

Optimization of Factors affecting Chemical Oxygen Demand Reduction from Palm Oil Mill Effluent using Anaerobic Digestion

Eugene Anak Jackson Joy

Master of Engineering 2023

Optimization of Factors affecting Chemical Oxygen Demand Reduction from Palm Oil Mill Effluent using Anaerobic Digestion

Eugene Anak Jackson Joy

A thesis submitted In fulfilment of the requirements for the degree of Master of Engineering (Mechanical and Manufacturing Engineering)

> Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2023

DECLARATION

I hereby declare that this thesis is original write-up from my research. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. The thesis has not been accepted for any degree, and not concurrently submitted in candidature of any other degree.

Name:Eugene Anak Jackson JoyMatric No.:17020150Faculty of EngineeringUniversiti Malaysia Sarawak

Date:

ACKNOWLEDGEMENT

First and foremost, I am grateful to God for providing me with good health and wellbeing that were necessary to complete this thesis. I gratefully acknowledge the support and guidance from my supervisor, Professor Dr M. Shahidul Islam, supported by two other co-supervisors, Dr Shirley Johnathan Tanjong and Associate Professor Dr Syed Tarmizi Syed Shazali. Especially my main supervisor, without his thoughtful encouragement and careful supervision, this thesis would never have taken shape.

I would like to thank my family for their endless support in terms of physical, emotional, and financial. Without their support and encouragement, I would not be able to complete this research. I would like to express my gratitude to my wife, Pamella for her support and understanding throughout my studies. With a special mention to my research fellows (YB Malcolm Mussen, Mamunur, Nazmus, Finnegan and Petrus), academic staff, and technicians from the Engineering Faculty. Completing this work would have been more difficult were it not for their help.

Finally, I would like to express my sincere appreciation to Bau Palm Oil Mill (BAPOM) and its staff for allowing us to collect samples to conduct this research. Also, I am thankful for the support of State Ministry of Agriculture, Sarawak for providing the grant (GL/F02/ORSSG/2016) to conduct this work. Special thanks to the Centre for Graduate Studies (CGS) for their assistance during my studies in UNIMAS. I would like to thank Mechanical and Manufacturing Engineering Department for their support and giving me this opportunity to undertake this research.

ABSTRACT

This thesis was the outcome of a research conducted on chemical oxygen demand (COD) of palm oil mill effluent (POME) which focused on improving the performance of an anaerobic reactor. This study has addressed COD in POME as the problem to be solved and accordingly, this research was designed to reduce COD level in POME before POME it was discharged to the environment. The study aimed to optimize the factors that affect COD reduction from POME, and it was divided into three specific objectives: (1) determine the significant factors affecting COD reduction from POME, (2) determine the impact of manipulating variables on COD reduction from POME and (3) determine the optimum value of factors that contribute to COD reduction from POME. The novelty of this research was using C/N enriched inoculum from banana peel in a two-stage anaerobic reactor to determine its effects on COD reduction performance of POME A two-stage fermentation process and 350 L lab-scale reactors were used to treat POME. Five input factors were used which include pH, C/N, organic loading rate (OLR), hydraulic retention time (HRT), and sludge retention time (SRT). The Design Expert software was used for data analysis. The research findings found that the significant factors were pH, C/N, and OLR with p-values of 0.0001, 0.0227, and 0.0001 respectively. HRT and SRT also contributed to COD reduction although their contributions were not significant (p>0.05). The impact of these five factors was able to contribute up to 80% COD reduction and the lowest value of COD reduction contributed by these five factors is 57%. The findings in surface response diagrams revealed the optimum value of factors that affect COD reduction; 6.5 for pH, 26 for C/N, 8.5 kg/d.m³ for OLR, 7 days for HRT, 13 days for SRT, and 77% for COD reduction. The developed model was validated, and the results gave an average error within 6.72% and standard deviation error of 3.79%. In this study, banana peel which would normally be discarded upon consumption was used as inoculum to adjust the C/N to prepare substrate with POME. The findings demonstrated that the addition of banana peel achieved COD reduction up to 77%. Thus, this study justified that further research on POME should be done using different types of substrate and other contributing factors to achieve higher COD reduction from POME.

Keywords: Optimization, chemical oxygen demand reduction, palm oil mill effluent, anaerobic reactor, anaerobic digestion

Pengoptimuman Faktor yang mempengaruhi Pengurangan Permintaan Oksigen Kimia dari Efluen Kilang Kelapa Sawit menggunakan Pencernaan Anaerobik

ABSTRAK

Tesis ini adalah hasil kajian yang dilakukan terhadap permintaan oksigen kimia (COD) efluen kilang kelapa sawit (POME) yang memfokuskan pada peningkatan prestasi reaktor anaerobik. Kajian ini telah menangani COD di POME sebagai masalah yang harus diselesaikan dan dengan demikian, penyelidikan ini dirancang untuk mengurangkan tahap COD di POME sebelum POME dilepaskan oleh kilang. Kajian ini bertujuan untuk mengoptimumkan faktor-faktor yang mempengaruhi pengurangan COD dari POME dan ia dibahagikan kepada tiga objektif khusus: (1) menentukan faktor-faktor penting yang mempengaruhi pengurangan COD dari POME, (2) menentukan kesan manipulasi pemboleh ubah terhadap pengurangan COD dari POME dan (3) tentukan nilai optimum faktor yang menyumbang kepada pengurangan COD dari POME. Keberkesanan dalam penyelidikan ini adalah menggunakan inokulum diperkaya C/N dari kulit pisang dalam reaktor anaerob dua peringkat untuk menentukan kesannya terhadap prestasi penurunan COD POME Proses penapaian dua peringkat dan reaktor skala makmal 350 L digunakan untuk merawat POME. Lima faktor input digunakan termasuk pH, C/N, laju pemuatan organik (OLR), waktu pengekalan hidraulik (HRT), dan waktu penahan lumpur (SRT). Reka bentuk perisian eksperimen (DOE) digunakan untuk analisis data. Hasil kajian mendapati bahawa faktor yang signifikan adalah pH, C/N, dan OLR dengan nilai p masing-masing 0.0001, 0.0227, dan 0.0001. HRT dan SRT juga menyumbang kepada pengurangan COD walaupun sumbangannya tidak signifikan (p>0.05). Kesan daripada lima faktor ini dapat menyumbang kepada pengurangan COD sehingga 80% dan nilai pengurangan COD terendah yang disumbangkan oleh lima faktor ini adalah 57%. Penemuan dalam gambarajah tindak balas permukaan menunjukkan nilai optimum faktor yang mempengaruhi pengurangan COD; 6.5 untuk pH, 26 untuk C/N, 8.5 kg/d.m3 untuk OLR, 7 hari untuk HRT, 13 hari untuk SRT, dan 77% untuk pengurangan COD. Model yang dibangunkan disahkan dan hasilnya memberikan ralat rata-rata dalam 6.72% dan ralat sisihan piawai 3.79%. Dalam kajian ini, kulit pisang yang biasanya akan dibuang apabila dimakan digunakan sebagai inokulum untuk melaraskan C/N untuk menyediakan substrat dengan POME. Penemuan menunjukkan bahawa penambahan kulit pisang mencapai pengurangan COD sehingga 77%. Oleh itu, kajian ini membenarkan bahawa penyelidikan lebih lanjut mengenai POME harus dilakukan dengan menggunakan pelbagai jenis substrat dan faktor penyumbang lain untuk mencapai pengurangan COD yang lebih tinggi dari POME.

Kata kunci: Pengoptimuman, pengurangan permintaan oksigen kimia, efluen kilang minyak sawit, reactor anaerob, pencernaan anaerobik

TABLE OF CONTENTS

		Page
DEC	CLARATION	i
ACI	KNOWLEDGEMENT	ii
ABS	STRACT	iii
ABS	STRAK	v
TAI	BLE OF CONTENTS	vii
LIS'	T OF TABLES	XV
LIS'	T OF FIGURES	xvi
LIS'	T OF ABBREVIATIONS	xviii
LIS	T OF NOMENCLATURE	xix
CH	APTER 1 : INTRODUCTION	1
1.1	Study Background	1
1.2	Problem Statement	4
1.3	Research Question	5
1.4	Research Hypothesis	6
1.5	Research Objective	6
1.6	Scope of Study	6

1.7	Organization of Thesis	8
CHAI	PTER 2 : LITERATURE REVIEW	10
2.1	Chapter Overview	10
2.2	Objectives of the Literature Review	10
2.3	Strategic Focus on Studying Literature Review	10
2.4	Source of Palm Oil Mill Effluent Generation	11
2.5	Impacts of Palm Oil Mill Effluent on Environment, Health, and Economy	12
2.6	Anaerobic Digestion of POME for COD Reduction	12
2.6.1	Hydraulic Retention Time in POME Digestion	13
2.6.2	Sludge Retention Time in POME Digestion	13
2.6.3	Carbon-to-Nitrogen in POME Digestion	14
2.6.4	Organic Loading Rate in POME Digestion	15
2.6.5	Chemical Oxygen Demand	16
2.6.6	Biochemical Oxygen Demand	16
2.7	Anaerobic Biodegradation to Recover Resources from POME	24

2.7.1	Hydrolysis for POME Digestion	24
2.7.2	Acidogenesis for POME Digestion	25
2.7.3	Acetogenesis for POME Digestion	26
2.7.4	Methanogenesis for POME Digestion	27
2.8	Substrate from Banana Peel for Anaerobic Digestion	28
2.9	Effect of Contributing Factors on Performance of Anaerobic Digestion	30
2.9.1	Effect of pH on POME Digestion	30
2.9.2	Effect of C/N on POME Digestion	30
2.9.3	Effect of OLR on POME Digestion	31
2.9.4	Effect of HRT on POME Digestion	32
2.9.5	Effect of SRT on POME Digestion	33
2.10	Current Technology for Anaerobic Digestion	34
2.10.1	Up-flow Anaerobic Sludge Blanket-Hollow Centre Packed Bed Reactor	34
2.10.2	High-Rate Continuous Stirred Tank Reactor	36
2.10.3	Expanded Granular Sludge Bed Reactor	38

2.10.4 Suspended Closed Anaerobic Reactor	39
2.10.5 Anaerobic Hybrid Reactor and Anaerobic Baffled Reactor	41
2.10.6 Anaerobic Sludge Blanket-Continuous Stirrer Tank Reactor	43
2.10.7 Two-Stage Thermophilic Fermentation and Mesophilic Methanogenic Process	44
2.10.8 Combined High-Rate Anaerobic Reactor	46
2.10.9 Up-flow Anaerobic Sludge Blanket Reactor	48
2.10.10 Up-flow Anaerobic Sludge Blanket and Expanded Granular Sludge Bed Reactors	49
2.10.11 Up-flow Anaerobic Sludge Blanket Reactor	50
2.10.12 Up-flow Anaerobic Sludge Blanket Reactor	51
2.10.13 Thermophilic Continuous Stirred Tank Reactor	52
2.10.14 Membrane Anaerobic System	53
2.10.15 Carrier Anaerobic Baffled Reactor	54
2.10.16 Semi-Continuous Stirred Tank Reactor	56
2.10.17 Ultrasonic Membrane Anaerobic System	57

2.10.1	8 Two-Stage Anaerobic Digestion Process	59
2.11	Process Optimization of POME Digestion	60
2.11.1	Roles of Microorganisms in Digestion Process	61
2.11.2	Mathematical Model on Production Optimization	61
2.11.3	Central Composite Design on Production Optimization	63
2.11.4	Fundamental of CCD	63
2.11.5	Benefit of Using CCD in Experiment Design	64
2.11.6	Response Surface Methodology on Production Optimization	65
2.12	Research Gap Analysis and Chapter Summary	67
CHA	PTER 3 : RESEARCH METHODOLOGY	71
3.1	Overview of Research Methodology	71
3.2	Research Design for Achieving Research Objectives	71
3.2.1	Research Design for Achieving Specific Objective Two	73
3.2.2	Research Design for Achieving Specific Objective Three	73
3.3	Anaerobic Reactor Start-up	75

3.4	Feedstock Preparation	75
3.5	Sample Collection and Analysis	76
3.5.1	Chemical Oxygen Demand Analysis	76
3.5.2	Volatile Suspended Solids Analysis	76
3.5.3	pH Analysis	76
3.5.4	Total Solids Analysis	77
3.5.5	Carbon-to-Nitrogen Analysis	77
3.6	Research Variables	78
3.6.1	Optimization of Inputs on COD Reduction	78
3.6.2	Experimental Runs and Order	81
3.6.3	Design of Experiment for Production Optimization	82
CHAI	PTER 4 : RESEARCH FINDINGS AND DISCUSSION	85
4.1	Introduction	85
4.2	Determination of Significant Factors affecting COD Reduction from POME	85
4.2.1	Critical Discussion on Model Developed	87

4.2.2	Scenario Analysis on Significant Factors affecting COD Reduction	88
4.2.3	Conclusion and Answer to Research Question for Objective One	91
4.3	Determination of Impact of Manipulating Variables on COD Reduction	91
4.3.1	Impact of pH on COD Reduction	91
4.3.2	Impact of C/N on COD Reduction	92
4.3.3	Impact of OLR on COD Reduction	93
4.3.4	Impact of HRT on COD Reduction	94
4.3.5	Impact of SRT on COD Reduction	95
4.3.6	Scenario Analysis on Impact of Manipulating Variables on COD Reduction	96
4.3.7	Conclusion and Answer to Research Question for Objective Two	97
4.4.	Determination of Optimum Value of Factors that Contribute to COD Reduction from POME	n 98
4.4.1	Relationship between Independent Variables and COD Reduction	98
4.4.2	POME Digestion Process Modelling	103
4.4.3	Model Estimate	105

4.4.4	Model Validation with Input Factors	107
4.4.5	Conclusion and Answer to Research Question for Objective Three	108
CHAI	PTER 5 : CONCLUSION AND RECOMMENDATION	110
5.1	Chapter Overview	110
5.2	Conclusion of Study	110
5.3	Limitations of Study	111
5.4	Recommendations for Future Study on POME	112
REFERENCES		113
APPE	APPENDICES	

LIST OF TABLES

Table 1.1	CPO Production in Malaysia for 2018 and 2019	1
Table 1.2	Properties of POME	2
Table 2.1	Previous Research on HRT, SRT, C/N and OLR	18
Table 2.2	Properties of Banana Peel	29
Table 2.3	Summary of Research Findings for POME Treatment	68
Table 3.1	Characterization of Feedstock	75
Table 3.2	Experimental Range and Levels of Independent Variables	80
Table 3.3	Experimental Runs	81
Table 4.1	Correlation Model of Factors in COD Reduction from POME	87
Table 4.2	Optimum Values of Inputs and Output	103
Table 4.3	Coefficient Estimate of the Linear Regression Model	106
Table 4.4	Model Validation with Inputs Factors	108

LIST OF FIGURES

Figure 1.1	Structure of Report	8
Figure 2.1	Schematic Representation of Anaerobic Biodegradation	
Figure 2.2	Design of UASB-HCPB Reactor	35
Figure 2.3	Diagram of a CSTR	37
Figure 2.4	Schematic Diagram of EGSB	38
Figure 2.5	Schematic Diagram of SCAR	40
Figure 2.6	Schematic Diagram of AHR-ABF	42
Figure 2.7	Schematic Design of UASB-CSTR	43
Figure 2.8	Schematic Diagram of Two-stage Hydrogen and Methane	45
	Process	
Figure 2.9	Schematic Diagram of AHR, ABF and ADF	47
Figure 2.10	Experimental Setup of UASBR	48
Figure 2.11	Experimental Setup of MAS	53
Figure 2.12	Schematic Diagram of CABR	55
Figure 2.13	Schematic Diagram of SCSTR	56
Figure 2.14	Experimental Setup of UMAS	58
Figure 2.15	Experimental Setup of CSTR	59
Figure 2.16	Input-Output Optimization	62
Figure 3.1	Lab-scale Reactor	74
Figure 3.2 (a)	Carbon and Nitrogen Contents of POME and Inoculum	77
Figure 3.2 (b)	'Goal Seek' Function	78
Figure 4.1	Data Distribution of COD Outputs	86

Figure 4.2	COD Reduction Process	96
Figure 4.3	Response Surface Diagram of pH, C/N and COD Reduction	99
Figure 4.4	Response Surface Diagram of C/N, OLR and COD Reduction	99
Figure 4.5	Response Surface Diagram of OLR, HRT and COD Reduction	100
Figure 4.6	Response Surface Diagram of HRT, SRT and COD Reduction	101
Figure 4.7	Response Surface Diagram of SRT, pH and COD Reduction	101
Figure 4.8	Conceptual Model of POME Digestion	104
Figure 4.9	Distribution of Actual and Predicted Data on COD Reduction	107

LIST OF ABBREVIATIONS

BOD	Biochemical Oxygen Demand
C/N	Carbon-to-Nitrogen Ratio
CCD	Central Composite Design
СРО	Crude Palm Oil
COD	Chemical Oxygen Demand
CV	Coefficient of Variation
DOE	Design of Experiment
GHG	Greenhouse Gas
HRT	Hydraulic Retention Time
MLSS	Mixed Liquor Suspended Solid
MLVSS	Mixed Liquor Volatile Suspended Solid
OLR	Organic Loading Rate
рН	Potential of Hydrogen
POME	Palm Oil Mill Effluent
RSM	Response Surface Methodology
SRT	Sludge Retention Time
TS	Total Solid
TSS	Total Suspended Solid
VFA	Volatile Fatty Acid
VIF	Variance Inflating Factor
VS	Volatile Solid
VSS	Volatile Suspended Solid
WTE	Waste-to-Energy

LIST OF NOMENCLATURE

Variable	Description	Unit
t	Time	Day or hour or second
V	Volume	m ³ or L
Q	Flow rate	m³/hr
Xi	Mixed liquor suspended solids	mg/L
Qx	Excess biosolids removal rate	m ³ /d
X _x	MLSS in the excess biosolids flow	mg/L
W	Volatile solid weight	kg
C	Organic carbon content	g/kg VS
Ν	Nitrogen content	g/kg VS
COD	Chemical oxygen demand	kg COD/m ³

CHAPTER 1

INTRODUCTION

1.1 Study Background

This thesis is an outcome of a research conducted to reduce chemical oxygen demand (COD) of palm oil mill effluent (POME). This work is experimental research which was conducted at operations research laboratory of Universiti Malaysia Sarawak (UNIMAS) by collecting raw POME from Bau palm oil mill. Two state anaerobic digester was operated with banana peel inoculum to decompose COD of POME. Optimization model was used for conducting research in reducing COD from POME.

The oil palm industry is a major agro-industry in Malaysia and is developing as one of the country's important industries. Malaysia is behind Indonesia in terms of the largest producer of this vegetable-based oil. Table 1.1 shows the production of crude palm oil (CPO) in the year 2018 and 2019 (MPOB, 2018, 2019).

Months	2018 ('000 tonnes)	2019 ('000 tonnes)
January	1,586	1,737
February	1,342	1,544
March	1,574	1,672
April	1,558	1,649
May	1,525	1,671
June	1,332	1,510
July	1,503	1,740
August	1,620	1,821
September	1,853	1,842
October	1,964	1,795
November	1,845	1,538
December	1,808	1,333

Table 1.1: CPO Production in Malaysia for 2018 and 2019 (MPOB, 2018, 2019)

It is reported that the plantation of oil palm amounted to 5.90 million hectares of land in 2019, a rise of 0.9% from 5.85 million hectares reported in 2018 (MPOB, 2018, 2019). 26.9% of the total Malaysian oil palm planted area is in Sarawak, while Sabah and Peninsular Malaysia accounted for 26.2% and 46.9% respectively.

In the extraction of CPO and other products, a hazardous effluent is produced known to be POME. The properties of POME are listed in Table 1.2.

Parameter	Average value concentration
Chemical oxygen demand (mg/L)	51000
Biochemical oxygen demand (mg/L)	25000
pH	4.2
Total suspended solids (mg/L)	18000
Total volatile solids (mg/L)	34000
Oil and grease (mg/L)	4000–6000
Ammoniacal nitrogen (mg/L)	35
Total nitrogen (mg/L)	750

Table 1.2: Properties of POME (Zainal et al., 2017)

Untreated POME is acidic in nature and contains an oily residue. The presence of oxygen is required to breakdown the oily mixture which is known as biochemical oxygen demand (BOD). Occasionally, the BOD of untreated POME is hundredfold of that of municipal wastewater (Madaki & Seng, 2013). Raw POME is made up of 95–96% water, less than 5% of total solids, and oil and grease. The production of 1 tonne of CPO produces about 1.0–2.5 m³ of POME (Ahmad et al., 2015; Jefferson et al., 2016). The temperature of POME when it enters the cooling pond is about 80–90°C. Although POME is a non-toxic effluent, it has an unpleasant odour which can cause nuisance to the neighbourhood of the mills (Chan & Chong, 2019).

Various anaerobic technologies are being used by palm oil mills to treat POME. The common types of anaerobic bioreactors used in treating POME include anaerobic fluidized bed-reactor (AFBR), anaerobic sequencing batch reactor (ASBR), continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB), up-flow anaerobic filtration (ABF), up-flow anaerobic sludge blanket (UASB), and up-flow anaerobic sludge fixed film (UASFF) reactors (Poh & Chong, 2009; Ahmad et al., 2015). Due to the advancement in bioprocess engineering, various strategies had been undertaken to improve yields and efficiencies of bioreactors. This has led to the development of new types of reactors such as advanced anaerobic expanded granular sludge bed (AnaEG), anaerobic membrane reactor (AnMBR) and up-flow anaerobic sludge blanket-hollow centred packed beds (UASB-HCPB) (Choong et al., 2018; Aziz et al., 2019). According to Aziz et al. (2019), AnaEG, AnMBR and UASB-HCPB are still in the early stages and further research is required on their operational conditions and effectiveness in treating POME.

Information published on POME related to COD indicates that it is one of the top listed pollutants responsible to damaging water resources and greenhouse gas emission. It was also reported that the performance of anaerobic reactor with higher concentration of carbon-to-nitrogen (C/N) would be significantly higher compared to the traditional COD reduction process (Nurliyana et al., 2015; Raman et al., 2019). On this background, the COD of POME get priority to be reduced before it discharges to water bodies and environment. However, the fundamental theme of this study was to increase the performance of COD reduction from POME by the aid of a two-stage CSTR and C/N enriched inoculum.