

THE EFFECT OF NUTRIENT IN ANODIC CHAMBER TO THE PERFORMANCE OF MICROBIAL FUEL CELL

Nashley Ursula Mundi Anak Ujai

Bachelor of Engineering Electrical and Electronics Engineering with Honours 2022

UNIVERSITI MALAYSIA SARAWAK

Grade:

Please tick (√) Final Year Project Report Masters PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the 27^{th} day of June 2022.

Student's Declaration:

I NASHLEY URSULA MUNDI ANAK UJAI (66908), DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING, FACULTY OF ENGINEERING hereby declare that the work entitled THE EFFECT OF NUTRIENT IN ANODIC CHAMBER TO THE PERFORMANCE OF MICROBIAL FUEL CELL is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

27TH JUNE 2022 Date submitted

NASHLEY URSULA MUNDI'ANAK UJAI (66908)

Supervisor's Declaration:

I PROF. MADYA. TS. DR SITI KUDNIE BT SAHARI hereby certifies that the work entitled THE EFFECT OF NUTRIENT IN ANODIC CHAMBER TO THE PERFORMANCE OF MICROBIAL FUEL CELL was prepared by the above named student, and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of <u>BACHELOR OF ENGINEERING</u>, <u>ELECTRICAL AND ELECTRONICS ENGINEERING WITH HONOURS</u>, and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: ______ (PROF. MADYA. TS. DR SITI KUDNIE BT SAHARI)

Date: 27TH JUNE 2022

I declare that Project/Thesis is classified as (Please tick ($\sqrt{}$)):

RESTRICTED

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS). •
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature ____

hashlury

Supervisor signature: _

(27th June 2022)

Current Address: NO. 7 LOT 224, TAMAN TIAN LIN, BUKIT SIBAU, 95700 BETONG, SARAWAK.

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

THE EFFECT OF NUTRIENT IN ANODIC CHAMBER TO THE PERFORMANCE OF MICROBIAL FUEL CELL

NASHLEY URSULA MUNDI ANAK UJAI

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering Electrical and Electronics Engineering with Honours

Faculty of Engineering

Universiti Malaysia Sarawak

Especially dedicated to

my lovely father Ujai Sambau and my beloved mother Nana Linggang, my dearest pet dogs Juju, Joji and Lola, family and friends for their unconditional love and support.

ACKNOWLEDGEMENT

With this opportunity, I would like to express my greatest gratitude and appreciation especially to my family who is riding along and never fails to continuously encourage me throughout this journey. For the endless motivation and support both emotionally and financially that was given to me to pursue this study.

Deepest appreciation goes to my dedicated supervisor, Prof. Madya. Ts. Dr Siti Kudnie Sahari for her guidance, advices, words of motivations, patience, care and continuous support throughout this project. For her time and her careful attention to the details of the project, which play a major role in accomplishing this project.

Not to forget, I would like to thank especially the lecturers of UNIMAS and those who directly or indirectly helped me throughout this project.

ABSTRACT

Microbial fuel cell (MFC) is a device used to generate bioelectricity in which it converts chemical energy into electrical energy with the microorganism found in the system act as the biocatalysts. In this project, the objectives are aimed to interpret on the performance of the single-chamber microbial fuel cell with the influence of nutrients from the bamboo leaves, rice husk and coconut waste that are being oxidized by microorganisms in the anodic chamber as well as to improve the generation of electricity through microbial fuel cell by adding new nutrient contained in the organic wastes (bamboo leaves, rice husk and coconut waste) with adding potential catalyst (organic compost). There were four different experiments conducted in this project in order to understand the influence of nutrient to the performance of microbial fuel cell. In these experiments, the anode materials used are bamboo leaves, rice husk and coconut waste, in which organic compost was added to all of these mixing samples later on. The ratio between the organic wastes and organic compost were adjusted throughout conducting the experiments. The other experiment in this project is that a set of three single-chamber microbial fuel cells were connected in series and parallel to evaluate on the improvement of the bioelectricity generated. Day 5 of conducting the experiment recorded the highest current density and power density generated which are at 190.85mA/m² and 788.58µW/m² respectively. The single-chamber microbial fuel cells that were connected in parallel connection showed a relatively higher current density and power density at 21.47mA/m^2 and $55.98 \mu \text{W/m}^2$ respectively, compared to when the single-chamber microbial fuel cells were connected in series which its current density is 19.38mA/m^2 with the power density at $48.75 \mu \text{W/m}^2$.

ABSTRAK

Microbial fuel cell (MFC) merupakan satu peranti yang digunakan untuk menjana bioelektrik, dimana ia dihasilkan dari penukaran tenaga kimia kepada tenaga elektrik oleh biomangkin iaitu mikroorganisma yang didapati di dalam sistem tersebut. Objektif projek ini adalah untuk memahami bagaimana nutrisi yang terdapat daripada daun buluh, hampas beras dan hampas kelapa yang dioksidasikan oleh mikroorganisma dapat mempengaruhi sistem single-chamber microbial fuel cell and juga bagaimana kompos organik dapat menambah baik sistem single-chamber microbial fuel cell bilamana ianya ditambahkan dalam sisa organik (daun buluh, hampas beras dan hampas kelapa) yang digunakan dalam sistem tersebut. Terdapat empat eksperimen yang akan dijalakan dalam projek ini. Dalam eksperimen ini, daun buluh, hampas beras dan hampas kelapa akan digunakan sebagai bahan anod dan kemudiannya kompos organik akan ditambahkan ke dalam kedua-dua sisa organik ini. Nisbah di antara sisa organic dan kompos organik akan diubah-ubah semasa menjalankan eksperimen ini. Manakala, eksperimen yang terakhir adalah tiga set single-chamber microbial fuel cells akan disusun dalam litar sesiri dan litar selari bagi menilai dengan lebih mendalam bagaimana ianya dapat meningkatkan penjanaan bioelektrik di dalam single-chamber microbial fuel cells. Didapati current density dan power density yang tertinggi iaitu 190.85mA/m² dan 788.58µW/m² telah direkodkan pada hari ke-lima dalam menjalankan eksperimen ini. Single-chamber microbial fuel cells yang disusun dalam litar selari merekodkan current density dan power density yang lebih tinggi iaitu 21.47mA/m² dan 55.98µW/m² berbanding apabila singlechamber microbial fuel cells tersebut disusun dalam litar sesiri dimana current density yang direkodkan adalah 19.38mA/m² dengan *power density* pada 48.75µW/m².

TABLE OF CONTENTS

Acknowledgemen	t		i
Abstract			ii
Abstrak			iii
Table of Contents			iv
List of Tables			viii
List of Graphs			ix
List of Figures			xi
List of Abbreviati	ons		xiv
CHAPTER 1	INT	RODUCTION	1
	1.1	Research Overview	1
	1.2	Energy Needs and Current Power Generation	1
		Method	
	1.3	Discovery of Bioelectricity	2
	1.4	Bamboo in Sarawak	3
	1.5	Problem Statement	5
	1.6	Objectives	5
	1.7	Scope of Study	5
CHAPTER 2	LIT	ERATURE REVIEW	7
	2.1	Overview	7
	2.2	Design of Microbial Fuel Cell	7
		2.2.1 Single-Chamber Microbial Fuel Cell	8
		2.2.2 Dual-Chamber Microbial Fuel Cell	9
		2.2.3 Up-flow Microbial Fuel Cell	9
		2.2.4 Stacked Microbial Fuel Cell	10
	2.3	Factors Influencing Microbial Activity in Microbial	11
		Fuel Cell	
	2.4	Nutrients in Bamboo	12
	2.5	Related Studies on Microbial Fuel Cell	13
		2.5.1 Investigating Air-Cathode Microbial Fuel	13
		Cells Performance under Different	

		Serially and Parallelly Connected	
		Configuration	
	2.5.2	The Effect of Connection Type in Series	13
		and Parallel on Electric Power Generation	
		of Mud Microbial Fuel Cell	
	2.5.3	Effect of Organic Loading Rate (OLR) on	14
		The Recovery of Nutrients and Energy in	
		a Dual-Chamber Microbial Fuel Cell	
	2.5.4	Assessment of Organic Removal in	15
		Series- and Parallel-Connected Microbial	
		Fuel Cell Stacks	
	2.5.5	Tubular Bamboo Charcoal for Anode in	15
		Microbial Fuel Cell	
	2.5.6	Bioelectricity from Kitchen and Bamboo	16
		Waste in a Microbial Fuel Cell	
	2.5.7	Study of a Terrestrial Microbial Fuel Cell	17
		(TMFC) and The Effects of its Power	
		Generation Performance by	
		Environmental Factors	
	2.5.8	Microbial Fuel Cell for Bioelectricity	17
		Generation from Organic Wastes	
	2.5.9	Relationships Between Soil Organic	19
		Matter, Nutrients, Bacterial Community	
		Structure and the Performance of	
		Microbial Fuel Cells	
	2.5.10	Effect of pH on Nutrient Dynamics and	19
		Electricity Production Using Microbial	
		Fuel Cells	
2	.6 Compar	rison of Past Studies	21
2	.7 Researc	h Gap	29
2	.8 Summa	ry of Past Studies	29
N	IETHODO	LOGY	31
3	.1 Overvie	2W	31

CHAPTER 3

3.2	Overall	Process Flowchart	32
3.3	Block D	Diagram of the System	35
3.4	Equipm	ent and Materials Used	36
3.5	Procedu	ire	37
	3.5.1	Assembling Anode and Cathode	37
		Electrodes	
	3.5.2	Using Bamboo Leaves as the Mixing	37
		Sample	
	3.5.3	Using Rice Husk as the Mixing Sample	38
	3.5.4	Using Coconut Waste as the Mixing	38
		Sample	
	3.5.5	Adding 30g Catalyst into 20g Organic	38
		Wastes Mixing Sample	
	3.5.6	Adding 20g Catalyst into 30g Organic	39
		Wastes Mixing Sample	
	3.5.7	Connecting the Microbial Fuel Cells in	39
		Series and Parallel Connection	
3.6	Measure	ement of Electricity Parameters	40
	3.6.1	Voltage	40
	3.6.2	Current	40
	3.6.3	Internal Resistance	41
	3.6.4	Power	41
	3.6.5	Current Density	41
	3.6.6	Power Density	42
	3.6.7	Surface Area of Electrode	42
RES	SULTS		43
4.1	Overvie	ew	43
4.2	Overall	Results	43
	4.2.1	Data Obtained from Single-Chamber	43
		Microbial Fuel Cells for 7 days	
	4.2.2	Current Density Comparison Between	59
		Single-Chamber Microbial Fuel Cells	

CHAPTER 4

		4.2.3	Power Density Comparison Between	63
			Single-Chamber Microbial Fuel Cells	
		4.2.4	Single-Chamber Microbial Fuel Cells in	67
			Serially and Parallelly Connection	
		4.2.5	Current Density Comparison Between	68
			Single-Chamber Microbial Fuel Cells in	
			Serially and Parallelly Connection	
		4.2.6	Power Density Comparison Between	68
			Single-Chamber Microbial Fuel Cells in	
			Serially and Parallelly Connection	
	4.3	Analysi	is and Discussion	69
	4.4	Summa	ry of the Outcome Observed	73
CHAPTER 5	CO	NCLUSI	ON	75
	5.1	Genera	l Conclusions	75
	5.2	Limitat	ion	75
	5.3	Recom	mendations	76
REFERENCES				77
APPENDIX				83

LIST OF TABLES

Table

1.1	Bamboo species found in Malaysia and their uses	4
2.1	List of chemical constituents in different types of bamboo	12
2.2	Comparison of findings obtained from each study	21
3.1	List of components to be used per one single-chamber microbial fuel	36
	cell	
4.1	Parameters measured for each microbial fuel cell hourly on day 1	45
4.2	Parameters measured for each microbial fuel cell hourly on day 2	47
4.3	Parameters measured for each microbial fuel cell hourly on day 3	49
4.4	Parameters measured for each microbial fuel cell hourly on day 4	51
4.5	Parameters measured for each microbial fuel cell hourly on day 5	53
4.6	Parameters measured for each microbial fuel cell hourly on day 6	55
4.7	Parameters measured for each microbial fuel cell hourly on day 7	57
4.8	Parameters measured when a set of three Microbial Fuel Cells	67
	(MFCs) are connected in series and parallel (taken on the 7 th day)	
4.9	Various single-chamber microbial fuel cells with different anode	69
	material	
4.10	Summary outcomes observed from every experiment conducted	73

LIST OF GRAPHS

Graph

4.1.1	Current Density (mA/m ²) vs. Time (hour) between MFC 7 (30g	59
	bamboo leaves with 20g compost) and MFC 1 (50g bamboo leaves)	
4.1.2	Current Density (mA/m ²) vs. Time (hour) between MFC 7 (30g	59
	bamboo leaves with 20g compost) and MFC 4 (20g bamboo leaves	
	with 30g compost)	
4.1.3	Current Density (mA/m^2) vs. Time (hour) between MFC 8 (30g rice	60
	husk with 20g compost) and MFC 2 (50g rice husk)	
4.1.4	Current Density (mA/m^2) vs. Time (hour) between MFC 8 (30g rice	60
	husk with 20g compost) and MFC 5 (20g rice husk with 30g	
	compost)	
4.1.5	Current Density (mA/m^2) vs. Time (hour) between MFC 9 (30g	61
	coconut waste with 20g compost) and MFC 3 (50g coconut waste)	
4.1.6	Current Density (mA/m^2) vs. Time (hour) between MFC 9 (30g	61
	coconut waste with 20g compost) and MFC 6 (20g coconut waste	
	with 30g compost)	
4.1.7	Current Density (mA/m ²) vs. Time (hour) between all single-	62
	chamber microbial fuel cells (MFCs)	
4.2.1	Power Density (μ W/m ²) vs. Time (hour) between MFC 7 (30g	63
	bamboo leaves with 20g compost) and MFC 1 (50g bamboo leaves)	
4.2.2	Power Density (μ W/m ²) vs. Time (hour) between MFC 7 (30g	63
	bamboo leaves with 20g compost) and MFC 4 (20g bamboo leaves	
	with 30g compost)	
4.2.3	Power Density (μ W/m ²) vs. Time (hour) between MFC 8 (30g rice	64
	husk with 20g compost) and MFC 2 (50g rice husk)	
4.2.4	Power Density ($\mu W/m^2$) vs. Time (hour) between MFC 8 (30g rice	64
	husk with 20g compost) and MFC 5 (20g rice husk with 30g	
	compost)	

4.2.5	Power Density (μ W/m ²) vs. Time (hour) between MFC 9 (30g	65
	coconut waste with 20g compost) and MFC 3 (50g coconut waste)	
4.2.6	Power Density (μ W/m ²) vs. Time (hour) between MFC 9 (30g	65
	coconut waste with 20g compost) and MFC 6 (20g coconut waste	
	with 30g compost)	
4.2.7	Power Density (μ W/m ²) vs. Time (hour) between all single-chamber	66
	microbial fuel cells (MFCs)	
4.3.1	Current Density (mA/m^2) vs Type of microbial fuel cell (MFC) Set	68
	between series and parallel connection	
4.3.2	Power Density (μ W/m ²) vs. Type of microbial fuel cell (MFC) Set	68
	between series and parallel connection	

LIST OF FIGURES

Figure

2.1	General principle of a microbial fuel cell	8
2.2	Schematic design of a single-chamber microbial fuel cell	8
2.3	Simple design of dual-chamber microbial fuel cell	9
2.4	Schematic design of up-flow microbial fuel cell	10
2.5	Design of a stacked microbial fuel cell	11
3.1	The overall process flowchart of conducting the experiment	33
3.2	The block diagram of the single-chamber microbial fuel cell system	35
3.3	The schematic design of single-chamber microbial fuel cell	37
3.4	The schematic design of electrical circuit for the serially connected	39
	MFCs	
3.5	The schematic design of electrical circuit for the parallelly	39
	connected MFCs	
4.1	Draw multiple circle shapes with 4cm radius on the stainless-steel	83
	mesh	
4.2	Cut the stainless-steel mesh according to the shape that had been	83
	drawn on it	
4.3	Wrapped the apparatus that will be used to assemble the electrodes	84
	especially the wood planks with clingfilm to avoid the electrodes	
	sticking to the surface after it dry	
4.4	Measure the epoxy resin and hardener that will be used as the glue	84
	in a ratio of 3:1	
4.5	Pour a generous amount of granulated active carbon on the wood	85
	plank in a shape of the stainless-steel mesh cut-out	
4.6	Apply a generous amount of epoxy resin mix on the stainless-steel	85
	mesh	
4.7	Pour a generous amount of granulated active carbon onto the	86
	stainless-steel mesh until all the surface is covered	

4.8	Put a piece of wood plank on the stainless-steel meshes that are fully	86
	covered with granulated active carbon	
4.9	Sandwich together the wood planks using C-clamp and let the	87
	electrodes to dry for at least overnight	
4.10	Check the electrodes that had been left overnight and fill in the	87
	remaining empty space on the electrodes with granulated active	
	carbon	
4.11	Let the electrodes dry again for at least a few hours before using it to	88
	assemble the single-chamber microbial fuel cells	
5.1	Blend an amount of 50g organic waste (in this picture is bamboo	89
	waste) and mixed with 300g of water	
5.2	By using a cylindrical shape plastic container as the chamber,	89
	assemble the single-chamber microbial fuel cell by filling the	
	container with organic substrate	
5.3	Layer the organic substrate with anode electrode	90
5.4	Fill up the plastic container with another layer of organic substrate	90
	using the remaining mixing sample	
5.5	Layer the organic substrate with cathode electrode	91
5.6	Cover the plastic container with the lid after completing the	91
	assembling process	
5.7	Two small holes are drilled on the plastic lid to allow oxygen to	92
	flow into the single-chamber microbial fuel cell	
5.8	Measuring voltage and current generated by the single-chamber	92
	microbial fuel cell using multimeter	
6.1	MFC 1 with 50g bamboo leaves mixed with 300g water	93
6.2	MFC 2 with 50g rice husk mixed with 300g water	93
6.3	MFC 3 with 50g coconut waste mixed with 300g water	94
6.4	MFC 4 with 20g bamboo leaves mixed with 30g organic compost	94
	and 300g water	
6.5	MFC 5 with 20g rice husk mixed with 30g organic compost and	95
	300g water	
6.6	MFC 6 with 20g coconut waste mixed with 30g organic compost	95
	and 300g water	

6.7	MFC 7 with 30g bamboo leaves mixed with 20g organic compost	96
	and 300g water	
6.8	MFC 8 with 30g rice husk mixed with 20g organic compost and	96
	300g water	
6.9	MFC 9 with 30g coconut waste mixed with 20g organic compost	97
	and 300g water	
7.1	Series connection on a breadboard	98
7.2	Parallel connection on a breadboard	98
7.3	Measuring voltage and current generated by a set of three single-	99
	chamber microbial fuel cells connected in series	
7.4	Measuring voltage and current generated by a set of three single-	99
	chamber microbial fuel cells connected in parallel	

LIST OF ABBREVIATIONS

MFC	Microbial Fuel Cell
FYP	Final Year Project
PEM	Proton Exchange Membrane
BOD	Biochemical Oxygen Demand
OCV	Open-Circuit Voltage
MMFC	Mud Microbial Fuel Cell
CEM	Cation Exchange Membrane
COD	Chemical Oxygen Demand
OLR	Organic Loading Rate
BCT	Bamboo Charcoal (BCT)
GT	Graphite Tube
TMFC	Terrestrial Microbial Fuel Cell

CHAPTER 1

INTRODUCTION

1.1 Research Overview

This chapter presents an overview of the research background which includes the energy needs together with the current power generation method used worldwide, the discovery of bio-electricity which introduce a little bit on microbial fuel cell (MFC) as well as the use of bamboo in Sarawak. In general, these topics are essential to outline the complete introduction to this final year project (FYP) title.

1.2 Energy Needs and Current Power Generation Method

As of 2019, it was believed that in the next 30 years the world's population is expected to grow from 7.7 billion to 9.7 billion in 2050, which as reported by the United Nations, escalated by 2 billion persons [1]. By logic, the energy demand will increase with the growing of the world's population size. It was claimed that the energy needs in Malaysia will increase by 5242MW in 19 years, which is 18,808MW in 2020 to 24,050MW in 2039 [2].

At some point, the current power generation method such as the fossil fuels would not be able to keep up with the global energy demand and eventually unable to generate enough electricity worldwide. To explain further, fossil fuels which are made up of decomposing plants and animals that were buried by layers of rock from over million years ago [3] are a non-renewable energy resources which comply of coal, oil and natural gas [4]. These non-renewable energy resources will run out sometimes in the future due to the constant burning of fossil fuels to generate electricity which is why finding a renewable alternative to produce electricity to consumers everywhere is fundamental.

One of the most famous renewable resources used globally nowadays is hydropower. Even though it is true that Malaysia uses fossil fuels but other power generation method used in this country is hydropower. As a matter of fact, the biggest hydropower plant in the country is the Bakun hydroelectric power plant, located in Sarawak itself. It is said that this hydropower plant will be able to generate up to 2400MW of electricity [5].

Be that as it may, both fossil fuels and hydropower however have its own downsides. Besides being non-renewable, fossil fuels are one of the factors contributing to global warming. That is to say, burning fossil fuels will emit large quantities of CO_2 in the air which in the long run leads to climate change due to the heat trap from the emission of carbon [6]. According to CNN in February 2021 [7], over 8 million people died globally every year as the consequences of breathing polluted air from the burning of fossil fuels which contain particles such as the greenhouse gasses. Hydropower on the on the other hand may be one of the biggest renewable resources, however it can cause social threats and damage to wildlife habitat and harmed the water quality near the dam area. This is because the hydroelectricity may cause changes in reservoir and the water quality of the stream. The water temperature and the river's flow may change which will later bring harm to the native plants and animals near the area [8].

1.3 Discovery of Bioelectricity

Back in 1790, an Italian physician, physicist, biologist and philosopher, Luigi Galvani first stumble upon a bioelectricity phenomenon. MFC however, was actually first discovered somewhere around the beginning of the 20th century. In 1931, Barnett Cohen bring to light on this discovery of renewable resource and was able to build a half fuel cells that were able to generate up to 35V and 2mA with the MFCs connected in series [9].

To explain in detail, MFC is a device used for bio-electrochemical process which ideally implement to generate bioelectricity through the electrons derived from the biochemical reactions catalysed by bacteria which to be specific, the anaerobic oxidation of substrates [10]. For the most part, MFC is incorporated of proton exchange membrane (PEM), that is to separate the two main parts of MFC which are the anode chamber and cathode chamber. The idea is that, electricity will be produced for when protons and electrons are moved from anode to cathode chamber through PEM and an external circuit respectively. The protons and electrons existed in the MFC as it was released during the

anaerobic oxidation of organic substances in the anode compartment [11]. Typically, the organic substances are glucose, ethanol, acetate and lactate.

Aside from producing bio-electricity, MFC is also commonly used for wastewater treatment, determining biochemical oxygen demand (BOD) levels as well as for biosensors. To emphasize, bioenergy that is produced from the anaerobic oxidation of organic substrates in MFC is capable to replace lithium batteries and act as a selfrenewable long-standing power supply for both biosensors and remote monitoring sensors [12]. To compare it with the other power generation methods mentioned before, MFC is eco-friendly and produce low carbon emission. It is an efficient conversion of substates to electricity. For instance, organic waste such as food waste or water waste can be used to produce electricity through MFC. Since MFC operates from the conversion of biodegradable substances into simpler substances to generate bio-electricity, thus water waste by the same token, can be used as the alternative organic substrate mentioned here. In the same time, this will help to reuse this wastewater instead of chemically treating it that in the end might negatively affect the environment and thus, indirectly reduce the amount of waste that is usually thrown away in a daily basis. It is clear that, generating bioenergy from MFC helps in reducing carbon footprint as well as the environmental pollution [12] in a sustainable and environmentally-friendly way.

1.4 Bamboo in Sarawak

Bamboo or scientifically known as *Bambusoideae* is one of the most abundant native plants in Asia. In Malaysia alone, there are at least 70 species of bamboo founded which to explain in detail, 50 species found in Peninsular Malaysia, 30 species in Sabah and 20 species in Sarawak [13]. With its characteristics of being a fast-growing plant with high biomass and yield in short amount of time as well as high efficiency in just a few years, bamboo plays a big role in terms of economic resource for the locals in this country. As a matter of fact, bamboos are widely used in various application which include in construction, textiles, crafts, furniture and also cultural arts such as for writing, musical instruments or martial arts. To put it in another way, according to the BorneoTalk [14], numerous of tribes in Sarawak has been using bamboos to not only create handcrafts but also to make their very own unique traditional musical instruments, namely *Pratuokng* and *Kiromboi* which both are from the Bidayuh tribe, *Keringot* from the Penan tribe and

Suling which introduce by the Lun Bawang tribe. In the same fashion, a family from Sarawak, Ir. Ahmad Mazlan Othman [15] uses bamboos, specifically a species called "Betong" to build himself various commercialised bamboo products which to name a few are a bicycle and an electric guitar made entirely of bamboos. Table 1.1 below listed other products that are engineered from different species of bamboos found in Malaysia.

Bamboo Species	Products
Buluh Sematan	Handcraft
Gigantochloa scortechinii	• Raw material for particle board
Buluh Beting	Shoots for food
Gigantochloa levis	Chopsticks
Buluh Tumpat	• Frames
Gigantochloa ligulata	Shoots for food
	• Stump for plants support medium
Buluh Betong	Shoots for food
Dendrocalamus asper	• Raw material for construction
Buluh Duri	Chopsticks
Bambusa blumeena	Toothpicks
	• Furniture
	Musical instruments
	Shoots for food
Buluh Semeliang	• Frames
Schizostachyum grande	• Leaves for Chinese traditional food wrapper
	(glutinous rice dumpling)
Buluh Dinding	Handcrafts
Schizostachyum zollingeri	Toothpicks

Table 1.1: Bamboo species found in Malaysia and their uses [16]

By referring to the Table 1.1 above, it is undeniable that bamboo is widely use in Malaysia especially in Sarawak itself. Interestingly enough, almost all the bamboo products, from traditional musical instruments to handcrafts are all made out of the part of bamboo called the culm. The leaves of the bamboo however, are left unuse. Which is obvious, the more bamboo product is mass-produced, the more bamboo waste which is the leaves there will be. To avoid all the unwanted bamboo waste, the unuse leaves will be use as the organic substrates in MFC and thus, will be utilized to generate bioelectricity, which will be discussed further in this research.

1.5 **Problem Statement**

The current power generation method such as hydropower and fossil fuels contribute to the environmental damage and production of pollution which may worsen in the next couple of years. Hence ideally, using bamboo in MFC is exemplary since it does not require agricultural land to grow which means no environmental damage will be done and might as well pollution can be control. However, according to the study made in 2014 [17], bamboo waste will unfortunately generate less electricity in comparison to when other organic substances such as the kitchen garbage is used. In other words, bamboo leaves contain less nutrient compared to other organic waste which prevent it to generate more electricity. Therefore, to improve this glucose or fly ash will be added into the bamboo leaves substance to enhance the microbial activity with the hope for it to generate higher voltage. Theoretically, glucose also helps to enhance the nutrient consists in the organic substances while fly ash promotes the degradation of organic materials which both will resulting in higher voltage.

1.6 **Objectives**

The objectives of this study are aimed:

- i. To interpret on the performance of the single-chamber microbial fuel cell with the influence of nutrient from the bamboo leaves, rice husk and coconut waste that are being oxidized by microorganisms in the anodic chamber.
- ii. To improve the generation of electricity through microbial fuel cell by adding new nutrient to the nutrients contained in the organic wastes (bamboo leaves, rice husk and coconut waste) with adding potential catalyst (organic compost).

1.7 Scope of Study

Due to its capability of delivering bioenergy, MFC is a very promising technology that will be able to use and sustain electricity in the near future. According to a study done