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Foreword

A Brain Computer Interface (BCI) system monitors the brain activity and translates
features related to the user’s intent or feeling, into device commands. The electro-
encephalography (EEG) is the most common method in order to record the brain
activity in BCI systems. It is a non-invasive method that requires relatively simple and
inexpensive equipment, and it is easier to use than other methods. Nevertheless, EEG-
based BCIs provide modest speed and accuracy so it is necessary to use multichannel
systems and proper signal processing methods. EEG signal processing is divided into
several stages: feature extraction, selection and classification.

Feature extraction methods obtain specific information from EEG signals.
These features can be useful in order to discriminate among different mental tasks.
Then, using selection methods, a subgroup of the most relevant features for clas-
sification is chosen, namely

● Spectral features achieved from Fourier transform.
● Blind source separation
● Optimisation approach
● Autoregressive models
● Nonlinear methods
● Genetic algorithms
● Unsupervised learning

Feature classification methods allow from the selected features, to determine
what class is the most probable for a specific sample. To that purpose, the aims of
the book is to focus on Feature extraction methods to obtain specific information
from EEG signals. These features can be useful in order to discriminate among
different mental tasks. This book emphasizes strategies, case studies and clinical
practices. Advanced Signal Processing methods will also be discussed in this title.

Ir Prof Wai Yie Leong



Chapter 4

Person authentication using
electroencephalogram (EEG) brainwaves signals

Siaw-Hong Liew1, Yun-Huoy Choo1, Yin Fen Low2,
and Zeratul Izzah Mohd Yusoh1

This chapter starts with the introduction to various types of authentication mod-
alities, before discussing on the implementation of electroencephalogram (EEG)
signals for person authentication task in more details. In general, the EEG signals
are unique but highly uncertain, noisy, and difficult to analyze. Event-related
potentials, such as visual-evoked potentials, are commonly used in the person
authentication literature work. The occipital area of the brain anatomy shows good
response to the visual stimulus. Hence, a set of eight selected EEG channels located
at the occipital area were used for model training. Besides, feature extraction
methods, i.e., the WPD, Hjorth parameter, coherence, cross-correlation, mutual
information, and mean of amplitude have been proven to be good in extracting
relevant information from the EEG signals. Nevertheless, different features
demonstrate varied performance on distinct subjects. Thus, the Correlation-based
Feature Selection method was used to select the significant features subset to
enhance the authentication performance. Finally, the Fuzzy-Rough Nearest
Neighbor classifier was proposed for authentication model building. The experi-
mental results showed that the proposed solution is able to discriminate imposter
from target subjects in the person authentication task.

4.1 Introduction

Person authentication or verification is different from person identification. Person
authentication or verification result is a one-to-one matching and it gives a yes or
no answer (as shown in Figure 4.1). Meanwhile, person identification system is
one-to-N matching where an individual identity is determined from a group of
persons who are being evaluated [1]. Most of the past literature have focused on

1Computational Intelligence and Technologies (CIT) Research Group, Faculty of Information and
Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM), Malaysia
2Machine Learning and Signal Processing (MLSP) Research Group, Centre for Telecommunication
Research and Innovation (CeTRI), Faculty of Electronics and Computer Engineering, Universiti
Teknikal Malaysia Melaka (UTeM), Malaysia



person identification. However, person authentication is increasingly catching the
researcher’s attention in line with the emergence of security as one of the important
research topics recently. Applications of person authentication such as airport
security checking, building gate control, passport confirmation, computer login,
internet banking, ATM access, etc., are widely used. An identity authentication
system has to deal with two kinds of events: either the person claiming a given
identity is the one who he or she claims to be (in which case, he or she is called a
client), or he or she is not (in which case, he or she is called an impostor). More-
over, the system may generally take two decisions: either accept the client or reject
him or her and decide whether he or she is an impostor.

Several types of methods can be used to authenticate a person from others.
Traditional methods of authentication such as knowledge-based and token-based are
widely used methods. A password-based system is one of the examples of systems that
are established on knowledge-based method while signature is an example of the
system established on token-based method. With many new methods of person
authentication, most of the people still prefer the use of signature and password as an
authentication method because it is easier and does not need any maintenance [3].
Unfortunately, password model and signature are no longer considered reliable enough
to satisfy the security requirements because password can be stolen and guessed easily
by shoulder surfing and signature can be forged easily. The traditional authentication
methods suffer from their inability to differentiate between an authorized person and an
impostor who fraudulently acquires the access privilege of the authorized person [4].

Biometric authentication systems were introduced to overcome traditional
authentication methods. Biometric is any measurable, physical or physiological
feature or behavioral trait that can be used to authenticate the claimed identity of an
individual [5]. The major difference between biometric and traditional authentica-
tion method is the way how it authenticates a person based on the physical char-
acteristic. It relies on ‘‘something that you are’’ to differentiate between an
authorized person and a fraudulent imposter [4]. Physiological biometrics include
fingerprint, face, iris, hand geometry, retina, and body odor, while behavioral
biometrics include voice, keystroke dynamics, and gait [6]. Nevertheless, these

Subject
Claimed
identity

Verified

Match No
match

Template

Rejected

Figure 4.1 The principle of person authentication; one-to-one matching [2]
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modalities are still facing many challenges. A biometric authentication as long as it
satisfies the following requirements [7]:

– Universality: Every person should have the characteristics.
– Uniqueness: Every person should have different characteristics.
– Constancy: The characteristic should remain fairly constant with time.
– Collectability: The characteristic can be measured quantitatively.

Fingerprint authentication system considers one of the most popular and oldest
biometrics authentication systems. However, due to the advancement of technolo-
gies and the evilness of human beings, fingerprint can be imitated, which brings
down the uniqueness of it. Apart from that, fingerprint system depends largely on
the surface of one’s finger. People with physical disabilities or severe injuries such
as missing hands or burned fingers are unable to use this system. Other than that,
fingerprint nowadays is not secure due to the advancement of technology. There is
some research showing that fingerprint can be forged and various algorithms are
being developed to detect fingerprint forgery [8]. Fingerprint is public as we place it
everywhere when we touch something. Fingerprint authentication system can be
forged using artificial fingers and fingerprints made from readily available materials
(e.g., silicon, gelatin) or even cadaver fingers (finger of a dead person) [5].

Meanwhile, facial recognition is a computer application that uses face to dis-
tinguish an individual from another. It is the most natural means of biometric
authentication [9]. Nevertheless, it is less reliable because the human face structure
will evolve and change throughout the lifecycle of human due to genetic or
environmental factors. Besides, face recognition is not a perfect biometric authenti-
cation method because it is dependent on light, facial expression, resolution, and form
of hair of an individual [10]. Individual features may not be easily distinguished in
poor light condition. Most of the facial recognition systems require the user to stand a
specific distance away from the camera and look straight at the camera. This is to
ensure that the captured image of the face is within a specific size tolerance and keeps
the features in as similar position each time as possible.

Voice can also act as a biometric method in person authentication because
every person has a different pitch and it is unique. The sound is produced when air
leaves the body of an individual through oral cavity (mouth), nasal cavity (nose),
and larynx. Obstructions such as lips, teeth, tongue, size, and position are used to
produce sound [10]. However, with the advancement of technology, voice can be
easily recorded and forged by an attacker. In addition, voice recognition can be
easily affected by environmental factors such as background noise. It might take
hours to record the voice, but the system tends to make error.

Hand geometry recognition system was once popular 10 years ago, but it is
seldom used nowadays [10]. This recognition system is based on the shape of the
hand of an individual, which differs from another person, and the shape of hand
does not change after certain age [9]. The main advantages of hand geometry
recognition are ease of use, low cost, and simplicity. Environmental factors such as
dry skin cannot have influence on the results. Unfortunately, it is less reliable
because the measurements of this method are measuring and recording only the
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length and height of the fingers, shape of the knuckles, distance between joints, and
surface area of the hand. Hand geometry recognition system is ideal for adults but
not for growing children as their hand characteristics can change in time.

Palmprint refers to an image required of the palm region of the hand. It can be
used as a biometric for authentication system. In 1858, palmprint was first intro-
duced by Sir William Herschel in India [11]. Palmprint carries similarities with
fingerprint and it consists of some properties such as universality, uniqueness,
stability, and collectability for authentication. Every person has a different palm-
print; even the palmprints of twins are different. Palmprint area is larger than fin-
gerprint area and hence it provides more information about the person. The features
include the principal lines, wrinkles, minutiae, ridges, and delta points of the palms.
Palmprinting does not bring any harm to the health of people. Palmprint can be
easily captured with low-resolution (at most 400 dpi) devices and thus the devices
are not expensive [11]. However, the palmprint authentication system has limita-
tion to mobile users as the size of the palmprint is bigger.

Iris recognition nowadays is with the combination of technologies from several
fields such as pattern recognition, optics, and computer vision. Iris is a small
internal organ and it is protected by cornea, eyelid, and aqueous humor. It is a
unique characteristic of an individual and it does not change during the whole life.
As iris is a small internal organ, it is hard to scan from a distance. Furthermore,
individuals with eye problems such as cataracts and blindness will have problem
using this kind of system due to the inability to scan their iris [10].

Retina scan also acts as biometric authentication, which is based on the blood
vessel pattern in the retina of the eye. Retina scan technology is older than iris scan
technology, which also uses a part of the eye. It is rarely used nowadays as it is not
user friendly and the equipment remains very expensive. The retina scanning sys-
tem is believed to be very accurate as it has reputedly never falsely verified an
unauthorized user so far. However, the main disadvantage of the retina scan is its
intrusiveness. The way to obtain retina is personally invasive and the operation of
the retina scanner is not easy. A laser light must be directed through the cornea of
the eye.

With the shortcomings that have been mentioned above, there is a need to use a
biometric that is unique, confidential, and impossible to duplicate in person
authentication. Thus, EEG signals is one of the biometric systems that can be used
to overcome this problem.

4.2 The human brain

Human brain consists billions of nerve cells that make a large complex neural
network. Each of the nerves in the human brain is connected to about 10,000 other
nerves. The average human brain weighs around 1,400 g [12]. Human brain can be
divided into four portions: brain stem, cerebral cortex, cerebellum, and dience-
phalon (hypothalamus and thalamus). Cerebral cortex can be divided into two
hemispheres and these are connected to each other via corpus callosum. Each
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hemisphere can be divided into four lobes: frontal, parietal, occipital, and temporal.
The cerebral cortex can be divided into several areas as shown in Figure 4.2.

The functions of cerebral cortex are problem solving, processing of complex
visual information, and language information. The functions of each cortical area
are described in Table 4.1.

Auditory association area

Auditory cortex
Wernicke’s area
(understand speech)

Visual cortex

Visual association
area

Somatic sensory association areaSomatic motor association area
(premotor cortex)

Prefrontal cortex

Broca’s area
(production of speech)

Primary sensory cortex
(postcentral gyrus)

Primary motor cortex
(precentral gyrus)

Figure 4.2 The function of the brain [13]

Table 4.1 Cortical area of the brain and their function [13]

Cortical area Function

Primary Motor Cortex Initiation of voluntary movement
Somatic Motor Association Cortex Coordination of complex movement
Prefrontal Cortex Problem solving, emotion and complex thought
Broca’s Area Speech production and articulation
Auditory Cortex Detection of sound quality (loudness, tone)
Auditory Association Area Complex processing of auditory information
Wernicke’s Area Language comprehension
Visual Cortex Detection of simple visual stimuli
Visual Association Area Complex processing of visual information
Sensory Association Cortex Processing of multisensory information
Primary Somatosensory Cortex Receives tactile information from the body
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4.3 Electroencephalogram (EEG)

In 1929, the first signal of electroencephalogram (EEG) was recorded by Berger.
EEG signals are brain activities that are recorded from electrodes mounted on the
scalp. EEG signals are the product of ionic current flows that happen in the brain’s
neurons. Some of the connections are excitatory while others are inhibitory. EEG
signals have been categorized into six basic rhythms [12] as shown in Table 4.2:
Gamma (g), Beta (b), Mu (m), Alpha (a), Theta (q), and Delta (d). With the
advancement in hardware devices, EEG is the most practical method that can be
used in biometric. EEG is the most practical capturing method that can be used in
biometrics due to the advances in its hardware devices.

The advantages of using brain electrical activity in EEG signals are unique and
confidential; the recorded brain response cannot be duplicated, and a person’s
identity is therefore unlikely to be stolen. A research work done by [7] shows that
the EEG signals of a person is unique and differ from person to person, even when
they are performing the same task or thought when responding to same visual
stimuli. EEG signals can be easily affected, but they cannot be easily reproduced
under conditions of stress, fatigue, anxiety, drowsiness, medication, environment,
etc. [14]. For example, a person who has been forced or pointing a gun to the head
will create different EEG signals from a normal person who is in a relaxed state. In
the security aspect, the EEG-based authentication system is not immune to phishing
attacks. EEG signals are not 100% identical [15]. With the strength and uniqueness
of EEG signals, we believe that the EEG signals are reliable and suitable to be used
as a biometric in authentication system.

The EEG recording electrodes and their function are critical for obtaining
high-quality data for interpretation [16]. One important problem of EEG signals
recording is the artifacts. Examples of the artifacts in EEG signals recording are
blinking, head movements, muscle activity, and electrocardiogram. Due to the very
low amplitude of EEG signals, artifacts often contaminate the recordings restricting
or making difficult in analysis or interpretation. Therefore, the position of subjects

Table 4.2 EEG signal rhythms [12]

Rhythm Bandwidth Description

Gamma (g) [30,40] Hz Low in amplitude; can indicate event brain synchronization;
and be used to confirm some brain disorders.

Beta (b) [13,30] Hz Indicates an alert state, with active thinking and attention.
Mu (m) [8,13] Hz Locates in the motor and sensorimotor cortex; the amplitude

varies when the subject performs movements.
Alpha (a) [8,12] Hz Indicates a relaxed state, with little or no attention, mainly

appear at occipital lobe.
Theta (q) [4,8] Hz Indicates creative inspiration or deep meditation; can also

appear in dreaming sleep (REM stage).
Delta (d) [0.5,4] Hz Primarily associated with deep sleep or loss of body awareness,

but can be present in the waking state.
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during EEG recording should be comfortable enough to avoid unwanted activities;
a lying position diminishes the occurrence of some artifacts caused by feeble
motion.

Research work done by [1] has obtained highest accuracy of 93.4% for person
authentication with a dataset of nine normal subjects performing three tasks during
twelve non-feedback sessions over 3 days, which is four sessions per day. A
modality for biometric authentication based on EEG signals done by [17] has three
tasks of classification accuracy: reading task (97.3%), relax task (94.4%), and
multiplication task (97.5%). They analyzed a dataset of 8-channel EEG recordings
from 40 volunteer subjects when performing simple tasks such as resting with eyes
open and resting with eyes closed. In addition, research work done by [18] used the
BCI competition 2003 dataset with the EEG recording from a 64-channel and
sampled in 250 Hz. The authentication classification result obtained by [18] ranged
from 75% to 85%.

4.3.1 Event-related potentials
Event-related potentials (ERPs) are the potential changes in the EEG signals that
occur in response to ‘‘event’’ or stimulus. The changes of the EEG signals are very
small and the EEG signals have to be averaged from many trials in order to reveal
them. ERPs can be divided into two categories: exogenous (involuntary) and
endogenous (voluntary). Exogenous ERPs normally occur up to about 100 ms after
the stimulus onset while endogenous ERPs occur from 100 ms onward. It depends
on the properties of physical stimulus and behavioral processes related to the event.

The most commonly studied ERP is P300. P300 indicates that positive
deflection in EEG occurs approximately 300 ms after the stimulus onset. This
effect was present for visual (light flashes) and auditory (clicks) stimuli [19]. P300
is commonly recorded during an ‘‘oddball paradigm’’ where a target stimulus is
presented infrequently among more common distracter stimuli. On the other hand,
evoked potentials (EPs) is a subset of the ERP, which rise in response to a certain
physical stimulus such as visual-evoked potential (VEP), auditory-evoked potential
(AEP), and somatosensory-evoked potential (SEP).

Motor imagery is one of the ERP activities. The subjects performed three tasks
such as left-hand movements, right-hand movements, and word generation begin-
ning with the same random letter. The classification accuracy achieved about 80%
in the research work [20]. One of the ideas that combined EEG signals with
authentication system was proposed by [21]. The authentication system was
designed by using pass-thoughts, which is reliable and could work as EEG signals
are unique and impossible to duplicate.

4.3.2 Visual-evoked potential
EEG signals can be recorded in several types of condition, for example, baseline
activity, math activity, letter composing activity, and VEP [22]. The EEG signals
recorded when an individual is in a relaxed condition is called baseline activity.
The EEG signals recorded in [5] when people were in baseline activity are used to
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identify the people. Math activity is a simple mathematical equation such as
addition, subtraction, multiplication, and division, which a person had to solve
without vocalizing and making any movements. A person who was asked to com-
pose a letter to a friend without vocalizing is called letter composing activity.
Furthermore, VEP is one of the ERPs that are brain activities that respond to visual
stimuli and recorded from the occipital scalp electrode.

VEP is the operational measurement of the visual journey from the retina to the
visual cortex of the brain using the optic nerves. The main advantages of VEP
signals are short training time, high data transmission rate, and no significant effect
on the subjects. VEP may compromise several components such as texture, color,
objects, motion, readability (i.e., text vs non-text), and others. Each of these com-
ponents produced different frequency bands due to the impact in special dispersion
of the VEP through the scalp. Therefore, production of VEP should be the focus
and stimulate in the same brain area.

Research work in [23] proposed a new method to identify individuals using
VEP signals. A dataset of 61-channels placed on the scalp is taken from 20 sub-
jects. The average VEP classification accuracy obtained for identification is
94.18%. Furthermore, the classification accuracy ranged from 95% to 98% for a
personal identification experiment based on VEP signals that were recorded from
102 subjects [24]. Malinka [25] designed and implemented VEP as a biometric
characteristic. The author proved that VEP is fully suitable for the biometric
recognition and the result showed that eight occipital channels are enough to build
the biometric authentication system.

The authors in [7] proposed to use brainwave signals that respond to visual
stimuli for the purpose of verification. Typically the active electrode is placed over
the occipital cortex defined by the International Standard 10–20 EEG System.
Research work in [7] considered 8 occipital channels from a total of 64 channels
available in dataset for building their authentication system. They presented an
EEG authentication system by conducting experiments to investigate the simila-
rities and differences during picture recognition process. A standard set of 260
black-and-white line pictures from [26] will be used in the experiment. The result
showed that eight occipital channels are enough to build the biometric authenti-
cation system.

EEG signals are unique and particularly strong when a person is exposed to
visual stimuli [15]. The main advantage of EEG signal is that it can detect changes
over milliseconds. In the research work [15], the authors interviewed a neurologist
and EEG expert, Dr Jesper Ronager, who worked at the national hospital of Den-
mark, Rigshospitalet in Copenhagen. Dr Jesper Ronager mentioned that the visual
cortex area of the brain is located at the occipital area and it is the best place to
measure EEG signals and the most informative for finding picture recall thought
patterns. According to Dr Jesper Ronager, it should not be a problem if the sensors
or electrodes are not placed millimeter-precise.

Because EEG signals are highly sensitive to the emotional state, Lee et al. [27]
studied in EEG-based authentication using three different tasks, i.e., the resting
state, the visual stimuli, and the movement or the mental tasks to reduce the high
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sensitivity of the EEG signals on emotional state. The EEG recording measured
during resting state by using two channels gained the classification accuracy in the
range from 87.5% to 98.1%. Next, the EEG signals recorded from two channels in
mental task had the classification accuracy in the range from 91.6% to 97.5% in
classification rate. Last but not least, the studies on the VEP gained the best result
compared to resting state and mental tasks. The classification result ranged from
92.9% to 98.1%.

4.3.3 Electrode placements
The EEG signals are recorded with electrodes mounted on the scalp. The electrodes
are small, conduct electricity, and provide electrical contact between the EEG
recording apparatus and the skin by transforming the ionic current on the skin to the
electrical current in the wires. Different tasks associated different functional
regions in the brain are depicted in Figure 4.3. The frontal region is responsible for
problem solving and movement control; the central region manages the initiation of
voluntary movement and coordination of complex movement; the parietal region
receives sensory information from the body; the temporal region detects sound and
performs auditory processing; while the occipital region detects visual stimuli and
processes the visual information.

The arrangement of the electrodes is normally based on the International 10–20
system (Figure 4.4). The distance between the electrodes is 10% and 20% and the
system consists of 21 electrodes. Each electrode position has a letter and a number
to identify the location. The letters C, F, O, P, and T stand for central, frontal,
occipital, parietal, and temporal lobes, respectively. Odd numbers indicate the

Frontal region

Central region

Parietal region

Occipital region

Temporal
region

Temporal
region

Figure 4.3 Six primary brain regions [28]
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electrode position on the left side and even numbers indicate the electrode position
on the right side. Z stands for zero and refers to the electrode placements at midline.

Nevertheless, the system allows the use of additional electrodes. The new letter
codes for intermediate sites are: AF—intermediate between frontal pole and frontal,
FC—between frontal and central, FT—intermediate between frontal and temporal,
CP—intermediate between central and parietal, TP—intermediate between temporal
and parietal, and PO—intermediate between parietal and occipital. Figure 4.5 shows
the 64 EEG electrodes placements.

4.4 Experimentation

A simple flow chart as illustrated in Figure 4.6 describes the person authentication
model. It consists of several steps that are EEG signal recording, segmentation, filter-
ing, artifact rejection, feature extraction, feature selection, and classification. Finally,
users are classified as client or impostor according to the classification algorithm.

4.4.1 EEG signal recording and segmentation
Collected raw EEG data are non-stationary, noisy, complex, and difficult to ana-
lyze. Thus, segmentation according to trials must be performed prior to further
analysis such as feature extraction, feature selection, and classification. On the
other hand, filtering and artifact rejection are also important to avoid misleading
information on signal interpretation. The reading with excessive body movements
or others types of artifacts will be discarded.
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Figure 4.4 International 10–20 electrode placements [29]
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4.4.2 Feature extraction
Feature extraction is to extract the relevant information or characteristics from the
EEG signals. Features extracted from EEG signals are unique between subjects and
sufficient for person authentication [18]. Different features provide different dis-
criminative power for different subjects. Most of the authentication system will
make use of features combination architecture. The results were able to demon-
strate significant improvement in the system performance [30]. The feature
extraction methods used in this study are as follows:
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PO3 PO4

P4P2PZP1P3P5T5

TP7

FT7

F7

AF7
AF3 AFZ
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F5 F3 F1 F2 F4 F6 F8
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A1 T3 C5 C3 C1 CZ C2 C4 T4 A2C6

CP5 CP3 CP1 CP2 CP4 CP6 TP6
CPZ

P6 T6

POZ

Figure 4.5 The 64 EEG electrode placements [29]
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Figure 4.6 EEG-based authentication model
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4.4.2.1 Wavelet packet decomposition
In [31], the authors have demonstrated wavelet packet decomposition (WPD) is an
excellent feature extraction method for non-stationary signals such as EEG signals
and it is very appropriate for EEG signals analysis. WPD provides a multilevel time–
frequency decomposition of signals and is able to provide more significant features.
The wavelet decomposition splits the original signal into detail and approximation
coefficients, respectively. After that, the approximation is split into next level
approximation and detail. This process will be repeated until n-level. On the other
hand, the detail also is split into the next level to yield more than different ways to
encode the signal. Figure 4.7 shows a complete decomposition tree of a signal.

Research work by [32] has proven that Daubechies with order 4 (DB4) wavelet
and sixth level of WPD is an appropriate parameter in order to analyze the EEG
signals with 256-Hz sampling rate. As the frequency of useful EEG signals is lower
than 50 Hz, we use 25 sub-bands in each channel. The combination with the time
domain and frequency domain can provide more significant features; we character-
ized the time–frequency distribution of EEG signals by combining the features below:

Average coefficients in sixth sub-band: A total of 8 channels were selected from
64 available channels in the dataset and the sampling rate for each channel is 28, the
sub-band means (Mj) at jth level is defined as in (4.1):

Mj ¼ 1

2j

X28

k

dj kð Þ (4.1)

where dj kð Þ represents the coefficient of WPD at jth level and kth sample. Twenty-five
sub-bands were used for WPD as the frequency of useful EEG signal is lower than
50 Hz. Therefore, the dimensions of feature vector for average coefficients are 200.

Wavelet packet energy in each sub-band: In the perspective of wavelet packet
energy, WPD decomposes signal energy on different time-frequency plain; the
integration of square amplitude of WPD is proportional to signal power. The sub-
band entropy is defined as in (4.2):

E j; nð Þ ¼
ð

S tð Þj j2dt ¼
X

k

dn
j kð Þ

� �2
(4.2)

where n ¼ 0; 1; 2; . . . ; 2j: As eight channels were selected in this research, the
dimensions of feature vector for wavelet packet energy was 200.
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DD2
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A1

S

Figure 4.7 Level 3 of wavelet packet decomposition (WPD) tree
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4.4.2.2 Hjorth parameter
Hjorth parameter is essential to analyze EEG signals in both time and frequency
domains. It can extract the property of EEG signals efficiently [33]. Hjorth para-
meters are used to compute the quadratic mean and the dominant frequency of EEG
signals on each side of the brain: we used the first two Hjorth descriptors in 1970
and 1973, namely activity and mobility. From the activity and mobility in the EEG
signals, it reflects the global trend of a signal, for visual analysis. Hjorth parameters
were used in various online EEG analyses, such as in sleep staging in order to
compute the amplitude and the main frequency of a signal. These descriptors are
chosen because they have a low calculation cost [34].

Let us consider the spectral moment of order 0 and 2:

m0 ¼
ðp
�p

S wð Þdw ¼ 1
T

ðt

t�T
f 2 tð Þdt (4.3)

m2 ¼
ðp
�p

w2S wð Þdw ¼ 1
T

ðt

t�T

df

dt

� �2

dt (4.4)

where S(w) represents the power density spectrum and f(t) represents the EEG signal
within an epoch of duration T. The first two of Hjorth parameters are given by

Activity : h0 ¼ m0 (4.5)

Mobility : h1 ¼
ffiffiffiffiffiffi
m2

m0

r
(4.6)

where h0 is the square of the quartic mean and h1 reflects the frequency of domi-
nant. These quantities are in discrete forms, where h0 kð Þ and h1 kð Þ at a sampled
time of k are calculated within a sliding window of 1s length using the open source
software library BioSig.

Besides that, Hjorth parameter has also used the fourth-order spectral moment
m4 to define a measure of the bandwidth of the signal called complexity.

Complexity: h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

m2
� m2

m0

r
(4.7)

The first parameter is Activity, which represents the signal power; Mobility
represents the mean frequency; and Complexity represents the change in frequency.

4.4.2.3 Coherence
Coherence is a feature used to measure the degree of linear correlation between two
signals. The correlation between two time series at different frequencies can be
uncovered by coherence. Coherence is normally used for analyzing the condition of
different cognitive disorders. It has been proved that EEG-based coherence analysis
can be used in biometrics [15]. The range value for the magnitude of the squared
coherence estimate is between 0 and 1, which quantizes how well x corresponds to
y at each frequency. The value of 0 for the coherence function means the
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independence between two signals. The value of 1 for the coherence function
means the complete linear dependence. The formula of coherence is given as fol-
lows:

Cxy fð Þ ¼ Pxy fð Þ�� ��2
Pxx fð ÞPyy fð Þ (4.8)

where Cxy fð Þ is a function of the power spectral density Pxx and Pyy

� 	
of x and y,

and the cross-power spectral density Pxy of x and y.

4.4.2.4 Cross-correlation
The main idea of the cross-correlation, also known as sliding dot product, is to
measure the similarity of two channels. Cross-correlation is used to find occur-
rences of a known signal in unknown one [35]. Additionally, it is a function of the
relative delay between the signals, which can be applied in pattern recognition and
cryptanalysis. Two input signals will be used to compute the cross-correlation:

● Channel 1 with itself: rX

● Channel 2 with itself: rY

● Channel 1 with channel 2: rXY

The correlation rXY between two random variables x and y with expected
values, mx and my, and standard deviation, sx and sy, is given as:

rX ;Y ¼ cov X ; Yð Þ
sXsY

¼ E X � mXð Þ Y � mYð Þð Þ
sXsY

(4.9)

where E Xð Þ is the expectation operator and cov Xð Þ is the covariance operator.

4.4.2.5 Mutual information
In information theory and probability theory, the mutual information is used to
measure the relationship between two signals that are sampled simultaneously. In
other words, mutual information measures how much the information is commu-
nicated in one input signal about another. The common unit of mutual information
measurement is the bit when we used logarithms of base 2 in its computation [30].

4.4.2.6 Mean of amplitude
Mean, also known as average, is the sum of all EEG potential value and divided by
the number of samples. The expression of the mean is given in (4.10):

x ¼ 1
n
�
Xn

i¼1

xi (4.10)

where n is the number of data and xi is the value of data.
In our earlier work in [36], we have compared the performance of three feature

extraction methods (coherence, cross-correlation, and mean of amplitude) and

80 EEG signal processing



six feature extraction methods (WPD, Hjorth parameter, mutual information,
coherence, cross-correlation, and mean of amplitude). The six feature extraction
methods are good to extract important attributes for person authentication.

4.4.3 Feature selection
The WPD method tends to induce large vector set especially when the selected
EEG channels increase. Thus, the feature selection process is important to reduce
the features set before combining the significant features with the other small
feature vectors set. Feature selection plays an important role especially for the large
dataset. Three common models for feature selection are the filter model, the
wrapper model, and the embedded model. Filter methods investigate the prior
knowledge among features to select the best discriminating subset. Therefore,
understanding the data features is important to produce a good filter model. On the
other hand, wrapper methods employ a predetermined induction algorithm to find a
subset of features with the highest evaluation quality by searching through the
feature subsets space. The wrapper method is more time consuming than the filter
method because it is strongly coupled with an induction algorithm. It calls the
induction algorithm repetitively to evaluate the performance of each feature’s
subset [37] during the performance evaluation process.

The Correlation-based Feature Selection (CFS) often referred as cfsSubsetEval
in WEKA is a correlation-based feature selector. CFS is a good feature selection
method that is able to reduce dimensionality without affecting accuracy [37]. It is a
fast and correlated-based filter algorithm that is applicable in discrete and con-
tinuous problems. The CFS algorithm evaluates the feature subset according to the
correlation-based heuristic merit. A good feature subset contains high correlation
between features and the class [38]. In our earlier work in [36], the experiments
were designed in two levels, i.e., select the attributes from WPD feature vectors
using CFS algorithm before combining with other feature vectors; and to apply the
CFS feature selection across all feature vectors at the same time. The experiment
results showed that the feature selection applied on the WPD only gained better
classification accuracy and AUC.

4.4.4 Classification
Fuzzy-Rough Nearest Neighbor (FRNN) classifier was proposed in our previous
work [36,39] and used to evaluate the performance for person authentication. It is a
fuzzy-rough version of WEKA data mining tools. FRNN classifier was first intro-
duced by Jensen and Cornelis [40], which combined the strength of fuzzy sets,
rough sets, and nearest neighbors classification approach motivated by human
decision making. In FRNN algorithm, the nearest neighbors are used to construct
the fuzzy lower and upper approximations to quantify the membership value of a
test object to determine its decision class, and test instances are classified based on
their membership to these approximations. FRNN algorithm follows the funda-
mental of fuzzy-nearest neighbors approach in classifying objects into the most
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probable decision class. However, instead of using the fuzzy membership function,
FRNN capture the uncertainty with the fuzzy-rough approximations. FRNN clas-
sification approach used in [36] and [39] have gained good results for person
authentication using EEG signals.

Fuzzy logic connectives play important role in the development of fuzzy-
rough set theory. A triangular norm (t-norm), T is any increasing, commutative,
and associative [0,1]2 ! [0,1] mapping, satisfy T(1, x) ¼ x, for all x in [0,1].
On the other hand, an implicator is any [0,1]2 ! [0,1] mapping F satisfying
F(0,0) ¼ 1, F(1, x) ¼ x, for all x in [0,1]. In [40], they have used Kleene–Dienes
implicator for x, y in [0,1].

Various types of performance measurements such as accuracy, recall, preci-
sion, and area under receiver operating characteristics curve (AUC) are used to
evaluate the efficiency of the results. Accuracy and AUC were selected based on
literature review. Although accuracy is commonly used to analyze results, it is not a
good performance measurement at all the times because it provides less meaningful
information by omitting false positives in its measurement. False positives provide
useful information on tolerance up to a certain extent. In addition, AUC is gaining
more popularity for judging classifier properties by providing a graphical method.
It is a very useful performance measure by calculating AUC learning curves for
very large datasets. It cannot be denied that AUC curves are provided very mean-
ingful of both theoretical and empirical justification. AUC is found to have a more
discriminating value and statistically consistent compared to the accuracy.

4.5 Results and discussion

A EEG dataset from UCI Machine Learning and EEG dataset from UCI Machine
Learning Repository were used in the experiments. Large dataset was used in this
research and it consists of 10 subjects with 64 channels electrode placement. Each
individual is completed with a total of 60 trials and sampled at 256 Hz. Due to
many redundant trials in one of the subjects; it was replaced by another subject
from the full dataset. This is necessary to ensure that the prediction ability is not
biased due to the redundant data in both training and testing phase. Instead of
treating the classification as a ten-class problem, the classifier was trained with
only two outputs, i.e., the client and the imposter. The data were split into 80% of
training and 20% of testing. In this study, we have considered the electrodes at
occipital area. The eight electrodes are PO7, PO3, POZ, PO4, PO8, O1, OZ, and O2
as suggested in [7].

Table 4.3 shows the classification performance of FRNN in person authenti-
cation modeling. The classification accuracy and AUC obtained in the experiment
were 92.67% and 0.951, respectively. From the results shown in Table 4.3, we can
conclude that the FRNN model is suitable for EEG signals classification for person
authentication modeling.
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4.6 Conclusion

In this chapter, we discussed the different types of person authentication models. All
the mentioned person authentication models have their strengths and shortcomings.
Therefore, the EEG signal was proposed to overcome the shortcomings. The EEG
signals are unique but highly uncertain, noisy, and difficult to analyze. VEPs can be
found in the past literature and showed that the VEPs are suitable for person
authentication modeling. Thus, feature extraction such as WPD, Hjorth parameter,
coherence, cross-correlation, mutual information, and mean of amplitude are proven
good to extract the relevant information or characteristics from the EEG signals.
Different features provide different discriminative power for different subjects. On the
other hand, feature selection also plays an important role in reducing the dimension-
ality of feature vectors. FRNN acts as classifier was implemented to measure the
performance of uncertainty modeling in EEG signals analysis. The experimental
results showed that FRNN is able to be used for person authentication modeling.
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