In Vitro Atheroprotective Effects of *Trigonella Foenum Graecum* (TFG) and its Saponins in LPS-Stimulated Human Coronary Artery Endothelial Cells

Radzi Ikhsan Ahmad^{1,2}, Gabriele Ruth Anisah Froemming³, Muhamed T Osman⁴, Suhaila Muid¹, Hapizah Nawawi⁵ and Thuhairah Hasrah Abdul Rahman^{1,2,5,6,*}

 ¹Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
²Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
³Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
⁴Department of Pathology, Faculty of Medicine and Defense Health, Universiti Pertahanan National Malaysia, Sungai Besi Campus, Kuala Lumpur, Malaysia
⁵Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
⁶Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia

(*Corresponding author's e-mail: thuhairah@uitm.edu.my)

Received: 23 April 2021, Revised: 5 November 2021, Accepted: 12 November 2021

Abstract

There has been a shift towards utilizing natural products as an adjunct therapy to standard treatment in the prevention of coronary artery disease, and *Trigonella foenum graecum* (TFG) is one of the potential natural products of interest. In the present study, we attempted to determine the effects of TFG and its saponins on atherosclerosis related biomarkers *in vitro*. Protein expression of markers of inflammation, endothelial activation and transcription factors were measured by ProcartaTM and ELISA assays. Gene expression of the same markers were determined by qPCR and the interaction between monocytes and HCAECs were evaluated through monocyte binding assay following 16 h of treatment with TFG and saponins. Both TFG and its saponins exhibited reducing effects on atherosclerosis-related markers. Based on the area under the curve (AUC) analysis, TFG reduced protein and gene expressions of ICAM-1 and VCAM-1 better than the saponins, while saponins reduced E-selectin expression better than TFG. Saponins showed a reduction of gene and protein expressions of IL-6, IL-8, NF- κ B p50 and p65 better than TFG. TFG is more effective in reducing binding of monocytes to endothelial cells than saponins. TFG better reduced endothelial activation but exerted weaker anti-inflammatory effects than saponins, suggesting the possible synergism with other compounds in the crude extract which enhances attenuation of endothelial activation while inhibiting anti-inflammatory properties of saponins in the crude extract.

Keywords: Trigonella foenum graecum, Saponins, Atherosclerosis, Inflammation, Endothelial activation

Introduction

The World Health Organization (WHO) reported that about 30 from 71 % of total deaths in Malaysia during 2002 due to chronic diseases is mainly caused by cardiovascular diseases (CVD). In 2008, CVD was the cause of 32 of 67 % of total deaths due to non-communicable disease [1,2]. The number may be increased if no intervention or preventive measures are initiated to control the prevalence of CVD. The majority of CVD are caused by atherosclerosis, a chronic process involving key processes which include endothelial activation, inflammation, oxidative stress and prothrombogenesis, leading to lipid-rich plaque formation in the walls of arteries which can lead to obstruction and ischaemia of major organs. According to the American Heart Association, approximately 75 % of fatal CVD reported are caused by atherosclerosis [1].

The current approach in the management of the atherosclerotic-related complications such as coronary artery disease (CAD) is to prevent them by addressing risk factors such as hypertension,