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Preface

The book titled “Deep Eutectic Solvents –
Fundamentals and Emerging Applications” is a
part of the Elsevier comprehensive book se-
ries on Current Developments in Biotechnology
and Bioengineering (Editor-in-Chief: Ashok
Pandey). Increasing sensitivity towards the
health, safety, and environment has spurred
increasing the research in alternative solvents
that are both human and environmentally-
friendly. Green solvents include biosolvents
derived from the agriculture crops. Replace-
ment to petrochemical-derived solvents that
find large industrial applications is signifi-
cant and at the same time, has economic via-
bility. Deep eutectic solvents (DESs) are gain-
ing popularity and are being increasingly
used in the catalytic, separation, and electro-
chemical processes. Combination of Lewis or
Bronsted acid and bases is the key charac-
teristic of DESs. The bio-based DESs, known
as NADESs, consist of plant-based primary
metabolites such as organic acids, sugars, al-
cohols, amine, and amino acids. DESs are
cheaper, biodegradable, and safe direct syn-
thesis route. Owing to their potential and
unique property, wholistic value-driven re-
search is significant in promoting wider ap-
plication of DESs industrially.

This book covers various topics on DESs
from the fundamental studies to the emerg-
ing applications. The first chapter gives a
brief introduction of DESs, followed by the
design strategies to synthesize DESs, and
progressing to the determination of physico-
chemical properties of DESs through exper-
imental approach. Applications of DESs for
gas capturing is highlighted in subsequent
chapters. Owing to the importance of green

solvents and correlation with DESs, the im-
portant characteristics of DESs are high-
lighted. The comparison and similarities be-
tween DESs and ionic liquids are covered
for better insights of the features of both the
solvents. Increasing applications of biomass
towards waste reduction have further ex-
panded the applications of DESs as pretreat-
ment media for biomass transformation. The
other sectors where the applications of DESs
are gaining attraction include the biocatalytic
processes and in membrane-based separa-
tion which have been discussed in subse-
quent chapters. Predictions of the influence of
DESs in the extraction processes allow further
understanding of DESs through the model-
ing and simulation. How DESs behave in
reducing the contaminants is further elabo-
rated gearing towards environmental aware-
ness. The role of DESs has extended in cross-
coupling reactions as neoteric reaction me-
dia. DESs have applications in drug discov-
ery and delivery as well as in pharmaceu-
tical applications, thus widening the poten-
tial applications in health sectors. Impact of
CO2 and sulfur to the environment can be
further reduced through the applications of
DESs. Nevertheless, regulatory and impact
of DESs on health, safety, and environment
are among the other topics that are pertinent
for larger applications and industrial deploy-
ment of DESs, which have aptly covered in
the book.

The book would be of great value to
the postgraduate students, researchers, sci-
entists, practitioners, and others interested
in the field of greener and biodegradable
solvents. The book serves to increase the
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6.1 Introduction

Traditionally, biomass utilization was realized through the concept of biorefineries and
the purpose of using biomass was mostly energy-driven. Over the years, the concept of
biomass valorization shifted its focus toward unleashing the maximum potential of biomass in
downstream processing such as for the production of various energy carriers and value-added
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bioproducts or chemicals. The main stepping stone toward realizing biomass transformation
can be attributed to the ubiquitous nature of biomass, from which most of the biopolymers
exhibited high recalcitrance in common solvents due to the heterogeneous polyphenolic
structure of the lignin and the highly ordered cellulose’s crystalline structure. The recalci-
trance of biomass poses constraints in the biomass-to-biofuels conversion or other value-
added bioproducts which typically involves three major steps: pretreatment, hydrolysis, and
fermentation (Binod & Pandey, 2015). The pretreatment of biomass can be regarded as the
most important step in biomass processing. In this sense, the goal of biomass pretreatment is
to disintegrate the lignin barrier and make the celluloses, hemicelluloses, and other substrates
accessible, as well as to enable the further processing and recovery of the valuable components
embedded within the biomass.

Pretreatment methods such as physical, chemical, biological, physicochemical, biochemical,
and green solvents have been studied including some commercialized methods while others
are still in development or struggling to be scaled up. Conventional pretreatment methods
include physical and chemical pretreatment which were considered as effective and matured
technologies. Although the efficiency of these conventional pretreatment approaches is high
enough for the successful transformation of biomass resources, the extensive usage of caustic
and volatile chemicals or the high energy requirement of these conventional pretreatment
methods are considered drawbacks. More attention should be devoted to environmental
sustainability as the world realized the irreversible environmental impact due to human
activities and began emphasizing green chemistry. Apart from that, the choice of pretreatment
technology is of utter importance since it has a direct impact on the operating costs related to
feedstock (i.e., chemicals, solvents, catalysts, etc.), utility consumption (i.e., steam, electricity,
etc.), labor charges, and effluent treatment which often make up 60% of the total production
costs (Cheng et al., 2019). Recently, deep eutectic solvents (DESs) emerged as an ideal low-
cost, environmentally friendly, and prospective biomass pretreatment media since they first
demonstrated biomass solubilizing capability in a novel study (Francisco et al., 2012).

6.2 Current status of biomass pretreatment

The pretreatment of biomass represents a crucial significance in biomass processing where
it is the first and also the key step toward the accessibility of the substrates trapped within
the recalcitrant shield of the lignin-carbohydrate complex of biomass. At the moment, there
are five mainstream biomass pretreatment approaches which include physical, chemical,
biological, combinatorial pretreatment (i.e., physicochemical, biochemical, etc.), and green
solvents pretreatment. The conventional pretreatment approaches, inter alia, most typically
include physical and chemical pretreatment methods that were already widely commercial-
ized and applied in the industries while more recent techniques such as the use of green
solvents as biomass pretreatment media are on an uprising interest and are currently still in
development.

Physical pretreatment is an approach to reduce and minimize particle size. It is essential
for biomass to undergo size reduction through mechanical or manual processing to achieve
increased surface area, a reduced degree of polymerization, and a reduction in crystallinity
for further processing to be carried out smoothly and effectively. Physical pretreatment can be
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further categorized into various processes such as microwave irradiation, milling, extrusion,
and ultrasonication. These physical pretreatment methods can be regarded as environmentally
friendly as they are unlikely to produce toxic or pollutants that harm the environment.
However, most physical pretreatment methods require large capital investment and intensive
consumption of energy in the form of machinery operation.

Chemical pretreatment involves of organic or inorganic compounds with capability of
lignin dissolution through chemical interactions that modify the interpolymer bonds of lignin,
cellulose, and hemicellulose which further break down biomass’s recalcitrant structure. It
consists of organosolv pretreatment, ozonolysis, alkaline pretreatment, and acid pretreatment.
For instance, acidic pretreatment is one of the most matured and long-established technologies
among various biomass pretreatment methodologies. However, the apparent disadvantages
when it comes to using chemical pretreatment would never escape from the concerns over
their caustic nature and causing corrosion to the processing equipment. Apart from that, the
formation of inhibitors during the pretreatment process will impede the immediate commer-
cialization of the resulting products due to the added cost needed to remove these inhibitors.
Generally, chemical pretreatment can be considered as an effective pretreatment procedure but
the high chemical usage and operating costs make it a rather expensive process apart from the
fact that secondary pollution problems might follow.

Biological pretreatment of biomass is commonly associated with the enzymatic actions of
microorganisms that are able to disintegrate the lignocellulosic materials. Fungi with a capa-
bility of enzyme production that aids in lignin degradation are often employed for biological
biomass pretreatment. For instance, soft-rot, brown fungi and white-rot are recognized for
the removal of hemicellulose and lignin while keeping the cellulose content intact (Nauman
Aftab et al., 2019). The biological pretreatment method offers several advantages over other
pretreatment methods including little or no generation of toxic substances, high yield of
desired products, and low energy demand. However, the main drawbacks of the biological
pretreatment method are attributed to the extremely long residence time of 10–14 days with
stringent requirements on the conditions of fungal growth with a large space for conducting
biological pretreatments, making this method of pretreatment being regarded as too slow and
less attractive for the industry (Agbor et al., 2011). Additionally, the fact that a fraction of
the embedded carbohydrate in the biomass could be consumed by the microbes also makes
this method less viable. Although biological pretreatments could take weeks to complete, it
was reported to be a very selective and efficient approach (Agbor et al., 2011; Anukam et al.,
2020).

Combinations of one or more pretreatment methods such as combining chemical treatments
with temperature or pressure or a biological step are often explored with the target of enhanc-
ing the fractionation of the biomass feedstocks. In this sense, physicochemical pretreatment
is a hybrid technique that affects both the physical parameters and the chemical structures
through bond cleavage and intermolecular interactions. Some instances of physicochemical
pretreatment include supercritical carbon dioxide (CO2) and ammonia fiber explosion, steam
explosion as well as liquid hot water. On the other hand, biochemical pretreatment method
is less commonly reported but typically involves bio-organosolv pretreatment. However,
the implementation of various pretreatment approaches comes with an extra cost on the
feedstocks, utilities, and operating expenses, often even higher than any of the pretreatment
methods alone. In terms of environmental impacts, methods such as supercritical CO2 and
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liquid hot water pretreatment are generally environmentally benign but other approaches that
combine with caustic chemicals could often be a problem.

The conventional biomass pretreatment technologies either require substantial capital in-
vestment and high utility utilization or depend heavily on nonenvironmentally friendly sol-
vents with their characteristics of highly carcinogenic, corrosive, volatile, nonbiodegradable,
etc. The growing focus on green solvents development for biomass transformation aims to for-
mulate green solvents that satisfy both the economic viability and environmental sustainabil-
ity without compromising on the green solvents’ performance in biomass pretreatment. Green
solvents consist of those that are low-cost, biodegradable, nonvolatile, nontoxic and preferably
sourced from readily available materials or through natural means. Several green solvents
were exploited for pretreatment of biomass which includes ionic liquids (ILs) and DESs. ILs
exhibited high solvating ability in biomass pretreatment proven through active studies since
a few decades back. However, the key obstacles that held back the extensive application of ILs
in industry are mainly associated with economic constraints and environmental imperatives.
Their complex synthesis and purification process, controversial ecotoxicological data, and
nonbiodegradability often raise questions on their qualifications as green solvents. On the
other hand, new and emerging DESs are considered green solvents that are analogous to ILs
but in addition, offer many advantages such as simple and straightforward synthesis without
any aids of external solvents and subsequent purification, low cost, biodegradable, nontoxic,
and highly tunable. Active studies revealed the capability of certain DESs to solubilize high
amounts of lignin from biomass with minimal or no effects on the cellulose and hemicellulose.
Therefore, DESs could take a significance role in performing selective solubilization or lignin
removal from biomass time keeping the complete cellulose and hemicellulose contents for
further processing with minimum deprivation of sugars.

6.3 Deep eutectic solvents and their biopolymers solubility

6.3.1 Definition and classification of DESs

DESs are emerging subclass of sustainable ILs that have received extensive attention from
researchers and industrial practitioners in the past two decades (Hansen et al., 2021). They are
commonly composed of a mixture of at least one proton acceptor and proton donor. The term
“eutectic” was coined in 1884 by Frederick Guthrie and derived from the Greek word eútēktos
for low melting point (Liu et al., 2018). The term DESs refers to any liquid with the lowest
melting point at a particular molar composition of the individual components. In general,
DESs can be expressed by the common formula below:

Cat+X−zY

where Cat+ refers to any sulfonium, phosphonium, or ammonium cation, X is a Lewis base,
and Y is either a Bronsted or Lewis base, and z is the Y molecules’ number.

The concept and definition of DESs mixture was firstly introduced by Abbott et al. (2003),
where he and his co-worker observed the changes in the physical state of powdered choline
chloride, ChCl (Tm = 320°C) and crystalline urea (Tm = 133 ◦C) mixture from solid to liquid
under room temperature and the mixture with 33 mol% of ChCl exhibited the lowest melting
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TABLE 6.1 Classification of DESs with the general formula (Tomé et al., 2018).

Type General formula Terms

Type I Cat+ X− zMCIx M = Zn, Sn, Fe, Al, Ga, In

Type II Cat+ X− zMCIx·yH2O M= Cr, Co, Cu, Ni, Fe

Type III Cat+ X− zRZ Z = CONH2, COOH, OH

Type IV MClx + RZ = MClx-1
+·RZ + MClx+1

− M = Al, Zn, Z = CONH2, OH

point of 12°C. Chemically, DESs are usually strongly associated with each other via interac-
tions of hydrogen bond, which allow it to reduce the anion–cation electrostatic force of the
system and thus dissociate to generate a new eutectic phase with a lower melting point com-
pared to the individual component (<100°C) (Perna et al., 2020). The significant depression in
the melting point of the DESs was mainly attributed from the charge delocalization between
the hydrogen bond acceptors (HBA) and hydrogen bond donors (HBD) (Paiva et al., 2014).

Generally, most of DESs exhibit safe characteristics such as low toxicity, biodegradability
and renewability as well as low production cost (Tomé et al., 2018). It is also well accepted
in the literature that DESs are excellent and versatile substitutes for conventional ILs and
emerging as new generation of ILs. Conventional ILs may possess ionic characteristics, but
DESs generally have melting points remarkably lower than the starting material. Furthermore,
the sustainability of ILs is frequently questioned and challenged due to its inherent poor
biocompatibility and biodegradability (Paiva et al., 2014). Also, the preparation method of
DESs is cheaper and more environmentally friendly than ILs. As showed in Table 6.1, DESs
can be broadly divided into two main categories: those that contain metal salt and those that do
not. DESs with metal salts can be further classified based on whether the metal salt is hydrated
or not. Generally, there are four different types of DESs: Type I (quaternary ammonium
salt + metal halide), Type II (quaternary ammonium salt + hydrated metal halide), Type III
(quaternary ammonium salt + HBD such as polyol, carboxylic acid or amine, and Type IV
(metal halide + HBD).

6.3.2 Biopolymers solubility

At the present stage, there is a major bottleneck in commercialization of bio-based facilities
due to challenges for lignin removal from polysaccharides at attractive cost and industrial scale
production of fermentable sugars and value-added products. Since DESs have been reported
to be a flexible proton donor and acceptor, its presence is able to enhance interaction with
biomolecules through its extensive hydrogen bond network, which enhances the solubility
as an end effect. The recent progress in elucidation of biopolymers solubility, which includes
lignin, cellulose and hemicellulose, using DESs has been provided in Table 6.2. Based on sum-
mary of Table 6.2, it is found that majority of the studies have been devoted to determination of
lignin solubility, which demonstrates great potential. Nonetheless, DESs have been found to be
not so effective in solubilizing cellulose as compared to lignin, while the study of hemicellulose
has been scarcely available. Thus far, only a limited number of studies are available that
demonstrate higher cellulose solubilization, such as that reported by Malaeke et al. (2018) by
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TABLE 6.2 Solubility of lignin, cellulose, and hemicellulose biopolymers using DESs.

Salt HBR
Salt: HBR
molar ratio

Temperature
(K)

Lignin
(wt. %)

Cellulose
(wt. %)

Hemicellulose
(wt. %) Reference

Choline chloride Amide (Urea) 1:2 383.15 – 1.43 – Ren et al. (2016b)

Choline chloride Amide (Urea) 1:2 383.15 – <0.20 – Zhang et al.
(2012)

Choline chloride Amide (Thiourea) 1:2 373.15 – 10.00 – Sharma et al.
(2013)

Choline chloride Amide
(Acetamide)

1:2 383.15 – 0.22 – Ren et al. (2016b)

Choline chloride Aromatic alcohol
(Phenol)

2:1 363.15 40.40 4.70 1.55 Malaeke et al.
(2018)

Choline chloride Aromatic alcohol
(α-Naphthol)

1:1 363.15 23.91 3.39 0.92 Malaeke et al.
(2018)

Choline chloride Aromatic alcohol
(Resorcinol)

1:1 363.15 48.15 6.10 1.96 Malaeke et al.
(2018)

Choline chloride Carboxylic acids
(lactic acid)

1:2 333.15 5.38 0.00 – Francisco et al.
(2012)

Choline chloride Carboxylic acids
(lactic acid)

1:5 333.15 7.77 0.00 – Francisco et al.
(2012)

Choline chloride Carboxylic acids
(lactic acid)

1:10 333.15 11.82 0.13 – Francisco et al.
(2012)

Choline chloride Carboxylic acids
(lactic acid)

1:10 333.15 13.00 <3.00 <5.00 Lynam et al.
(2017)

Choline chloride Carboxylic acids
(formic acid)

1:2 333.15 14.00 <1.00 <1.00 Lynam et al.
(2017)

Choline chloride Carboxylic acids
(acetic acid)

1:2 333.15 12.00 <1.00 <1.00 Lynam et al.
(2017)

Choline chloride Carboxylic acids
(oxalic acid)

1:1 333.15 3.65 2.5 – Lynam et al.
(2017)

Choline chloride Carboxylic acids
(maleic acid)

1:1 363.15 38.13 2.57 0.85 Malaeke et al.
(2018)

Choline chloride Aromatic
(imidazole)

3:7 383.15 – 2.48 – Ren et al. (2016b)

Allyl triethyl
ammonium
chloride

Carboxylic acids
(oxalic acid)

1:1 383.15 – 6.48 – Ren et al. (2016a)
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using 1:1 Choline Chloride: Resorcinol with 6.1 wt.% solubilization (Malaeke et al., 2018) by
using 1:1 Allyl triethyl Ammonium Chloride: Oxalic Acid by achieving 6.48 wt.% removal
(Ren et al., 2016a) and Sharma et al. who has achieved 10 wt.% using 1:1 Choline Chloride:
Thiourea (Sharma et al., 2013). To further enhance the solubility of biopolymers within DESs,
it has been proposed to add cosolvent within the pristine solvent. It has been demonstrated
that via incorporation of 5 wt.% polyethylene glycol (PEG) as cosolvents in choline chloride:
imidazole DESs, it decreases hydrophobicity of cellulose, which ultimately enhances solubility
to 4.57 wt.% (Ren et al., 2016a).

Although it has been well-acknowledged that DESs can potentially degrade the resultant
biomass, majority of the studies have not reported the molecular weight before and after
applying DESs, which suggest that the reported solubilities may be misleading (Häkkinen
& Abbott, 2019). Another concern is although it is found that aromatic alcohol-based DESs
demonstrate superior biopolymers solubility performance as compared to the other HBDs,
phenolic nature of the compounds may be carcinogenic and toxic, which make greenness
and feasibility of the solvent to be questionable. Hence, more studies are required to enhance
the performance using other greener and safer HDBs while expanding the interrogation to
different biopolymers to increase the feasibility in industrial scale application.

6.4 Biomass pretreatment and transformation using DESs

6.4.1 Role of DESs as pretreatment media

Lignin is a natural occurring heteropolymer that is found abundantly in biomass. Generally,
lignin is a mixture of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units bonded by ether
and C-C linkages (Liu et al., 2020; Owhe et al., 2021). Due to its complex and highly branched
aromatic structure that intertwines with cellulose and hemicellulose, lignin has a recalcitrant
nature and exhibits strong resistance against enzymatic attack and hydrolysis (Malaeke et al.,
2018; Oh et al., 2020). Besides, use of organic solvents and ILs in biomass fractionation raises
environmental and operating cost issues. This has rendered isolation of lignin from biomass
a challenging process, posing difficulties in the pretreatment and fractionation of biomass for
further downstream valorization.

DESs have emerged as a green, recyclable and sustainable solvent or agent to extract
lignin from biomass. Lignin recovered from biomass could further be converted into value-
added chemicals or fuels, such as resins, composites, aromatic monomers, adhesives, and
antioxidants (Ma et al., 2021; Song et al., 2020; Zhang et al., 2021). Extraction of lignin from
a plethora of biomass has been studied and evaluated using various combinations of HBA
(choline chloride, betaine, guanidine hydrochloride, and proline) and HBD (carboxylic acids,
amines, and polyols) (Chen et al., 2020). Generally, the lignin recovered by DESs possesses
superior qualities in comparison to the native lignin present in the biomass, which include low
sulfur content hence causing less environmental pollution (Liu et al., 2020), reduced molecular
weight hence easing further processing to value-added products (Oh et al., 2020), as well as
increased molecular weight distribution range and higher heating values hence suitable to be
used as plasticizers and sustainable fuels (Owhe et al., 2021).
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Choline chloride (ChCl) has been extensively researched due to its superiority compared to
other HBAs and higher lignin dissolution ability (Fernandes et al., 2021; Liu et al., 2020). ChCl-
based DESs with varying HBD counterparts have been scrutinized in terms of their lignin
removal efficiency, in view of varying physicochemical properties of the DESs when different
HBA and HBD are paired. Oh et al. (2020) reported a direct correlation between the polarity
and hydrogen bond acidity of the DESs toward the lignin removal efficiency. Having higher
polarity and hydrogen bond acidity, ChCl-based DESs containing carboxylic acids as HBD
have shown better lignin removal capabilities, as compared to DESs containing hydroxyl-
and amide-based HBDs (Oh et al., 2020). The highest lignin removal efficiency of 72% was
achieved by ternary ChCl/lactic acid/formic acid DESs, which registered the highest polarity
and hydrogen bond acidity among other ternary DESs (Oh et al., 2020). Besides, the effect of
carboxylic acids used as HBD in the ChCl-based DESs was also investigated by Fernandes
et al. (2021). Higher selectivity of lignin extraction was exhibited by acids having additional
OH (alpha-hydroxy) groups (such as tartaric acid, glycolic acid, and lactic acid), leading to
increased polarity and enhanced interactions with lignin.

In addition, parameters such as extraction temperature, time, and HBA:HBD molar ratio are
often optimized for maximizing the delignification efficiency of DESs. Oh et al. (2020) found
that higher temperature and prolonged reaction time positively affected the lignin removal
from pine wood until an optimum (plateau) was attained, after which further increase in
temperature and reaction time showed insignificant influence on lignin removal. Similar
trends were also reported by Fernandes et al. (2021). The molar ratio of HBA and HBD is
also an important parameter that influences the properties of DESs such as conductivity,
density, viscosity, stability and pH, which will in turn affect the mass transfer, solute-solvent
interaction, and hence the delignification efficiency (Ji et al., 2020). In a study by Zhou et al.
(2021), higher molar fraction of HBD (p-TsOH) in DESs resulted in higher lignin removal, due
to higher lignin solubility in such concentration of DESs. Similar observation was also reported
by Fernandes et al. (2021). Using ternary DES composed of lactic acid/tartaric acid/ChCl, it
was found that as the HBD:HBA ratio increased from 1:1 to 5:1, the lignin extraction yield
increased from 13% to 27%. In particular, increasing molar ratio of lactic acid to tartaric acid
was desirable for lignin extraction due to lower concentration tartaric acid (a dicarboxylic acid
containing the bulky COOH group) in the mixture, resulting in less entanglement and better
mixing (Fernandes et al., 2021).

Lignin extractability is often enhanced or synergized by coupling the DESs pretreatment
with a variety of technologies or sequential pretreatment, such as microwave, ultrasonic, or
acid/alkali pre- or post-DESs treatments. For example, microwave and ultrasonic irradiations
have significantly improved the purity and yield of lignin extracted by DESs, due to more
efficient, selective and rapid heating mechanism, along with the synergy and compatibility
with DESs (Ji et al., 2020, 2021; Li et al., 2019; Ma et al., 2021; Ong et al., 2019). Apart from
that, acid treatment prior to DESs pretreatment (sequential pretreatment) was able to produce
lignin with simplified structure and improved thermal stability (Liu et al., 2020). Also, due
to the high viscosity of some DESs, lignin dissolved in the leftover DESs might deposit and
precipitate on the surface of the pretreated residue, leading to lower delignification efficiency.
Thus, this requires post-treatment to further recover the fractionated lignin. In this context,
Zhou et al. (2021) performed the alkali (NaOH) post-treatment of DESs pretreated poplar
sawdust residues and revealed that lignin recovered was enhanced to 80.9–92.2% as compared
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to that of without alkali post-treatment (71.0–78.5 %). Table 6.3 summarizes the studies on
lignin removal by DESs.

Cellulose is prominent as chain polysaccharides having a similar structure to starch and also
a major component of plant cell walls. It is a perfect candidate for production of bioethanol
since cannot be absorbed by animals or humans. Thus, it has become the greatest challenge
in biorefinery (Sun et al., 2016). Besides, celluloses are functioning as hydrophilicity, stere-
oregularity, biocompatibility, and reactive hydroxyl groups. It also serves as an adaptable
resource for derivatized materials such as films, composites, fibers along with fuels and
chemicals (Baruah et al., 2018). It is believed that the crystallinity of cellulosic substances is
the significant factor that determines their digestibility and highly influences the dimensional
stability, strength, and heat resistance of the materials (Li et al., 2021). Moreover, the initial
enzymatic hydrolysis rate of cellulose is closely associated with the crystallinity index of
cellulose (Sun et al., 2016). The presence of covalent bonds, hydrogen bonding, and van
der Waals forces is contributing to the ultrastructure of cellulose. The formation of highly
crystalline supramolecular structures hinders its dissolution, from the angle of inter- and
intramolecular hydrogen bonds in cellulose.

Dissolution is the crucial step in utilization and transformation of cellulose. However, most
of the traditional solvents displayed a very poor ability in dissolving cellulose since there
are plenty of intra- and intermolecular hydrogen bonds in cellulose structure. Dissolving
cellulose via conventional techniques is highly unstable, toxic, and difficult to recycle, and
therefore fails to satisfy the development requirements of the green chemical industry (Zhang
et al., 2020). In this sense, DESs have been targeted as an alternative for dissolving cellulose.
DESs have received an extensive attention and recognition due to its outstanding swelling
effect and solubility in biomass (Li et al., 2021). A recent study by Tong et al. (2021) has
discovered a low-cost DES that is composed of zinc chloride, water, and phosphoric acid
for the efficient dissolution of cellulose. This solvent is featured as having both the superior
hydrogen bonding acidity and the hydrogen bonding basicity, and thus can act as a hydrogen
bond molecular scissors to cleave the hydrogen bonds within cellulose. The highlight of the
study is the experiment was conducted at room temperature. Microcrystalline cellulose can be
easily dissolved in the solvent at room temperature with a dissolution ratio of up to 15 wt%.
The dissolved cellulose can also be recovered without any derivatization.

Another up-to-date research was conducted by Sharma et al. (2021) whereby zwitterion-
based DESs have opted for cellulose dissolution and the subsequent processing. Zwitterion-
based DESs were prepared by mixing four types of saccharide at various ratios. Twenty-two
combinations of zwitterion/saccharide mixtures formed DESs in liquid state below 100°C.
The combinations with saccharide ratio of 5 wt% successfully dissolved cellulose due to the
low saccharide load was sufficient for liquefaction but did not disrupt the intrinsic cellulose
dissolution ability of zwitterions. From the perspective of spectroscopic investigation and
quantum chemical calculations, IR, and NMR spectra indicated hydrogen bonds were the
main driving forces for dissolution. Furthermore, theoretical analyses indicate HBA and HBD
in DESs can affect the dissolution of cellulose. Intermolecular interactions in the complexes
have been identified as noncovalent interactions, especially hydrogen bonds, which were
considered to be the driving force of dissolution (Fu et al., 2020).

Hemicellulose is the secondary component of biomass, a heteropolymer with side chains
that consists of short chains of different polysaccharides such as pentoses (xylans), alternating
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TABLE 6.3 Studies on biomass delignification by DESs.

Feedstock DESs Main findings References

Pure lignin and
wheat straw
biomass

� ChCl/Phenol (ChCl-Ph)
� ChCl/α-naphthol

(ChCl-Npt)
� ChCl/resorcinol

(ChCl-Res)
� ChCl/maleic acid

(ChCl-Mal)

� Highest solubility of lignin was obtained by
ChCl-Res (48.15 w/w%), followed by ChCl-Ph
(40.43 w/w%), ChCl-Mal (38.13 w/w%),
ChCl-Npt (23.91 w/w%).

� Lignin solubility of 41.67 w/w% obtained from
delignification of wheat straw biomass by
ChCl-Res.

Malaeke et al.
(2018)

Raw corn straw
and lactic acid
(Lac) pretreated
corn straw

� ChCl/Lac
� Betaine/Lac

� Lignin isolated by DESs was in higher purity
(86.43–89.15%) as compared to that obtained by
enzymatic hydrolysis (47.85–74.65%).

� Acid pretreatment prior to DESs (ChCl/Lac)
treatment produced lignin of simplified structure,
reduced molecular weight, enhanced thermal
stability and higher reactivity.

Liu et al. (2020)

Control and
transgenic
poplar woods

� ChCl/ethylene-glycol/
AlCl3.6H2O

� ChCl/glycerol/
AlCl3.6H2O

� Delignification ratios of transgenic poplars by
DESs were higher (92.98–95.13%) than that of
control poplars (90.66–92.55%).

� Lignin yields from DESs treatment of transgenic
poplars were higher (45.38–54.30%) than that of
control poplars (37.25–38.86%).

� DESs extracted lignin exhibited homogeneous
lignin fractions and enriched phenolic OH groups
with excellent antioxidant properties.

Ma et al. (2021)

Sugarcane
bagasse ChCl/glycerol/FeCl3.6H2O

� High lignin removal efficiency of 82.71% was
obtained, and it was enhanced to 86.39% when
DES was synergized with ultrasound ethanol
treatment.

� Recovered lignin exhibited preserved structures of
β-O-4 and β- β linkages.

Ji et al. (2021)

Roystonea regia
leaves (LR) and
leaf sheaths
(LSR)

In situ DESs generated by
adding ChCl to liquid hot

water (LHW)

� Lignin removal efficiencies were greatly enhanced
by in situ DESs, i.e., 44.6% and 53.6% for LR and
LSR, respectively, compared to that of LHW
(19.1% and 29.9% for LR and LSR, respectively).

Yu et al. (2019)

Pinus bungeana
Zucc. wood

ChCl/Lac � Microwave-assisted DESs pretreatment achieved
lower lignin removal (42.81%) as compared to that
of DESs pretreatment without microwave
(66.59%).

� Microwave-assisted DESs pretreatment efficiently
removed high-substituted xylan and lignin,
causing significant disruption to the morphology
and porosity of the cell wall structure.

Li et al. (2019)

Woody poplar
sawdust (PS)
and herbaceous
miscanthus
(MC)

ChCl/p-toluene sulfonic
acid (p-TsOH)

� Increased in p-TsOH content in the DESs
promoted the lignin removal from PS and MC, at
the optimum ChCl:p-TsOH molar ratio of 1:2.

� NaOH (1%) treatment post DESs extraction further
increased the lignin removal from 71.0–78.5% to
80.9–92.2% for PS. Similar trend was also observed
for MC.

Zhou et al.
(2021)

(continued on next page)
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TABLE 6.3 Studies on biomass delignification by DESs—cont’d

Feedstock DESs Main findings References

Pine wood ChCl-based DESs
(containing acids,

hydroxyl, amide, binary
HBD)

� Among 25 ChCl-based DESs screened, the lignin
removal ranged from ∼10% (ChCl/triethylene
glycol) to 72% (ChCl/lactic acid/formic acid).

� Purity of lignin recovered from DESs ranged from
90 to 97%.

� Delignification efficiency was positively correlated
to the polarity and hydrogen bond acidity of the
DESs.

Oh et al. (2020)

Garlic skin (GS)
and green
onion root
(GOR)

ChCl-based DESs
(containing glycerin, oxalic

acid, urea and metal
chloride as HBD)

� Under four different heating methods of DESs
pretreatment (i.e., oil bath, microwave,
ultrasonic + oil bath and ultrasonic + microwave),
lignin removal from GS and GOR were
55.34–90.14% and 39.53–92.34%, respectively.

� The optimum ternary DESs for GS and GOR
delignification was choline
chloride/glycerol/aluminum chloride
(ChCl-Gly-AlCl3 �6H2O) at the optimum heating
method of ultrasonic and microwave combined.

Ji et al. (2020)

Rice husks,
sugarcane
bagasse, coffee
chaff, corn
stover

� ChCl/Formic acid
� ChCl/Lactic acid
� ChCl/Acetic acid

� The lignin yield (with respect to original biomass)
extracted by DESs ranged from 9.6 to 21.1%.

� Lignin extracted by DESs exhibited reduced
molecular weight and increased molecular weight
distribution range (PDI: 1.06–1.92) and higher
heating values compared to the control black
liquor-derived lignin.

Owhe et al.
(2021)

Maritime pine
wood (Pinus
pinaster Ait.)
sawdust

� Binary DESs (HBA:
ChCl, betaine, urea and
HBD: acetic acid,
glycolic acid, propionic
acid, lactic acid, tartaric
acid, citric acid, lactic
acid)

� Ternary DESs (HBA:
ChCl and HBD: Lactic
acid + tartaric acid,
glycolic acid + citric
acid)

� Among the HBAs, ChCl gave superior
performance in lignin extraction compared to
betaine and urea.

� Among different binary ChCl-based DESs,
ChCl/Lactic acid produced highest lignin
extraction yield (∼32 wt%), whereas ChCl/tartaric
acid produced lignin with the highest purity
(∼87%).

� Ternary DESs ChCl/Lactic acid/Tartaric acid
achieved the optimum lignin extraction efficiency,
with lignin recovery and purity of 95% and 89
wt%, respectively.

Fernandes
et al. (2021)

Oil palm frond ChCl/Urea � Ultrasonic treatment significantly enhanced the
efficiency of lignin removal by DESs, from 14.02%
(DESs treatment only) to 17.73–36.42%
(ultrasound + DESs treatment).

Ong et al.
(2019)

units of mannose and glucose, galactomannan, glucuronoxylan, arabinoxylan, glucomannan,
and xyloglucan that are held together by ß-(1,4)- and/or ß-(1,3)-glycosidic bonds. It is known
that hemicellulose polymer matrix contain highly polymerized phenolic lignin which makes
the conversion process tough, however it is readily degradable into monosaccharides due
to low degree of polymerization and noncrystalline nature and thereby widely used in
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industrial applications such as drug carriers, hydrogels, and cosmetics (Baruah et al., 2018).
Hemicellulose hydrolysis is one of the primary biomass fractionation mechanisms by DESs,
mainly based on the cleavage of ether bonds between lignin and ether/ester bonds between
hemicellulose in lignin-carbohydrate complex (LCC) (Wang & Lee 2021). It was discovered
that the breaking down of the covalent bonds linked lignin-hemicellulose and hydrogen bonds
linked lignin-cellulose, the biomass fractionation toward lignin via DES mainly relies on the
cleavage of aryl ether (C-O bond) and carbon–carbon linkages (C-C bond) in lignin. There
is also occurrence of other chemical reactions for instance hydroxylation, demethoxylation,
condensation, or crosslinking of depolymerized compounds derived from the reactions (Hong
et al., 2020).

Acidic DESs exhibited higher solubility than basic DESs, whereby choline chloride-oxalic
acid (CC-OA) DESs have effectively separated lignin and hemicellulose. It was proven that
the hemicellulose thermal degradation at 150–300°C was denoted prior to DESs pretreatment
(Li et al., 2021). DES synthesized from choline chloride with monobasic acid, dibasic acid, and
polyol can effectively remove hemicellulose from corncob (Li et al., 2021; Zhang et al., 2016).
Hou et al. (2017) has proven that 95.8% of the hemicellulose was hydrolyzed within 4 hours
at 120 °C with strongly acidic DESs (ChCl:oxalic acid) and marginal hemicellulose removal
was observed in mildly acidic DESs. In addition, current study on the sequential pretreatment
methods has remarkable ability for the selective extraction of lignin and hemicellulose from
the watermelon rind (WMR) biomass while preserving cellulose. The ultrasonic cavitation
disintegrates the water molecules into free radicals which assist in the breakage of bonds
by cleaving the linkages in lignin-xylan networks, removes hemicellulose and provides easy
access for the penetration of the DESs in order to increase the accessibility of cellulose
nanocrystals (Fakayode et al., 2021).

In other aspect, the results from Loow et al. (2018) showed that the effectiveness of
ChCl:urea in delignification was attributed to its ability to form hydrogen bonds with phenolic
compounds and displayed synergistic effect. Recently, a study with DESs that consists of
benzyltrimethylammonium chloride/formic acid (BTMAC/FA) has shown an improvement
in delignification and hemicelluloses-removal capacity. It was clarified that the removal ratio
of DESs to hemicelluloses and lignin can be controlled by changing the reaction temperature.
Effective removal of hemicelluloses after DESs pretreatment led to an reduced nonproductive
absorption and diminished coating effect, followed by the breakdown of moieties and linkages
of lignin–carbohydrates complexes (LCCs) which further enhanced the enzymatic hydrol-
ysis (Xie et al., 2021). Nonetheless, further study is still required in systematic exploration
of quantitative structure-activity relationship of hydrogen bond donor properties such as
acidity, polarity, functional groups, and molecular structure on delignification and removal
of hemicellulose for development of economically and environmentally viable solvents (Xu
et al., 2020).

6.4.2 Biomass transformation

Biomass transformation is a generic term referring to the valorization and conversion of
biomass into a wide range of value-added products such as biofuels, biochemicals, bioenergy,
etc. In this framework, the role of the neoteric DESs is indispensable in realizing the concept
of biorefinery as existing studies discovered several roles of DESs in biomass transformation,
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including dissolution, extraction, exfoliation, and conversion (Chen & Mu, 2019). Predomi-
nantly, the use of DESs as pretreatment solvents, extraction solvents, cosolvents, catalysts, or
reaction media is prevalent at the moment. According to Loow et al. (2017), the implementation
of DESs in biomass processing is still at its infancy stage when comparing with the utilization
of DESs in other applications such as electroplating industry. To the best knowledge from these
authors, it is found that the extraction of phenolic compounds from various biomass feedstocks
was successfully achieved in a laboratory scale. Additionally, DESs could be used for other
applications such as production of resin, sugar recovery from biomass, furanic derivatives,
and biodiesel production other than for delignification process.

In order to increase the benefits of lignin in a biorefinery process, a detailed investigation
on the characterization and sequential valorization of DESs extracted lignin are essential
(Wang & Lee, 2021). As mentioned earlier, the extracted lignin could be used as a substitute
element for the production resin. It is evidently proven that DESs derived lignin exhibits better
performance in terms of thermal stability, strength from bonding, and duration involve in the
sunshine gel (Hong et al., 2020; Lian et al., 2015). Tan et al. (2020) highlighted that the reactivity
of the lignin depends on the phenolic hydroxyl group content. The improvement of the lignin
reactivity usually takes place after the DESs treatment are implemented which will increase
the yield of the hydroxyl content in the lignin (Tan et al., 2020). This observation was seen in
the studies by Liu et al. (2016) from the developed lignin modification with DES (ChCl/oxalic
acid) and Chen et al. (2019) from modified nickel oxide and DESs (ChCl/urea).

The extracted or modified lignin can be broadly applied in various applications such
as plasticizer, binder from petroleum-based asphalt, phenolic compounds, wood adhesive,
multi-purpose use nanocomposites and many more (Wang & Lee, 2021). It is said that the DESs
in the phenolic compounds extraction process from biomass possess the capability to become
a receiver and donor for both protons and electrons which could increase the possibility of
hydrogen bond to be formed and also enhance the effectiveness of the dissolution to take place
in the process (Bubalo et al., 2014). Table 6.4 summarized on the studies found in literature
related to phenolic extraction via DESs. From this table, it is observed that chlorine chloride
(ChCl) has been extensively used as DESs due to its outstanding extraction performance. This
can be further explained on the strong hydrogen bonds formed with the selected compounds,
which stop the continuation of the decomposition process to occur resulting to an increment
in the yield of extraction and the production of stable extracts (Alam et al., 2021). In addition,
the cost to synthesize the DESs would be cheaper compared to synthesize the IL by 80% (Xu
et al., 2016). The individual compounds and molar selection play an important role in the DESs
for phenolic compounds extraction (Loow et al., 2017; Wei et al., 2015). Despite lignin could
potentially be used as a feedstock for aromatic compound production, however the production
linked to benzene, toluene, and xylene are said to be limited due to the challenges encountered
by lignin extraction that leads to unnecessary modification required on the lignin behavior
and decomposition, and minimal yield produced (Tian et al., 2017). In addition, an in-depth
understanding of the fundamental chemistry involved in the lignin extraction is still lacking
and considered a necessity for the progression in a larger throughput for the lignin processing
methods in the future (Melro et al., 2018; Xu et al., 2020).

The solvation ability of DESs was also exploited for extraction processes involving biomass
feedstocks where it is versatilely applicable for both solid-liquid extraction and liquid-liquid
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TABLE 6.4 Recent works for phenolic extraction with DESs from various lignocellulosic biomass.

Biomass
feedstock DESs Initial pretreatment

Subsequent
pretreatment

Extracted
compound Key findings References

Wheat straw,
corn stalk,
and rapeseed

� Acidic lactic- chloline
chloride

� Alkaline K2CO3-glycerol
(ChCl/K2CO3-G)

� 5 different DESs are
evaluated:

� Lactic acid (Lac):
Chloline chloride
(Ch) = 2:1

� Lactic acid (Lac5):
Choline chloride = 5:1

� Levulinic acid: Choline
chloride = 2:1

� Malic acid (Malic):
Choline Chloride (Ch)
=1:1

� Glutaric acid (Glu):
Choline Chloride
(Ch) = 1:1

� Glycerol (G): K2CO3
=5:1

� Temperature= 100°C
� Time = 480 min

None Pre-treatment
for phenolic
compound

� Highest delignification
yields achieved from
ChCl/K2CO3-G (11.8–5.7
wt-%).

� Nanocellulose viscosity
(555–1360 Pa.s)

� Crystallinity index
(38–54%)

(Suopajärvi
et al., 2020)

Onion (Allium
cepa L.)

ChCl/urea/H2O: 1:2:4 ChCl:urea = 1:1–1:3
Temperature = 50–90°C
Time = 60–150 minutes

None Total phenolic
content

� Major flavonoids
(quercetin, kaempferol,
and myricetin) were
found.

� Antiradical scavenging
activity of 76.31% for
ChCl/urea/H2O was
obtained.

Pal and Jadeja
(2019)

(continued on next page)
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Microalgae
Chlorella
vulgaris

ChCl/G/Ethylene glycol
(EG)/1.3-propanediol
(PDO)/1,4-butanediol
(BDO)

◦ Temperature = 60°C
◦ Time = 100 minutes
◦ Solvent to biomass ratio:

20:1

Caffeic acid,
Gallic acid,
p-Coumaric
acid

Optimum condition
achieved at temperature
(60°C), extraction time (10
min), and solvent to biomass
ratio (20:1) to achieve 2-fold
extraction efficiency with
higher total polyphenolic
content compared to
conventional solvent.

Wan Mahmood
et al. (2019)

Orange peel ChCl/Levulinic acid
(LeA)/N-methyl urea
(1:1.2:0.8)

50 25 Total
flavonoid

� Highest extraction yield
of total flavonoids from
ChCl-LeA-N methyl urea.

� Polymetoxylated
flavonoids (PMFs) of
18.75 mg/g and
glycosides of flavonoids
(GOFs) of 47.07 mg/g
achieved at the optimum
conditions.

Xu et al. (2019)

Orange peel
waste

ChCl/EG (1:4) 60 100 Total phenolic The total phenolic content of
3.61 mg gallic acid (GAE)/g
orange peel (OP) and
antioxidant potential of 30.6
μg/mL at the operating
condition of water content
(10wt%), temperature
(333.15K), solid to liquid
ratio (1:10), and extraction
time (100 minutes).

Ozturk et al.
(2018)

Empty fruit
bunches

ChCl:Glycerol (G) (1:2) Solid to liquid ratio = 10
Temperature = 120°C
Time = 8 hours

None – � The biopolymer removal
in glucan, xylan, and
lignin respectively are
31%, 15%, and 17%.

� Solid yield produced is
96%.

Tan et al. (2018)
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extraction. For instance, recent studies indicated promising application of DESs as an ex-
traction solvent to remove glycerol from biodiesel. Glycerol is a reaction by-product from
biodiesel production which is highly undesirable due to the potential damages to modern
diesel engines, hence must be eliminated through purification processes that are often costly. In
particular, biodiesel purification by using DESs is a much cheaper alternative which exhibited
outstanding performance with near complete removal of glycerin along with short residence
time (Šalić et al., 2020). Apart from that, DESs also portrayed significance in the extraction of
useful substrates from animal biomass such as crustacean shells. A study made use of DESs
as an exfoliating agent to remove the outer surface of shrimp cells for the isolation of chitin
substrates, in which DESs play simultaneous roles as demineralization, deproteinization,
and chitin dissolution solvent (Bradić et al., 2020). Other instances include extraction of
phenolic compounds, protein substrates, carbohydrate fractions, lignin oligomers, bioactive
compounds, etc. that are either functional on their own or could be further processed into
other value-added products.

Another notable involvement of DESs in biomass transformation can be linked to its role as
catalysts. Catalysts have been acknowledged as an important asset to the chemical industry.
In this context, catalysts can be regarded as the backbone to various industrial processes
which lower the activation energy, increase the reaction rate, conversion, and yield, or as a
prerequisite to certain chemical reactions. Various catalytic systems driven by DESs have been
explored to produce upgraded biochemicals and value-added bioproducts, with the aim of
harvesting the full chemical potential from biomass feedstocks. For instance, choline chloride-
based DESs were used to catalyze the transformation of seaweed biomass into graphene which
is a promising nanomaterial exhibiting exceptional mechanical, electrical, optical and thermal
properties, with emerging applications including wearable electronics, membranes, biotech-
nology, energy storage, and much more (Mondal et al., 2016). Other studies also reported
roles of DESs as catalysts in the conversion of biomass to sugars, protein-rich precipitates,
biofuels, platform chemicals, etc. (Arslanoğlu & Sert, 2019; Bodachivskyi et al., 2019; Chen &
Mu, 2019; Williamson et al., 2017). Catalytic DESs are renowned for its superiority compared
to conventional solvents such that the concern over toxic by-products as typically seen in
conventional catalysts are eliminated due to the environmentally friendly nature of DESs. On
another note, DESs were found to be a viable alternative to precious metal-based catalysts
and complex compounds for certain chemical reactions which is a far more sustainable option
worth for further exploration.

Solvents are also typically used as reaction media for chemical synthesis wherein multiple
studies reported enhanced performance by using DESs in place of conventional solvents across
various applications. Chemical reactions are often carried out in a reaction media that are
typically organic solvents or water which acts a medium for the feedstocks and reagents
to dissolve and promote close, rapid contact at the molecular level. For example, improved
yield of biodiesel compared to using ionic liquid as the reaction media was reported in a
study (Merza et al., 2018). Additionally, existing works often employ DESs as the reaction
media in various biomass transformation related studies to replace conventional solvents,
especially ionic liquids that are analogous to DESs. Besides, material modification involving
DESs is also commonly reported. For instance, DESs were used as a swelling agent that
loosens the softwood biomass fibrous structure to enhance the efficiency for the production
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of nonchemically modified cellulose nanofibers (Sirviö et al., 2021). However, it is essential to
note that the exact function of DESs reported in existing research works is rather unclear since
there is no clear boundary to that. The role as solvents, catalysts, reaction media, etc. could not
be clearly distinguished as DESs may contribute a fraction to solvation, catalytic activity, or
material modification simultaneously in a reaction. Hence, the high efficiency of DESs reported
across various studies could be a synergistic effect of its multiple roles combined and further
works that clears this ambiguity would be highly recommended.

6.5 Current constraints

The current progress of DESs synthesis and their industrial applications are still considered
to be in their infancy. Despite the significant surge in the research interest related to DESs, most
existing research works were in the form of case studies and focused on the application of DESs
in various fields including but not limited to biomass pretreatment. The building principles,
the mechanism, and kinetics of DESs in biomass dissolution and the subsequent conversion
of biomass are not totally clear. Since fundamentals serve as the building block to profound
knowledge, more advanced techniques and methods should be called for to explore these
processes in order to clarify the ambiguity in the actual role of DESs in biomass pretreatment
and the factors that are affecting the interactions at the molecular level.

Another major issue with regards to using DESs as the biomass pretreatment media is the
lack of rapid and accurate tools for assessing and tracking the compatibility and effectiveness
of DESs on varying biopolymer components and composition. Consequently, existing works
typically adopt the “trial-and-error” approach in formulating DESs for specific applications
due to the lack of theoretical understanding and robust modeling techniques that enable
computer-aided design and development of DESs which will save tons of effort and time in
research. On another note, it is worth mentioning that not every single combination of HBAs
and HBDs at specific molar composition is compatible with each other or could result in a
significant performance in biomass dissolution.

From the perspective of applicability, recycling and reusing DESs would be the ideal
scenario that is highly favorable for low-cost and high-volume applications in the industry.
Early studies have shown that DESs are considered to be readily recyclable because their
synthesis and regeneration do not involve any chemical reactions but only the formation or
dissociation of the hydrogen bonding network that binds their constituents together (Xu et al.,
2017). Although it is broadly acknowledged that recycling DESs for multiple cycles is possible,
more in-depth studies on the recovery and the chemistry beyond recycling DESs must be
conducted to prove the potential in cost reduction and lower chemical uses with respect to
biomass pretreatment efficiency. For instance, some studies pointed out the recovered DESs
that were reused for the subsequent biomass pretreatment demonstrated lower pretreatment
efficacy which can be attributed to the increase of impurities in the recovered solvents after
each recycles (Kim et al., 2018).

Although biomass resources are indeed relatively cheap, the processing cost is often suffi-
ciently high to the extent that utilizing biomass resources is greatly discouraged. Hence, the
development of inexpensive and renewable green solvents is highly sought after. Although
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most of these solvents were advertised and promoted as low-cost alternatives due to the
starting materials being readily available and not exotic in nature, systematic methodologies
such as life cycle assessment (LCA) or other technoeconomic analysis for using DESs as
pretreatment media of biomass should be performed and properly documented. It is essential
to note that a large fraction of the existing studies was using pure chemicals of analytical or
reagent grade for their studies from which the costs of these pure chemicals are relatively
high. To guarantee the economic feasibility of using DESs in the industry, these solvents need
to attract a high market demand and be manufactured at an industrial scale in order to reach
cost parity with existing technologies to finally qualify as low-cost green solvents. Similar
to most established industrial processes, a possible key step toward maximizing the worth
of DESs on an industrial scale could include finding or creating markets for the by-products
generated from biomass pretreatment.

The stability of DESs is a very recent concern that was rarely discussed in previous works. In
this context, the pretreatment of biomass by using DESs typically involves a thermo-chemical
approach where the pretreatment condition usually exposes the DESs to harsh conditions such
as elevated temperature or to be used in combination with ultrasound or microwave-assisted
techniques to accelerate the speed of the pretreatment process and conversion of biomass. A
recent study discovered and called for the concern over biomass pretreatment using choline
chloride and carboxylic acid-based DESs due to the accelerated degradation of DESs during
its application (Rodriguez Rodriguez et al., 2019). The degradation of DESs was attributed to
the esterification side reaction that was accelerated at elevated temperature or even simply
left at room condition for a prolonged period. Hence, it is evident that the stability of DESs
must be revisited and feasible solutions should be properly addressed before progressing with
industrial-wide implementation.

6.6 Conclusions and perspectives

Biomass pretreatment remains a key bottleneck in the valorization of biomass to produce
biofuels and other value-added bioproducts. Although some of the existing pretreatment
methods outstand the others, it is still unlikely that any specific method will become the
ultimate choice for every biomass due to the varying composition in different biomass,
at least not for all feedstocks. To relate, the existing pretreatment methods achieved great
efficiency in biomass pretreatment and subsequently the conversion of biomass but there is
always a drive to accommodate a wider range of possibilities and solutions in this sector.
As the eye of the world shift toward acknowledging environmental sustainability as the new
focus, many conventional pretreatment methods would no longer be in favor and could be
phased out soon. Since the green chemistry metrics marked a significance toward sustainable
development, biomass pretreatment strategies should make a transition to involve greener
strategies despite the existing pretreatment methods being effective and well-established.
The recent emergence of DESs is very much still in its infancy but early studies indicated
promising results as a pretreatment media for biomass feedstocks. The traits of DESs are
also ideal as a readily available, low cost, highly tunable, and environmentally friendly green
solvent. Despite the current constraints faced in the development of DESs, this area of research
outseen prospects for biomass valorization and left a large room yet to be explored. The key to
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maximizing biomass potential may lie in the tons of questions regarding DESs that were left
unanswered. Therefore, further works are highly recommended to contribute to the expanse
of this research area and ultimately the commercialization of DESs in the biomass industry to
upgrade the existing biomass utilization roadmap to a wider energy generation and chemical
production sector.
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