Wastewater Treatment Aerobic Granular Sludge Technology

Wastewater discharge from agro-based industrial sector contribute to water pollution if not properly treated. Water pollution give a negative impact to the live of aquatic ecosystem and environment which cause serious and prolong consequences. Agro-industrial wastewater that contains high organic pollutant need to be treated in order to create clean and safe environment. One of the advance treatment methods is aerobic granular sludge (AGS) technology which offer simple separation between solid and liquid due to high settling abilities. If you want to know more, you should have this book as a quideline for the treatment of wastewater from rubber processing industry.

NOOR HASYIMAH ROSMAN (PhD) is a Senior Lecturer at the Department of Civil Engineering and an Associate Fellow of the Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia. Her expertise is in the areas of Aerobic Granular Sludge Technology, Environmental Engineering, Wastewater Treatment and Sustainable Environment. INAWATI OTHMAN (PhD) is a Lecturer at the Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), and a fellow of UNIMAS Water Centre (UWC). Prior to her academic position, she spent almost 3 years in industry. Her principal research interests are in the areas of wastewater treatment, bio-granulation technology, environmental engineering and water quality. HASNIDA HARUN (PhD) is a Senior Lecturer at the Department of Civil Engineering Technology and a Principal Researcher of a Focus Group for Advanced Environment Engineering and Green Technology (AEEGTECH), Faculty of Engineering Technology, Universiti Tun Hussein Onn. Her expertise is in the areas of Environmental Engineering and Green Technology. Active in writing books and research journals, especially in the field of wastewater engineering treatment technology and sustainable environment.

Wastewater Ireatment Aerobic Granular

Aerobic Granular Sludge Technology

Nastewater Treatme

NOOR HASYIMAH ROSMAN INAWATI OTHMAN HASNIDA HARUN **Wastewater Treatment**

Wastewater Treatment: Aerobic Granular Sludge Technology

Noor Hasyimah Rosman Inawati Othman Hasnida Harun

Penerbit Universiti Kebangsaan Malaysia Bangi • 2022 http://ukmpress.ukm.my Cetakan Pertama / First Printing, 2022 Hak Cipta / Copyright Universiti Kebangsaan Malaysia, 2022

Hak cipta terpelihara. Tiada bahagian daripada terbitan ini boleh diterbitkan semula, disimpan untuk pengeluaran atau ditukarkan ke dalam sebarang bentuk atau dengan sebarang alat juga pun, sama ada dengan cara elektronik, gambar serta rakaman dan sebagainya tanpa kebenaran bertulis daripada Penerbit UKM terlebih dahulu.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopy, recording, or any information storage and retrieval system, without permission in writing from Penerbit UKM.

> Diterbitkan di Malaysia oleh / *Published in Malaysia by* PENERBIT UNIVERSITI KEBANGSAAN MALAYSIA 43600 UKM Bangi, Selangor Darul Ehsan, MALAYSIA http://ukmpress.ukm.my e-mel: penerbit@ukm.edu.my

Penerbit UKM adalah anggota / is a member of the MAJLIS PENERBITAN ILMIAH MALAYSIA / MALAYSIAN SCHOLARLY PUBLISHING COUNCIL PERSATUAN PENERBIT BUKU MALAYSIA / MALAYSIAN BOOK PUBLISHERS ASSOCIATION No. Ahli / Membership No. 198302

Atur huruf oleh / *Typeset by* PENERBIT UNIVERSITI KEBANGSAAN MALAYSIA 43600 UKM Bangi, Selangor Darul Ehsan, MALAYSIA

Dicetak di Malaysia oleh / *Printed in Malaysia by* PEWARIS GEMILANG SDN. BHD No. 27G, Jalan Putra 8, Taman Kajang Putra, 43000 Kajang, Selangor Darul Ehsan, MALAYSIA.

Perpustakaan Negara Malaysia

Data Pengkatalogan-dalam-Penerbitan / *Cataloguing-in-Publication Data*

Contents

List of Tables & Figures ... 7 List of Abbreviations ... 13 List of Symbols ... 15 Preface ... 17

- CHAPTER 1 Malaysia's Economy of Rubber Industry ... 19
- CHAPTER 2 Rubber Industry Leads to Revenue Earners
 - and Agro-based Sector ... 24
- CHAPTER 3 Granulation Technology ... 35
- CHAPTER 4 Advancement, Production and Process of Aerobic Granular Sludge ... 64
- CHAPTER 5 Treatment of Rubber Processing Wastewater
 - Using Sequencing Batch Reactor (SBR) ... 86
- CHAPTER 6 Effect of Cycle Time on Characteristics
- and Performance of Aerobic Granules ... 106
- CHAPTER 7 Challenge and Future Perspective ... 154

Appendices ... 159 References ... 179 Index ... 219

List of Tables & Figures

- TABLE 2.1Published data on characteristics of natural rubberprocessing wastewater ... 29
- TABLE 2.2Elemental and metal concentrations in rubberprocessing effluent $\dots 30$
- TABLE 2.3The performance of various studies for rubberprocessing wastewater treatment ... 32
- TABLE 3.1Nutrient removal treatment using aerobic granularsludge ... 55
- TABLE 3.2List of bacteria found in aerobic granules from
various studies ... 56
- TABLE 3.3Studies of aerobic granular sludge formation for
various types of industrial wastewater ... 58
- TABLE 4.1Outcomes of characterization of wastewater from
rubber processing factory ... 65
- TABLE 5.1Operating parameters in a SBR system ... 91
- TABLE 5.2Operating parameters of SBR system for formation
of aerobic granular sludge ... 94
- TABLE 5.3Detailed operational conditions of the reactorsystem ... 95
- TABLE 6.1Physical characteristics of aerobic granular sludge at
different cycle times ... 114
- TABLE 6.2Domain distribution of seed sludge and aerobicgranular sludge (AGS) ... 128
- TABLE 6.3Top 15 of the identified bacteria species from seedsludge and aerobic granular sludge (AGS) ... 138

8 / Wastewater Treatment: Aerobic Granular Sludge Technology

- TABLE 6.4EPS producing bacteria involved in granulationprocess identified from the seed sludge (SS) and
aerobic granular sludge (AGS) ... 141
- TABLE 6.5Potential bacteria for biodegradation process identified
from the seed sludge (SS) and aerobic granular
sludge (AGS) ... 143
- TABLE 6.6Content and composition of extracted sludge EPS at
different cycle times ... 146
- TABLE 6.7Fluorescence spectral parameters of the sludge EPS
specimen (seed sludge and AGS: aerobic granular
sludge) at various cycle times ... 152
- FIGURE 2.1 Flow diagram of crumb rubber processing ... 26
- FIGURE 3.1 Sequencing batch reactor (SBR) design principles ... 38
- FIGURE 3.2 Proposed mechanism of aerobic granulation in SBR ... 39
- FIGURE 3.3 Schematic illustration of layered structure of aerobic granular sludge ... 52
- FIGURE 4.1 Microscopic images of peripheral morphology during the development of aerobic granular sludge. Photos were taken using stereo microscope (magnification: 6.7×). The images show (a) Seed sludge, (b) Sludge flocs formed after three weeks, (c) Small brown granules appeared after seven weeks and (d) Mature granules after twelve weeks of operation. Aerobic granular sludge formed at the end of the experiment possessed a non-uniform spherical shape and compact structure (Scale bar equals 1 mm) ... 68

- FIGURE 4.2 Variation of biomass concentrations in SBR for 90 days. (●) MLSS concentration; (□) MLVSS concentration ... 70
- FIGURE 4.3 Variation of sludge volume index in SBR and settling velocity of granules from the start-up period till the end of the experiment. (♦) SVI; (□) Settling velocity ... 72
- FIGURE 4.4 SEM analyses of the outer morphology of (a) seed sludge with a comparatively feathery structure at a magnification of $100 \times$ and (b) aerobic granular sludge surface with dense microbial composition at a magnification of $25 \times ... 74$
- FIGURE 4.5 SEM examinations of cocci-shaped bacteria linked to one another on aerobic granular sludge surface (Magnification: 10,000×) ... 75
- FIGURE 4.6 Scanning electron micrograph of aerobic granular sludge developed using rubber processing wastewater indicating clusters of cocci colonies called staphylococci on granule surface (Magnification: 5000×) ... 76
- FIGURE 4.7 The surface of the granule is layered with some glue-like substances that keep the bacteria to link one another (Magnification: 25,000×) ... 78
- FIGURE 4.8 (a) Multiple cavities that appear on granule surface (Magnification: 5000×) and (b) Cavity found on aerobic granular sludge developed using rubber processing wastewater resembling a channel-like structure (Magnification: 2500×) ... 79

10 / Wastewater Treatment: Aerobic Granular Sludge Technology

- FIGURE 4.9 Profile of COD removal performances in the SBR system within 96 days. (•) Influent concentration; (○) effluent concentration; (△) percentage removal ... 81
- FIGURE 4.10 Profile of TN removal performances in the SBR system within 96 days. (•) Influent concentration;
 (•) effluent concentration; (Δ) percentage removal ... 83
- FIGURE 4.11 Profile of TP removal performances in the SBR system within 96 days. (•) Influent concentration; (○) effluent concentration; (△) percentage removal ... 84
- FIGURE 5.1 Inquiry frameworks of the study ... 87
- FIGURE 5.2 The SBR used for aerobic granular sludge development using rubber processing wastewater ... 89
- FIGURE 5.3 A schematic representation diagram of the SBR set-up ... 90
- FIGURE 5.4 Raw rubber processing wastewater specimen from the settling compartment ... 92
- FIGURE 5.5 Pictures taken during the seed sludge sampling:
 (a) Signboard of domestic wastewater treatment plant
 Taman Angkasa, JKI039, (b) A fresh activated sludge taken from an aeration tank ... 93
- FIGURE 6.1 Profile of biomass concentrations at different cycle times ... 108
- FIGURE 6.2 Images analysis of aerobic granular sludge cultivated in SBR run at the cycle times of 3 (a), 6 (b) and 12 (c) hours. (Magnification: 6.7×; scale bar: 1 mm) ... 112

- FIGURE 6.3 Bacteria morphology on the granules surface examined by SEM from (a) 3 h cycle time at a magnification of 10,000×, (b) 6 and (c) 12 h cycle times at a magnification of 25,000×, after 96 days operation ... 118
- FIGURE 6.4 Particle size histogram of the aerobic granules from three different cycle times (3, 6 and 12 h), at the end of the operation ... 120
- FIGURE 6.5 COD removal performances in the aerobic granular sludge reactor at different cycle times ... 121
- FIGURE 6.6 TN removal performances in the aerobic granular sludge reactor at different cycle times ... 123
- FIGURE 6.7 TP removal performances in the aerobic granular sludge reactor at different cycle times ... 124
- FIGURE 6.8 Percentage distribution of microbial in seed sludge and aerobic granular sludge (AGS) ... 128
- FIGURE 6.9 Classification of top 20 bacterial taxonomic at phylum level of seed sludge and aerobic granular sludge (AGS) ... 133
- FIGURE 6.10 Distribution of Proteobacteria at class level in (a) seed sludge and (b) aerobic granular sludge ... 135
- FIGURE 6.11 Ratio of protein to polysaccharide content of aerobic granules from the three different cycle times with inoculums sludge is presented for comparison ... 148

FIGURE 6.12 EEM fluorescence spectra of (a) LB-EPS of seed sludge, (b) TB-EPS of seed sludge, (c) LB-EPS of aerobic granular sludge from 3 h cycle time, (d) TB-EPS of aerobic granular sludge from 3 h cycle time, (e) LB-EPS of aerobic granular sludge from 6 h cycle time, (f) TB-EPS of aerobic granular sludge from 6 h cycle time, (g) LB-EPS of aerobic granular sludge from 6 h cycle time, (g) LB-EPS of aerobic granular sludge from 12 h cycle time and (h) TB-EPS of aerobic granular sludge from 12 h cycle time ... 151

List of Abbreviation

Aerobic granular sludge
Ammoniacal nitrogen
Anaerobic sequencing batch reactor
Ammonia oxidizing bacteria
American Public Health Association
Batch activated sludge
Biochemical oxygen demand
Confocal laser scanning microscopy
Chemical oxygen demand
Denaturing gradient gel electrophoresis
Deoxyribonucleic acid
Dissolved oxygen
Expanded granular sludge bed
Effective microorganism
Extracellular polymeric substances
Environmental Quality Act
Field emission scanning electron microscope
Fluorescence in situ hybridization
Glycogen accumulating organism
Hydraulic retention time
Integrity coefficient
Loosely bound EPS
Meta genome rapid annotation using
subsystem technology
Mixed liquor suspended solids
Mixed liquor volatile suspended solid
Organic loading rate
Oxidation-reduction potential
Polycyclic aromatic hydrocarbon
Phosphate accumulating organism
Poly-β-hydroxyalcanoates
Poly-3-hydroxybutyrate
Programmable logic controller

PN	Protein
PS	Polysaccharide
RG	Residual granules
RNA	Ribonucleic acid
RRIM	Rubber Research Institute Malaysia
SBR	Sequencing batch reactor
SEM	Scanning electron microscopy
SG	Settled granules
SMA	Specific methanogen activity
SMR	Standard Malaysian Rubber
SRT	Solids / Sludge retention time
SS	Suspended solids
SVI	Sludge volume index
TB-EPS	Tightly bound EPS
TDS	Total dissolved solid
TGGE	Temperature gradient gel electrophoresis
TKN	Total Kjeldahl nitrogen
TN	Total nitrogen
TP	Total phosphorus
TS	Total solid
TSS	Total suspended solids
UAFP	Upflow anaerobic filter process
UASB	Upflow anaerobic sludge blanket
UTM	Universiti Teknologi Malaysia
UV	Ultraviolet
VER	Volumetric exchange ratio
VFA	Volatile fatty acid
VSS	Volatile suspended solid
WWTPs	Wastewater treatment plants
16s rRNA	16 sequencing ribosomal ribonucleic acid
3D-EEM	Three-dimensional excitation-emission

14 / Wastewater Treatment: Aerobic Granular Sludge Technology

List of Symbols

Al ³⁺	aluminium
Ca^{2+}	calcium
d _p	diameter of a particle
Fe (II)	ferum
H/D	column height to diameter ratio
HOCl	hypochlorous acid
H ₂	hydrogen
М	biomass concentration
M _w	molecular weight
Mg^{2+}	magnesium
NaHCO ₃	sodium bicarbonate
N/COD	nitrogen and organic ratio
NH ₃ -N	ammonia nitrogen
NH ₄ ⁺ -N	ammonium
N-NO ₂	nitrite
N-NO ₃ -	nitrate
Na^+	natrium / sodium
N ₂	nitrogen gas
N _c	number of cycles per day
O ₂	oxygen
Р	phosphorus
P/COD	phosphorus to chemical oxygen demand ratio
P-PO ₄ ³⁻	phosphate
Q _e	effluent flow rate
Q _I	influent flow rate
SO ₄ ²⁻	sulfate
SS_0	total amount of granular sludge
SSt	amount of sludge solids in supernatant after t min
t _A	aerobic time
t _c	cycle time
t _D	decant time
t _F	filling time
t _I	idle time

16 / Wastewater	Treatment:	Aerobic	Granular	Sludge	Technology
-----------------	------------	---------	----------	--------	------------

t _R	reaction time
t _s	settling time
V _d	manually discharge mixture volume
V	effluent volume of the SBR operating cycle
V _F	filled volume
V _{MIN}	minimum volume
V,	working volume of reactor
V.	settling velocity of a particle
V _T	total volume
X	biomass concentration of manually discharged
X	mixed liquor volatile suspended solid in
effluent X	mixed liquor volatile suspended solid in
reactor X _{vss}	volatile solid concentration in reactor
μ	viscosity of a solution
ρ _p	density of a particle
ρ	density of a solution
θ	solid retention time

Preface

Praise Be To Allah S.W.T, the Lord of the World

Thank to Almighty Allah (S.W.T) for blessings that have been showered on me to reach this level of knowledge in life and also giving me the strength and patience to come up with this book. The writing of this book is an adaptation from a Doctor of Philosophy level thesis entitled "BIOGRANULAR SLUDGE FOR RUBBER PROCESSING WASTEWATER IN A SEQUENCING BATCH REACTOR". This book explores in detail the theoretical facts on the performances of aerobic granulation in a sequencing batch reactor system for rubber processing wastewater. The contents of this book are very suitable for environmental engineering students and researchers. Hopefully with the sharing of this knowledge opens the eyes of readers about the potential of aerobic granulation as a green technology in treating agro-based industrial wastewater.

With this opportunity, we would also like to thank our dear family members for their endless support and encouragement in completing this book. Our success is directly attributed by their understanding and patience. Not to forget to all the laboratory personnel and all staff in Universiti Teknologi Malaysia (UTM) for their precious cooperation and supports. Many thanks to UTM for providing facilities to conduct this exploration. The highest appreciation goes to Faculty of Engineering and Built Environment (FKAB), Universiti Kebangsaan Malaysia (UKM) who have supported us since the process of writing this book through Halim Theory (HRST) Professional Razali Strategic Expert until the publication of this book. Our gratitude also goes to the UKM Fund of Dana Penerbitan Buku (DPB-2022-031) and Geran which Galakan Penyelidik Muda (GGPM-2021-007) have contributed a lot financially throughout period of exploration as well as the publication of this book.

Noor Hasyimah Rosman Inawati Othman Hasnida Harun