetechniquesandapplications,ComputingandOptimization,DataMiningand 

Image Processing, and Machine and Statistical Learning. 

In the advanced society of the twenty-first century, knowledge and technology on 

Big Data and Artificial Intelligence must be transferred to industrial applications and 

used to solve real-world problems that benefit the global community. Collaborations 

between academia and industry in research can result in novel, innovative computing 

applications that enable real-time insights and solutions. 

We are thrilled to have received paper submissions from a diverse group of national 

and international researchers this year. We received 61 paper submissions, with 31 of 

them being accepted. The SCDS 2023 review process was double-blind. All accepted 

submissions were assigned to at least two independent reviewers to ensure a rigorous, 

thorough, and convincing evaluation process. The review process included 15 

international and 30 local reviewers. The conference proceeding volume editors and the 

Springer CCIS Editorial Board made the final acceptance decisions, with 24 of the 61 

submissions (39.34%) published in the conference proceedings. 

We would like to express our gratitude to the authors who submitted manuscripts 

to SCDS 2023. We appreciate the reviewers taking the time to read the papers. We 

gratefullyacknowledgeallconferencecommitteemembersfortheirvaluabletime,ideas, 

and efforts in ensuring the success of SCDS 2023. We would also like to thank the 

Springer CCIS Editorial Board, organizations, and sponsors for their ongoing support. 

We sincerely hope SCDS 2023 has provided a forum for sharing knowledge, publishing 

promisingresearchfindings,andformingnewresearchcollaborations.Wehopeeveryone 
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took something away from the Keynote and Parallel Sessions and enjoyed interacting 

with other researchers via this virtual conference. 
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Discovering Popular Topics of Sarawak Gazette
(SaGa) from Twitter Using Deep Learning

Nur Ain Binti Nor Azizan, Suhaila Binti Saee(B),
and Muhammad Abdullah Bin Yusof

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
{68283,21020459}@siswa.unimas.my, ssuhaila@unimas.my

Abstract. The emergence of social media as an information-sharing platform
is progressively increasing. With the progress of artificial intelligence, it is now
feasible to analyze historical document from social media. This study aims to
understandmore about howpeople use their socialmedia to share the content of the
Sarawak Gazette (SaGa), one of the valuable historical documents of Sarawak. In
the study, a short text of Tweet corpus relating to SaGawas built (according to some
keyword search criteria). The Tweet corpus will then be analyzed to extract the
topic based on a topic modeling, specifically, Latent Dirichlet Allocation (LDA).
Then, the topics will be further classified with Convolutional Neural Network
(CNN) classifier.

Keywords: Topic modeling · Twitter analysis · Sarawak Gazette

1 Introduction

The introduction of newmedia such asTwitter, TikTok,Youtube, and Instagram impacted
how society started sharing information. The Twitter platform, for instance, is widely
used by people as it focuses on communication and virtual community-based network
[5].

Some people shared historical context in their Tweets and comments with different
aims, such as educating and reminiscing memories [10]. With so many user-generated
posts, social media offers an extensive environment to learn about past and ongoing
events significant to the flow of history. As there is seamless sharing, it is now possi-
ble to analyze historical content from social media with the advancement of artificial
intelligence.

There are many considerable amounts of research that have been done to extract
history-oriented content data fromsocialmedia. [10] usedmachine learning to conduct an
extensive comprehensive analysis of history-oriented content in microblogs to examine
the peculiarities of tweets about history. Be that as it may, there is a low amount of studies
done on Malaysian historical documents. This study will be using Sarawak Gazette as
a medium for historical documents to understand historical document-oriented content
in social media.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Yusoff et al. (Eds.): SCDS 2023, CCIS 1771, pp. 178–192, 2023.
https://doi.org/10.1007/978-981-99-0405-1_13
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The study aims to build a short-text corpus of SaGa from Twitter and discover the
pattern of popular topics from the corpus. It gathers information to preserve and immerse
one’s memories in society and participation in the historical subject in their social media;
in this case, SaGa. As a result, researchers can examine how people refer to the past,
why such connections emerge, and what functions they provide.

2 Related Works

2.1 Data Acquisition

In recent years, several types of research have been conducted that focus on discovering
a certain topic from the Twitter corpus. However, from the collections of similar articles,
only a few of them attempted to come across the historical topics [3, 10] or past events
topics [9]; [13].

Several of the notable publications assessed use history-related and topic-modeling
Twitter analysis, in which Tweets are examined using keywords or hashtags that have
the historical context or a certain topic as features. A few relevant studies also jumped
straight to the process and did not define the data acquisition procedure.

Most of the reviews of the literature focus on how academics used Twitter API as
a data-collecting tool. The study from [3] analyzed Twitter profiles for the important
historical events Tweet: – the 2nd Spanish Republic, The Spanish Civil War, and the
Franco Regime. The research utilized Twitter API. Twitter provides a free Application
Programming Interface (API), which is very useful to retrieve and analyze Twitter data
programmatically and develop for the Twitter conversation. In addition to that, a tech-
nological aid, the tool t-hoarder kit_2, was employed. It is open-source software that
allows developers to build and analyze Twitter data, making it easier to utilize in the
analysis and data visualization.

In the study, [10] conduct an extensive comprehensive analysis of history-oriented
content on Twitter to examine the peculiarities of Tweets about history. The research
also utilized Twitter API. To collect the data from Tweets that imply history-oriented
content and collective memories of previous events/entities, they apply hashtags-based
crawling and a bootstrapping technique.

The first step involves defining seed hashtags selected by experts such as #history
and hashtags that refer to past events such as #historical events. All of the selected
hashtags were selected by historian choices and then queried to collect Tweets. All the
tags linked to the seed hashtags were then collected and reviewed manually to ensure
that the hashtags were indeed related to history. Finally, 147 collected hashtags were
attained along with 2370252 Tweets.

2.2 Feature Extraction

Term Frequency times Inverse Document Frequency (TF-IDF) is a standard measure of
how dense the frequency of a specific term is in several documents. It is commonly used
to re-weight feature count in order to reduce the effect of more frequent but less valuable
words while increasing the influence of rarer but more significant terms [15]. [7] use TF
IDF to obtain the weight for terms in the Tweets document for the data structure.
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The bag-of-wordsmodel was used inNLP processing and information retrieval in the
past. The grammar and sentence structure will be ignored, and a phrase can be perceived
or represented as bags of words.

Text-term Matrix will then be used to look for instances of specific words in the
collection of words to comprehend the document based on its most important terms.
Tokenization in [2] usesBoW for feature extraction inNMFmodel. [1] also utilizedBoW
in preprocessing by constructing the model on W (tokenized terms of each document)
and V (a corpus of terms with frequency).

2.3 Different Approaches in Topic Modeling

Rule-based is usually used for text classification. [11] describe ruled-based to any cate-
gorization technique that uses IF-THEN features for class prediction. For example, [14]
utilized rule-based classification on Tweets to identify the topic in Tweets regarding
HPV vaccination.

One of the popular machine learning topic models used to extract topics from a text
corpus is Latent Dirichlet Allocation (LDA). According to [8], The ‘latent’ term refers
to something hidden or not fully formed. It creates probabilities of topics and words
categorized into documents.

A study by [9] in 2016 applied the LDA model. The LDA setting was experimented
on to create a more useful and cohesive topic and transpired. It is also worth noting that
all retrieved topics were linked to the event described in the data.

According to the subjective analysis of the findings, LDA can derive extensive
insights from the data. It retrieved all of the important event elements, such as the par-
ticipants, geographic location, and how the event. For example, in the Gikomba dataset,
topic 0: ‘bomb’ and ‘blast’ give initial insights into the bombing.

2.4 Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)

[12] present a supervised NTM (Topic Attention Model) with a Recurrent Neural Net-
work (RNN). They demonstrate a unique approach to using document-specific (long text)
topic modeling with a global topic vector obtained from NTM. In addition, they cre-
ated a backpropagation inference that optimized combined models. TAM has improved
learning tasks, such as regression and classification, and produced less ambiguity for
document modeling.

RNNeffectively retains the local patterns of a text string- both semantic and syntactic,
but they struggle with long-range dependencies. [4] designed an RNN-based language
model:- TopicRNN that uses latent topics to capture the semantic information of a text
document.

There is two evaluation of performance for the methodology: word prediction and
sentiment analysis. Penn TreeBank (PTB), a traditional benchmark for evaluating a
new language model, was used for word prediction, while 1MDB 100k was used for
sentiment analysis. They also utilized RNN (TopicRNN), LSTM (TopicLSTM), and
GRU(TopicGRU).

In the same study by [4], TopicRNN was trained with various network sizes. [1]
utilized data from the USA and offer a five layers adaptive approach to follow the
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trending topics of health on Twitter. The supervised approach is used as Convolutional
Neural Network (CNN) to categorize and label the Tweets. Because the approach also
used the word2vec model, it collects the correlation of words depending on the context,
which improves the run time, prediction, and accuracy of Tweet tracking.

Tweepy, a python tool to collect Tweets, was used in the first layer. The cleaning
and preparation procedures are detailed in the second layer, which changed Tweets into
vectors. Word2vec was used in the third layer that turned the vector into a matrix used
to initialize a neural network to predict the tagged Tweet. CNN classifier was then used
in the fourth layer to label undetected Tweets fromWord2Vec. Unlabeled data was then
sent into the LDA model at the fifth layer, where new topics might be produced. The
CNN model will be retrained for both the topics and Word2Vec.

2.5 Evaluation

There must be assessments of results for the study to be clear and logical. These tests
were carried out to see how well the algorithms used in the research performed. The
topic coherence analysis and the precision, recall, and F1 measurements evaluated the
outcomes. It was also utilized to analyze the models to achieve accurate performance.

Train-test split is splitting the data into two parts, the first part is to sit or train the data
using the algorithm, and the other part is to test and assess the accuracy of the data. Typical
topic modeling such as LDA, LSA, and NMF did not rely on training data. But deep
learning topic modeling approaches usually use train-test split for assessment reasons.
For example, [4] also utilized a train-test split. The methodology, the TopicRNN, was
initially tested on a word prediction task utilizing the Penn Treebank (PTB) component
of the database. The Wall Street Journal is a newspaper published in the United States.
The normal split is applied, with Sections. 0–20 (930K tokens) being used. Sections 21–
22 (74K tokens) are for training, Sections. 23–24 (82K tokens) are for validation, and
Sections. 23–24 (82K tokens) are for testing.

Calculating accuracy, precision, recall, and f-score are also vital. Precisionwas calcu-
lated to quantify the prediction of the class that belongs to the class, and recall quantifies
the number of the class predictions made from all the datasets, fl-score was measured
to provide a single score that stabilizes both the concerns precision and recall in one
number. This type of evaluation will be useful if the algorithm used is the supervised
algorithm.

In Nugruho et al. 2016, after the topic extraction and topic coherence evaluation,
they evaluate the Tweet-topic accuracy by comparing the result of a manually labeled
training dataset andmeasuring the precision (P) and recall (R) usingF-score. Thefindings
depicted that LDA outperforms NMF in terms of topic coherence.

[1] uses the confusion metrics of accuracy (1), recall (2), precision (3), and F1-score
(4) to evaluate the results. In order to compare and contrast the suggested system, to
predict and tag new Tweets, SVM and CNN algorithms were used. Unfortunately, both
approaches have limitations due to the imbalanced datasets (Fig. 1).
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Fig. 1. Pipeline overview.

3 Methodology

This studywill analyze the popular topics of the SarawakGazette fromTwitter. It consists
of 4 phases. Phase 1: Data acquisition and preparation, Phase 2: Topic Modelling, Phase
3: Classification, and finally, Phase 4: Evaluation.

The first phase is data acquisition and preparation. This phase is partitioned into two
processes:- Data acquisition and data preprocessing. The study utilized a web crawler
to extract the Tweets related to SaGa to create a short text corpus of Tweets, and then
the acquired Tweets will be cleaned and normalized in the data preprocessing process.
The Tweet acquired are dated from January 1, 2011, to December 31, 2021, and written
in English.

Phase 2 is the deployment of the topic modeling to extort the relevant topic. Phase 2
is sectioned into two parts. The first part is feature extraction and the second part is, topic
modeling with Latent Dirichlet Allocation (LDA). The study deployed TF-IDF as the
feature extraction technique which merely entails running through the provided corpus
once and computing document frequencies for all of its attributes. The LDA model was
built with Gensim and the results were visualized by using pyLDAvis.

Phase 3 is the classification, where the Convolutional Neural Network (CNN) clas-
sifier will be used to predict the recurring topics from the Tweets. Finally, the fourth
phase is where the confusion metric (accuracy, precision, recall, and f1-score) will be
calculated and used as an evaluation method.
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3.1 Data Acquisition and Data Pre-processing

An online free web crawler was utilized to extract the Tweets related to SaGa. Phan-
tombuster is a cloud-based data extraction platform that scrapes important data from
many social media websites to assist organizations in automating sales and advertising
activities.

The Tweets will be collected by an online web crawler, Phantombuster, by feeding
themwith a list of relevant keywords from SaGa. The Tweets will be presented in a CSV
file to ease the tasks after the tweet extraction.

The Tweets acquired are dated from January 1, 2011, to December 31, 2021.
(10 years). Most of the Tweets obtained are in English because the study is gathering
all Tweets from worldwide. This data collection activity generates unstructured Tweets
that must be preprocessed. The first step is to crawl the selected keywords through Phan-
tombuster. Tweets containing the queried keywords were fed into the crawler. [2] and
[6] also utilized search using keywords in data collection method.

The study implemented keyword frequency analysis. The keywords are chosen from
the e-Sarawak gazettewebsites, theKuching in Pictures 1841–1946 byHoAhChong and
Sarawak Historical Event 1946–1960 by the same author. The three sources of keywords
were named Document A, Document B, and Document C.

The study creates two types of search term sets: hashtags and strings. The search
terms, which serve as the crawler’s feed list, are provided in English and some Malay
words. Table 1 displays the SaGa Feed list of keywords to crawl through Phantombuster.
The hashtags were chosen as they depicted the most straightforward keywords; for
example, #sarawakhistory is related closely to the historical context of Saga. In keyword
frequency analysis, the keywords with a minor frequency were removed and replaced
with new keywords with a better frequency. 51 keywords were finalized (Table 1).

Table 1. Keywords and frequencies

Keywords Frequency in
document A

Frequency in
document B

Frequency in
document C

Total

#sarawakhistory 0 0 0 0

#sejarahsarawak 0 0 0 0

Sarawak history 0 0 0 0

Sarawak gazette 9 12 3 24

Abang Haji Mustapha 0 2 2 4

Anthony Abell
Sarawak

0 1 4 5

Anthony Brooke 2 2 2 6

anti cession Sarawak 0 4 13 17

Battle of North Borneo 0 0 0 0

Batu Lintang Camp 0 3 12 15

(continued)
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Table 1. (continued)

Keywords Frequency in
document A

Frequency in
document B

Frequency in
document C

Total

British Borneo 3 0 2 5

Brooke’s government 3 1 0 4

Brooketon colliery 6 0 0 6

Bujang Suntong 0 0 13 13

Charles Arden Clarke 0 1 7 8

Charles brooke 11 31 0 42

Charles Vyner Brooke 2 19 1 22

council negri Sarawak 18 43 33 94

Crown colony of
Sarawak

0 0 6 6

Diocese of Labuan and
Sarawak

0 0 0 0

Duncan Stewart
sarawak

0 0 7 7

Dyaks 6 1 0 7

Fort Margherita 1 6 1 8

Ibans Sarawak 2 4 17 23

Japanese occupation
Sarawak

0 8 5 13

Kuching Market Price
List

126 0 0 126

liberation of kuching 0 0 0 0

Malay National Union 0 1 4 5

Malaya-Borneo 0 0 0 0

Parti Komunis Malaya 0 0 0 0

pergerakan pemuda
melayu

0 0 3 3

Perjanjian Malaysia
1963

1 0 0 1

Perjanjian Persekutuan 0 0 0 0

pieces from the brooke
past

1 0 0 1

Rajah of Sarawak 49 357 73 479

Ranee of Sarawak 4 28 2 34

(continued)
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Table 1. (continued)

Keywords Frequency in
document A

Frequency in
document B

Frequency in
document C

Total

rosli dhoby 0 0 41 41

sarawak headhunter 0 0 0 0

Sarawak library 39 0 0 39

Sarawak Museum 14 10 0 24

Sarawak north borneo 8 9 1 18

Sarawak Ranger 1 11 4 16

Sarawak regatta 11 0 2 13

Sarawak Supreme
Council

4 15 18 37

Sarawak Volunteer
Force

4 5 1 10

Sumpitan 1 0 0 1

suruhanjaya cobbold 0 0 0 0

the cobbold comission 0 0 0 0

Tun Sir Henry H.S. Lee 0 0 0 0

white rajah 2 14 1 17

Prince Philip 2 15 0 17

upper Rejang 4 1 0 5

Cession Sarawak 38 125 101 264

Malaya Patriotic Fund 63 3 0 66

Rajah muda Sarawak 1 20 1 22

Charles Brooke
Memorial

11 2 0 13

Sarawak turf club 63 3 0 66

Brooke Rule 0 11 5 16

Betram Brooke 0 12 1 13

Sarawak Union 7 0 1 8

Astana 7 51 22 80

Kayan 2 11 8 21

Rajah muda Sarawak 1 20 2 23

For the Phantombuster’s setup, the first step is connecting to Twitter. Then the SaGa
feedlist saved in the spreadsheet in google drive was used to scrape the Tweets. Phantom-
buster is non-case sensitive; thus, the inconsistency of each capital or lower letter would
not affect the crawling process. The behavior is the limit of Tweets that the study aimed
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to scrape. Meanwhile, the setting was set so that the process was done automatically and
repeated eight times per day.

The Data Acquisition process has yielded 11435 Tweets saved in a CSV file named
SaGaTweets. Taking the precedent research of [1], the study randomly checked the
acquired Tweets and removed the unrelated and insignificant Tweets to get more
meaningful data. Data preprocessing involves three processes which are removing
punctuation, tokenizing, and removing stopwords.

3.2 Topic Modeling with Latent Dirichlet Allocation

The study utilized the feature extraction technique Term Frequency-Inverse Document
Frequency (TF-IDF). In TF-IDF, feature extraction merely entails running through the
provided corpus once and computing document frequencies for all of its attributes.

After TF-IDF, Latent Dirichlet Allocation (LDA) topic modeling was applied. Mod-
els.TfidfModel function was used to create a model with six topics, one of which is a
collection of terms, each of which provides a particular amount of weight to the topic.
In LDA, the study initiated six topics, each with ten generated terms.

After developing the LDA model, the study needs to analyze the generated topics
and related keywords. There is no better tool than the interactive chart in the pyLDAvis
package, designed to function effectively with Google Colaboratory. The output of the
LDA model is displayed in pyLDAvis.

To discover the ideal number of topics, the study creates numerous LDA models
with varying numbers of topics (k) and selects the one with the highest coherence value.
Choosing a ‘k’ that represents the end of a fast increase in topic coherence typically
yieldsmeaningful and interpretable topics. The optimal number of topicswith the highest
coherence value is six. Six topics were chosen considering that the dataset the study used
is small. This can be regarded as the optimal number of topics to summarise the corpus.
[1, 7, 9] also find the optimal topic number with topic coherence score.

3.3 Classification

One utilization of topic modeling is determining the topic of a given text. To do so,
the study looks for that document’s subject number with the largest topic percentage
contribution. To identify the main topic in each Tweet, the study defined a new function
and compared the dominant topic and its percentage contribution.

Before the classification procedure began, the dataset was divided into 80% for
training and 20% for testing. The study has an 80:20 data splitting ratio on 4301 data,
the train size would be 3440, and the test size would be 861. The first step in CNN to
search for specific characteristics or patterns in the Tweets is to employ a pre-defined
word embedding from the library. There are several open-source embeddings available;
the study has utilized Word2Vec.

Then using the Keras model, the study inserted the input layers linked to convolu-
tional layers, which conduct several jobs such as padding, striding, kernel operation,
etc. This layer is regarded as a building block of convolutional neural networks. The
filter/kernel is then slid over these embeddings to discover convolutions, which are then
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dimensionally lowered using the Max Pooling layer to reduce complexity and process-
ing. Finally, there are entirely linked layers and an activation function on the outputs that
will provide values for each class. The dense was set to 2 as the study has two topics.

3.4 Evaluation

The evaluation for the study utilized the sparse categorical cross-entropy (scce) function
to generate a category index of the most probable matched category. There are three
convolutional layers with kernel sizes 32, 64, and 128. The model is trained for 30
epochs or passes over 300 batch records of the training data. The study also employed
the efficient Adam-Optimizer implementation to calculate the weights of stochastic
gradient descent and measured accuracy and loss during training.

Then, the classification report is started with a confusion matrix, thus exploiting the
function from sklearn.metrics and importing confusion_matrix and classification_report.
The Confusion Matrix has two parameters: test and projected data values. The results
display the precision, recall, f1-score, and support for all four topics.

4 Results

The results of the study can be divided into three analyses. The first one is the data
analysis which involves the Tweets acquired during Phase 1. The study collected 11435
Tweets using 51 keywords and chose 4301 total Tweets for the study to be saved as the
raw data. After going through a preprocessing phase, the Tweets are safely conserved in
a CSV file and saved as a short text corpus.

Table 2. The topics and the keywords

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

rosli british record charles regatta rosli

dhobi makam retrieve white library dhoby

sarawak masjid kayan kuching fort sarawak

duncan pahlawan sarawak rajah margherita melayu

sibu borneo kilau brooke state pergerakan

stewart kayan rentap sarawak colony union

rukun sarawak trial british drama malaya

gabenor surat cinta rajahs sarawak borneo

gantung sabah kenyah vyner kuching pemuda

The second analysis is the topic modeling results. After running the LDA model in
implementation, the study verified that the LDA findings could determine the event and,
in some cases, important figures and give some important information about the event
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Fig. 2. The wordcloud visualization of the Topic and its keywords.

through manual examination of the obtained topics. The topics and the keywords were
listed in Table 2 (Fig. 2).

The third analysis is the result analysis. The study used Convolutional Neural Net-
work (CNN) as a model for classification. Four metrics of the confusion matrix are used
to assess classification results: accuracy, recall, precision, and Fl-score. The study found
that the accuracy of the model is considerably low at 68% because of the inconsistencies
that happened when two languages were mixed.

Fig. 3. Topics and frequencies.

Using the LDA model, the study also automates the model to label the dataset with
its dominant topic Fig. 3. Displays the count plot for the distribution of the topic. Tweets
labeled with Topic 3 have the highest distributed topic compared to other topics.
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The model for classification used is Convolutional Neural Network (CNN). Four
metrics are used to assess classification results: accuracy, recall, precision, and Fl-score.
Precision reflects the classifier’s preciseness and refers to the number of linked predicted
topics. Recall indicates how many accurate records are predicted, and F-scores define
the harmonic average of precision and recall (Table 3).

Table 3. Four metrics to assess classification results

Topic Precision Recall F1-score

0 0.71 0.53 0.61

1 0.38 0.41 0.40

2 0.51 0.39 0.44

3 0.78 0.90 0.84

4 0.64 0.49 0.55

5 0.67 0.74 0.70

Accuracy 0.68

Macro average 0.61 0.58 0.59

Weighted average 0.67 0.68 0.67

The dataset is imbalanced since 330 of the 861 instances are from Topic 3. (38% of
the dataset). As a result, the predictor generally always classifies every given sample as
belonging to Topic 3, achieving high precision and recall and F1-score for Topic 3 and
lower scores for other topics.

5 Discussion

Overall, the study aims to understand more about how people use their social media to
share the content of theSarawakGazette (SaGa), one of the valuable historical documents
of Sarawak. By the completion of the study, three proposed objectives had been met,
and the contributions of the study had also been addressed.

A list of tweets was crawled, varying from 2011 to 2021. Using 51 specific keywords,
the study yielded considerably large Tweets amount from a variety of Twitter users
worldwide. After going through a preprocessing phase, the Tweets are safely conserved
in a CSV file and saved as a short text corpus. This corpus may be useful for future
references. These Tweets offer public thoughts on Sarawak Gazette and assist us to
discover how people perceive certain topics. After a manual observation, most of the
Tweets related to SaGa were in picture format. Instead of writing in text, people chose
to snip a part of the gazette and did not describe it more. Most Tweets also use a direct
link to external websites on SaGa.

Latent Dirichlet Allocation (LDA) was used as a topic modeling approach. After
running the model, the study specified six topics, each with ten generated terms. The
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study can infer that Topic 0 relates to the event of Duncan Stewart’s assassination as the
keywords contain terms such as ‘duncan’, ‘stewart’, ‘sibu’, ‘rosli’, and’dhobi’. Topic 1
and Topic 2 is quite unclear, but some keywords suggest that they might be on funeral
and important historical figures. Topic 3 can be associated with Brooke’s rule in Sarawak
as it has terms such as ‘sarawak’, ‘brooke’, and ‘rajah’. Additionally, the study deduced
that Topic 4 mostly related to places in Sarawak.

The study demonstrated that theLDAfindings could determine the event, and in some
instances, significant figures mentioned in SaGa, and provide some relevant information
about the event by manually analyzing the retrieved topics. Furthermore, Convolutional
Neural Network (CNN) was used as the classifier to evaluate the model.

The classification method was further evaluated with a confusion matrix. The con-
fusion matrix is utilized to calculate the accuracy of the deep learning algorithm in
categorizing the data into its corresponding topics. The result shows that the model has
a low accuracy result due to the mix of English and Malay languages.

One of the limitations is inadequate language resources. Because the study involves a
mix of English and Malay Tweets, which include both official and informal word usage,
it is difficult to find relevant work and appropriate dictionaries to utilize in the study. For
example, adequate Malay stopword libraries and Malay embedding. Another limitation
involves the insufficiency of SaGa resources online. The text version of SaGa cannot
be found online, and the official websites only show the scanned version, with a few
missing issue numbers.

6 Conclusion

This study has used Sarawak Gazette as a medium for historical documents to under-
stand more about historical document-oriented content on Twitter. On the final note,
three objectives were met by the end of the study. The first one is building a short-text
corpus of SarawakGazette fromTwitter. Next, predicting the topic used in Twitter related
to Sarawak Gazette using deep learning goals has also been met. Third, the study evalu-
ated the predicted topic’s accuracy using standard measure metrics. Although all of the
study’s recommended methodologies produced considerable results, the experiment has
its limitations, including the restricted capabilities of the model as there were inadequate
Malay language library resources and SaGa resources.

The objective of enhanced text conceptualization can be reached in the future by
improving automation. Topic modeling can increase the likelihood of uncovering latent
topical patterns across the collection. In the future, the study may also use another topic
modeling, such as Latent Semantic Analysis and Non-Negative Matrix Factorisation
(NNMF), and compare the results to LDAs’. This would assist in enhancing the quality
of topic modeling since they allow us to assess alternative models from both an overall
and subject-specific perspective. Furthermore, instead of only using topic coherence
to find the optimal topic number, it is feasible for the study to utilize NMI and topic
coherence combined as done by [7]. Another thing that can be considered is the new
search method using image searching, as most of the Tweets related to SaGa were in
picture format.
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