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ABSTRACT 

 

This project aims to construct an autonomous power line inspection system using 

computer vision to classify and localise the normal and abnormal insulators. The 

traditional inspection methods, for instance, foot patrol inspection and helicopter-assisted 

inspection are time-consuming and dangerous. DenseNet-201 model is proposed as the 

base network to perform insulator fault detection autonomously. An algorithm with 

DenseNet-201 backbone consisting of two branches which are class label classification 

and bounding box regression is developed. The developed algorithm is trained on the 

augmented Chinese Power Line Insulator Dataset (CPLID) that consisted of normal and 

missing cap insulator images. The prediction results in classification accuracy of 100%. 

The average precision of detecting normal insulator and insulator missing cap has higher 

performance at threshold 0.3 which are 100% and 66.61%. The mean average precision 

at thresholds 0.3 and 0.5 are 83.31% and 64.62% respectively. The experimental results 

on the augmented CPLID dataset denote that the proposed model has high classification 

accuracy and it outperforms the ResNet model. 
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ABSTRAK 

 

Projek ini bertujuan untuk membina system pemeriksaan talian kuasa autonomi 

menggunakan visi komputer untuk mengklasifikasikan dan menyetempatkan penebat 

normal dan tidak normal. Kaedah pemeriksaan tradisional, contohnya, pemeriksaan 

rondaan kaki dan pemeriksaan bantuan helikopter mengambil masa yang lama dan 

berbahaya. Model DenseNet-201 dicadangkan sebagai rangkaian asas untuk melakukan 

pengesanan penebat dengan regresi kotak-terikat secara autonomi. Algorithma dengan 

DenseNet-201 yang terdiri daripada dua cabang iaitu klasifikasi label kelas dan regresi 

kotak sempadan dibangunkan. Algoritma yang dibangunkan dilatih pada ‘Chinese Power 

Line Insulator Dataset (CPLID)’ yang terdiri daripada imej penebat topi biasa dan hilang. 

Model ini menghasilkan ketepatan klasifikasi 100%. Ketepatan purata pengesanan 

penutup hilang penebat mempunyai prestasi yang lebih tinggi pada ambang 0.3 iaitu 

66.61%. Purata ketepatan purata pada ambang 0.3 dan 0.5 masing-masing ialah 83.31% 

dan 64.62%. Keputusan eksperimen pada set data CPLID menunjukkan bahawa model 

yang dicadangkan mempunyai ketepatan pengelasan yang tinggi dan ia mengatasi prestasi 

model ResNet. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background  

In 2000, Malaysia’s population was around 23.3 million people while in 2013, the 

population had increased to 29.3 million which contributed to the rise in electricity usage 

[1]. The population in Malaysia has grown substantially every year until 32.7 million in 

2021 [2]. As reported in Malaysia Energy Statistics Handbook 2020 by Malaysia Energy 

Information Hub (MEIH) [3], the electricity consumption by states in Malaysia is 

increasing from 2010 to 2018. Electricity is important for everyone in daily activities as 

most electrical appliances require electricity as power supplies. Therefore, electricity 

demand has been increasing gradually. The advancement of technologies and 

digitalization in society nowadays has caused the smart grid to experience rapid 

development. Thus, monitoring and maintenance of the electrical power grids are crucial 

with the increase in the dependency of society on electricity. This is to ensure that the 

power system works without interruption.  

Power line inspection is needed to monitor the transmission line whether it is in good 

condition. Any fault in the power line may lead to power transmission system failure and 

problems like blackout, power outage, and economic losses. To avoid the problem of 

power outages or damage to the pole, inspection of the power lines is crucial for the safety 

of society. The most important component in distributing electricity in power grids is the 

power line. An insulator is installed between a current-carrying conductor and a tower. It 

plays a vital role in the electrical system to prevent unwanted current flows to the ground 

from the conductor. The insulator is crucial for the transmission lines and substations to 

operate safely. Since the insulators on the power line are outdoors and exposed to sunlight 

for a long time, they can be damaged or cracked [4]. The insulator fault usually occurs as 

influenced by lightning strikes, overloading, and material aging. Defects in the insulator 

are the most common accident found in power transmission [5]. The fault will cause harm 

to the safety of the transmission line and the power grids might experience huge economic 
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losses [6]. Thus, it is essential to detect the defects of power line components, especially 

insulators to maintain stability in the power system.  

Traditionally, manual power line inspection methods such as foot patrol as shown in 

Figure 1.1 are commonly used as they are cheap and convenient. Although it is very 

convenient, it poses danger to the inspectors and consumes a lot of time [7]. There is a 

continuous development of helicopter-assisted, climbing robots, and unmanned aerial 

vehicles (UAVs) methods for performing inspection tasks. By comparing with the 

traditional inspection methods, the helicopter-assisted method performs on a large-scale 

area and is independent of the terrain environment [8]. However, due to its high 

movement speed, the accuracy of the inspection is affected. Among all, UAV is the most 

popular inspection method as it enhances inspection efficiency [8]. Previously, the 

overhead line inspection is done by visual inspection where the inspectors have to observe 

the overhead lines physically. With UAVs, the camera installed on them will capture the 

photos of power line components and send the photos to the workstation for the checking 

process. Hence, the inefficient traditional inspection methods are gradually replaced by 

UAVs. In power line inspection, there are four power line inspection tasks which are 

mapping and inspection of power line components, vegetation encroachment monitoring, 

disaster monitoring, as well as icing detection and measurement [9].  

 

 

Figure 1.1: Manual inspection of power line [8] 
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Great achievements in computer vision have been made by Deep Learning (DL) 

especially in deep Convolutional Neural Networks (CNNs) in recent years [10]. 

Automatic vision-based power line inspections using computer vision have been 

introduced. Figure 1.2 shows the missing caps of insulators are detected automatically by 

using computer vision. With the autonomous vision-based power line inspection, the 

inspection efficiency and quality are improved. Much research on automated power line 

inspection was conducted in these few years. Unmanned aerial vehicles (UAVs), image 

processing, and deep learning are examples of state-of-the-art elements in power line 

inspection [8]. With the fast development of automation as well as artificial intelligence 

technologies, an alternative way of power line inspection is used which is drone-assisted 

inspection [7]. The automation of power line inspection is done by using UAV images, 

optical images, or LIDAR. The research is focusing on the mapping and monitoring of 

the power line components and lesser articles on fault analysis. This technology is 

implemented more in developed countries such as China. The power line inspection 

technology is still not advanced in Malaysia. 

Moreover, this technology will encourage the industry to consider developing an 

autonomous power line monitoring system based on the use of UAVs instead of 

performing traditional inspection methods. With the autonomous line inspection using 

computer vision, the worker’s workload is reduced where they no need to inspect the 

power line physically. Therefore, autonomous power line inspection using computer 

vision is beneficial to society. However, despite the research that has been done to 

perform power line visual inspection automatically, no completely autonomous vision-

based inspection system that can detect various faults has yet to be produced.  

 

Figure 1.2: Fault detection of insulator using deep learning [6] 
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1.2 Problem Statement 

As mentioned earlier, traditional inspection method such as foot patrol inspection 

poses many disadvantages and limitation. In traditional operations, whenever there is a 

fault in the electrical transmission system, the localisation of damaged lines requires 

shutting down the entire distribution grid. The technicians are required to power the 

damaged line part by part to discover the ground fault. The checking process is time-

consuming as it requires a few hours or even days to locate the fault. Although the foot 

patrol inspection method is widely implemented in inspecting the power line due to its 

high detection rate, it is not favourable in bad weather conditions [9]. The bad weather 

conditions will further make strenuous to the inspection process. In Malaysia, the 

geographical location restricts the work of power line inspectors. Traditional power line 

inspection method may risk their life and increase difficulties in their work. Other than 

being risky and time-consuming, a traditional operation such as the foot patrol inspection 

method does not allow remote control on the power line. 

Traditional image processing technology in power line inspection is having low 

accuracy [6]. In previous research, the technology has been used by many researchers 

with aerial images to detect insulators and faults. It is done by segmenting the insulators 

via specific features such as texture, colour, shape, and gradient. A matching algorithm is 

then used to perform insulator fault detection. Nevertheless, in complex backgrounds, 

multi-scale detection is inappropriate as the image processing technology relied on 

classification features that are designed manually. The detection result poses low 

accuracy due to the uncertainty of the features of insulators in aerial images. 

The unmanned aerial vehicle (UAV) inspection method is superior to other power line 

inspection methods in terms of efficiency and quality [11]. However, UAV-based power 

line inspection requires manually checking on a huge amount of aerial images captured 

by UAV to locate the abnormal components [12]. Prior knowledge of the power line 

components is required to perform manual checking on the captured aerial images. It 

relies on inspectors’ experience and becomes a significant burden for inspectors. 
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1.3 Objectives 

This project aims to develop an algorithm for a system that automatically detects the 

faults of the insulator which is the insulator missing caps by using computer vision.  

To realise the goal of this project, the following objectives need to be achieved: 

1. To study the existing work on autonomous power line inspection. 

2. To develop an algorithm for autonomous power line inspection using computer 

vision to identify the faulty insulator with missing caps. 

3. To validate the performance of the autonomous power line inspection algorithm. 

1.4 Project Scope 

The focus of this project is to develop an algorithm for autonomous power line 

inspection using computer vision. In this project, the development of the deep learning 

algorithm is focusing on insulator fault detection. The purpose is to classify the normal 

and abnormal insulators with a missing cap as well as localise the targeted object. Thus, 

the dataset used in this project consists of both normal and abnormal images of the 

insulator. 

Moreover, this project is a fully software-based project using Python as the 

programming language. Other than Python, deep learning libraries are required in 

developing the algorithm. The libraries selected are OpenCV and TensorFlow in which 

OpenCV will be used for data augmentation while TensorFlow will be used for 

developing the deep learning algorithm for insulator fault detection.  

Before using the insulator dataset in training the deep learning model, data 

augmentation techniques are performed on the dataset to increase data size. Brightness, 

contrast, and saturation changes are the data augmentation techniques performed in this 

project. This can be done by using OpenCV and other libraries such as Scikit-image in 

Python. In this project, the total number of augmented images is following the 

experimental setting used in a previous research paper. Then, the augmented dataset is 

annotated and distributed into three sets which are test, training, and validation sets. The 

labelled training set is used to train the deep learning model.  

DenseNet model is the selected convolutional neural network in developing the 

algorithm for insulator fault detection. DenseNet neural network will learn the common 
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features from the labelled training set while the extracted features are used to perform 

classification and bounding box regression. The detail of the proposed method is 

discussed in Chapter 3 methodology.  

Lastly, the performance of the trained model is evaluated by using the evaluation 

metrics such as accuracy, precision, recall, and average precision (AP). Object detection’s 

performance is based on Intersection over Union (IoU) of the ground truth and predicted 

bounding box. The developed algorithm is compared with other algorithms such as 

ResNet model. The developed system will be further improved to improve the reliability 

of the system. 

1.5 Report organisation 

In this report, five chapters will be presented which are introduction, literature review, 

methodology, results, and discussion as well as the conclusion and recommendations. The 

outline of each chapter is stated below: 

 

Chapter 1: Introduction 

Chapter 1 discusses the background of the project, the current problems that the world is 

facing, objectives, project scopes, and the project outlines. The goal of this project is 

mentioned in the objectives. 

 

Chapter 2: Literature review 

Chapter 2 presents the background studies related to autonomous power line inspection 

using computer vision. It reviews the existing methods of power line inspection and 

different types of algorithms used as well as the result in previous studies based on 

journals, articles and conference papers. 

 

Chapter 3: Methodology 

Chapter 3 explains the hardware and software as well as the method that is used in this 

project. The developed algorithm is presented and the flow of the algorithm is explained.  

The project workflow is represented in a flow chart. Moreover, the parameters used in 


