

VISUALISATION TOOL TO STUDY MALARIA TRANSMISSION USING NETWORK MODELLING

Wong Ji Yeh

Bachelor of Computer Science with Honours (Computational Science) 2014

Pusat Khidmat Maklumat Akademit. UNIVERSITI MALAYSIA SARAWA?

VISUALISATION TOOL TO STUDY MALARIA TRANSMISSION USING NETWORK MODELLING

WONG JI YEH

This project is submitted in partial fulfilment of the requirements for the Degree of Bachelor of Computer Science

> Faculty of Computer Science and Information Technology UNIVERSITI MALAYSIA SARAWAK 2014

UNIVERSITI MALAYSIA SARAWAK

					<u> </u>	
	THES	SIS STATUS	ENDO	RSEMENT	FORM	
тіті ғ	VISUALIS	ATION 1	TOOL	TO STU	DY MAL	ARIA
	TRANSMIS	SION US	ING	NETWUR	K MODEL	ING
	ACAL	DEMIC SESS	SION: _	2013	12014	
_		(CAPI	TAL LE	ITERS)		
hereby agree t Malaysia Sara	that this Thesis* s wak, subject to the	hall be kept at following terms	the Centr s and cond	e for Academi ditions:	c Information So	ervices, Universiti
 The T The C educa The C 	Thesis is solely own Centre for Acade ational purposes on Centre for Academ	ned by Universit mic Informatio ly lic Information	ti Malaysi on Servic Services	a Sarawak es is given fi is given full ri	ull rights to pr ghts to do digiti	oduce copies for zation in order to
4. The C as par interli	 develop local content database 4. The Centre for Academic Information Services is given full rights to produce copies of this Thesis as part of its exchange item program between Higher Learning Institutions [or for the purpose of interlibrary loan between HLI] 			pies of this Thesis for the purpose of		
5. ** Ple	ease tick (√) IFIDENTIAL	(Contains cl SECRETS AC	assified	information	bounded by	the OFFICIAL
RES'	TRICTED ESTRICTED	(Contains rest where the res	ricted info search was	ormation as did s conducted)	tated by the boo	ly or organization
(AUTHOR'S	iya s Signature	·)		Validat (SUPE	RVISOR'S SI	GNATURE)
Permanent Address			ł	Faculty of Com	Torrin Liz Lecturer Sutor Science and	B Information Technology
No.6, JI Seganat (Johor.	In Nagasari 18 Baru, 85000 !	segamat,		UNIVE	SITI MALAYS	A SARAWAK
Date: 8	8/6/2014			Date: _	18 June	2014

Note
Thesis refers to PhD, Master, and Bachelor Degree
For Confidential or Restricted materials, please attach relevant documents from relevant organizations / authorities

ACKNOWLEDGEMENT

First and foremost, I praise God, the Almighty, for His showers of blessings throughout the process to complete my final year project successfully.

I would like to express my deep gratitude to my project supervisor, Mr. Terrin Lim, for giving me the opportunity to do this project and providing invaluable guidance, motivation and inspiration. It was a great pleasure to do this project under his supervision. I would like to thank him for his friendship, empathy and sense of humour.

I would like to extend my gratitude to Assoc. Prof. Dr. Jane Labadin who has given me priceless advises and courage in this project. To my friends that always there to help and encourage whenever I was in need.

I am grateful to my parents for their love, prayers, care and sacrifices for educating and preparing me for my future.

Pusat Khidmat Maklumat Akademi' UNIVERSITI MALAYSIA SARAWA

TABLE OF CONTENTS

Thesis Status Endorsement Formi
Acknowledgementii
Table of Contentsiii
List of Tables
List of Figures
List of Equationsix
List of Nomenclaturesxi
Abstract
Abstrak
Chapter 1: Introduction
1.0 Introduction
1.1 Problem Statement
1.2 Objectives
1.3 Methodology
1.4 Scope
1.5 Significance of Project
1.6 Project Schedule
1.7 Project Report Outline
Chapter 2: Literature Review
2.0 Introduction
2.1 Malaria
2.2 Contact Network
2.3 Contact Strength Algorithm
2.3.1 Malaria Transmission Network
2.3.2 Contact Strength Generating Algorithm
2.4 HITS Algorithm10
2.4.1 Background Study of HITS Algorithm10
2.4.2 Search Engine System Design

	2.4.3	Summary	11
2.5	Existi	ting Network Analysis System	11
	2.5.1	UCINET 6	12
	2.5.2	NetLogo	12
2.6	Sumn	mary	14
Chap	ter 3: F	Requirements Analysis and Design	15
3.0	Introd	duction	15
3.1	Metho	odology	15
3.2	Java I	Universal Network/Graph (JUNG) Framework	17
3.3	Requi	irements Analysis	17
	3.3.1	Contact Network Structural Representation	
	3.3.2	Public Place Model	
		3.3.2.1 Malaria Life Cycle Model	18
		3.3.2.2 Malaria Vector Biting Model	19
		3.3.2.3 Malaria Vector Abundance Model	20
		3.3.2.4 Malaria Vector Survival Model	20
		3.3.2.5 Larval Count Estimation Model	21
		3.3.2.6 Expected Number of Annual Working Days Model	22
		3.3.2.1 Actual Number of Annual Working Days	22
	3.3.3	Human Beings Parameters	23
	3.3.4	Contact Strength Model Calculation	23
	3.3.5	Contact Strength Normalisation	24
3.4	Systen	m Design	25
	3.4.1	Input Module	25
	3.4.2	Processing Module	26
	3.4.3	Output Module	
3.5	Proces	ss Flow	
3.6	System	n Requirements	30
3.7	Chapte	er Summary	31

Chap	ter 4: l	mplementation	32
4.0	Intro	luction	32
4.1	Data	Input	33
4.2	Data	Pre-processing	34
	4.2.1	Ensure Data Completeness	34
	4.2.2	Prepare Data for Computation for Both Node Types' Parameters	36
4.3	Conta	ct Network Generation	38
4.4	Conta	ct Strength Generation	40
4.5	HITS	Search Engine Algorithm Implementation	44
	4.5.1	Input Section	44
	4.5.2	Transformation Section	44
	4.5.3	Search Section	46
	4.5.4	Indexing and Sorting Section	47
	4.5.5	Output System	48
4.6	Outpu	t Results	49
4.7	Summ	nary	51
Chap	ter 5: E	valuation	52
Chapt 5.0	ter 5: E Introd	valuation	52 52
Chap 5.0 5.1	ter 5: E Introd Bench	valuation uction mark Validation	52 52 52
Chap (5.0 5.1	ter 5: E Introd Bench 5.1.1	valuation uction mark Validation Loading Data into System	52 52 52
Chap (5.0 5.1	ter 5: E Introd Bench 5.1.1 5.1.2	valuation uction mark Validation Loading Data into System System Runs and Output	52 52 52 53
Chap (5.0 5.1 5.2	ter 5: E Introd Bench 5.1.1 5.1.2 Usabil	Avaluation uction mark Validation Loading Data into System System Runs and Output lity Testing	52 52 53 53 55
Chape 5.0 5.1 5.2	ter 5: E Introd Bench 5.1.1 5.1.2 Usabil 5.2.1	Avaluation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test	52 52 53 53 55 56
Chape 5.0 5.1 5.2	ter 5: E Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2	Avaluation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users	52 52 53 53 55 56 57
Chapt 5.0 5.1 5.2	ter 5: F Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2 5.2.3	Instruction uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users Prepare the Test Materials (Questionnaires)	52 52 53 53 55 56 57 57
Chapt 5.0 5.1 5.2	ter 5: F Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2 5.2.3 5.2.4	Evaluation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users Prepare the Test Materials (Questionnaires) Conduct the Usability Test	52 52 53 53 55 56 57 57 57
Chapt 5.0 5.1 5.2	ter 5: F Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	valuation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users Prepare the Test Materials (Questionnaires) Conduct the Usability Test Report the Results and Recommend Improvements	52 52 53 53 55 56 57 57 57 58
Chapt 5.0 5.1 5.2	ter 5: E Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	valuation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users Prepare the Test Materials (Questionnaires) Conduct the Usability Test Report the Results and Recommend Improvements 5.2.5.1 Usefulness of the Tool	52 52 53 53 55 56 57 57 57 58 59
Chap(5.0 5.1 5.2	ter 5: E Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	valuation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users Prepare the Test Materials (Questionnaires) Conduct the Usability Test Report the Results and Recommend Improvements 5.2.5.1 Usefulness of the Tool 5.2.5.2 Ease of Use	52 52 53 53 55 56 57 57 57 57 58 59 59
Chap(5.0 5.1 5.2	ter 5: E Introd Bench 5.1.1 5.1.2 Usabil 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	valuation uction mark Validation Loading Data into System System Runs and Output lity Testing Plan the Usability Test Select Representative Sample of Users Prepare the Test Materials (Questionnaires) Conduct the Usability Test Report the Results and Recommend Improvements 5.2.5.1 Usefulness of the Tool 5.2.5.2 Ease of Use 5.2.5.3 Satisfaction	52 52 53 53 55 56 57 57 57 57 58 59 59 59 60

Chapter 6: Conclusion and Future Works	62
6.0 Introduction	62
6.1 Revisiting the Objectives	63
6.2 Future Works	63
6.3 Conclusion	64
References	65
Appendices	68
Appendix A – Project Schedule	68
Appendix B – Source Code	69
Appendix C – USE Sample Questionnaire Form for Usability Testing	79

.

LIST OF TABLES

Table 3.1: Temperature Variation with Life Cycle and Bite Rates	
Table 3.2: Vector Abundance Variation with Elevation	20
Table 3.3: Malaria Vector Survival Table	21
Table 3.4: Data of Larval Count Near River	22
Table 3.5: Input Parameters with Values and Formats	26
Table 4.1: Hub Matrix	45
Table 5.1: Benchmark Ranking Results	55
Table 5.2: Usefulness of the Tool Questionnaire Results	59
Table 5.3: Ease of Use Questionnaire Results	59
Table 5.4: User Satisfaction Questionnaire Results	60
Table 6.1: Project Objectives and Achievements	63

.

LIST OF FIGURES

Figure 2.1: Simple Contact Malaria Network	10
Figure 2.2: NetLogo Layout for Wolf-sheep Predation Model	13
Figure 3.1: Contact Strength Model Block Diagram	23
Figure 3.2: Data Processing and Implementation	26
Figure 3.3: Context Level Data Flow Diagram	29
Figure 3.4: Level 0 Data Flow Diagram	29
Figure 4.1: System Implementation Steps	32
Figure 4.2: Add New Record Data Input Interface	33
Figure 4.3: Main Window (New Record Added)	36
Figure 4.4: Main Window after Run (Link Matrix)	4 0
Figure 4.5: Contact Strength Matrix Generated (Main Window)	43
Figure 4.6: Structural Attributes of Hub and Authority Matrices	45
Figure 4.7: Dominant Public Places Ranking (Result Window)	.48
Figure 4.8: Result Window of the System	.50
Figure 4.9: Graph Manipulation Instructions	.50
Figure 4.10: Data Exporting Functions	.51
Figure 5.1: Benchmark Validation Results in <i>ucinetlog8</i> File	.54
Figure 5.2: Usability Test Procedures	.56
Figure 5.3: Usability Testing Work Flow	.58

LIST OF EQUATIONS

Equation No.	Equations	Page No.
(1)	$t = \frac{t - mean(T)}{std(T)}$	19
(2)	$C(t) = \frac{1}{5.6574t^4 - 11.4135t^3 + 6.0585t^2 - 5.5914t + 12.3212}$	19
(3)	$B(t) = -58.6148t^5 + 93.5244t^4 + 35.0133t^3 - 70.9706t^2$	20
	-12.1459t + 18.4803	
(4)	$A(e) = 12.8090e^2 - 22.7858e + 36.4273$	20
(5)	$e = \frac{e - mean(E)}{std(E)}$	20
(6)	$S(t) = -14.3229t^4 - 6.9175t^3 - 1.7708t^2 - 3.5576t + 61.000$	21
(7)	$L(NearRiv, N) = \begin{cases} 0.73N & if NearRiv = 1, \\ 0.268N & otherwise. \end{cases}$	22
(8)	#EWD = [365- (52(WkPubHoliday))] * 1440	22
(9)	$\#\text{YEARMIN} = \text{INT}\left[\left(\frac{\text{PPDT}}{1440}\right) * \#\text{EWD}\right]$	22
(10)	$CS(x,y) = C(t)_x + B(t)_x + A(e)_x + S(t)_x + L(r,N)_x + YearMin_x$	23

 $+D_{x.y}$

ix

$$(11) \quad CS(x,y)$$

$$= \begin{pmatrix} 1/(5.6574t^{4} - 11.4135t^{3} + 6.0585t^{2} - 5.5914t + 12.3212) \\ + \\ (-58.6148t^{5} + 93.5244t^{4} + 35.0133t^{3} - 70.9706t^{2} - 12.1459t + 18.4803 \\ + \\ (12.8090e^{2} - 22.7858e + 36.4273) \\ + \\ (-14.3229t^{4} - 6.9175t^{3} - 1.7708t^{2} - 3.5576t + 61.000) \\ + \\ (0.73N \quad if NearRiv = 1 \\ (\\ 0.268N \quad otherwise. \\ + \\ (INT \left[\left(\frac{PPDTx}{1440} \right) * \#EWD \right] \right) \\ + \\ Dx.y \quad , \end{cases}$$

(12)
$$ContStrNew(x,y) = 0.9 * \frac{ContstrRawMat(x,y)}{Largest}$$
 25

(13)PPDT = PPCT - PPOT37(14)
$$Dx. y = daysPerWeek * 52 * hoursPerDay * 60$$
38(15) $Hub = ContStrMat$ $ContStrMat^T$ (16) $Auth = ContStrMat^T$ 44(17) $Hv = \lambda v$ 46

(18)
$$v_{K+1} = \frac{Hv_K}{||Hv_K||}$$
 47

LIST OF NOMENCLATURES

API :	Application Programmer Interface
IDE :	Integrated Development Environment
mean(T):	Mean of value T
std(T):	Standard deviation of value T
INT(y):	Integer part of any real number y
CSV :	Comma-Separated Values file
PDF :	Portable Document Format
Set :	Java data structure which does not allow duplicate elements
Matrix ^{<i>T</i>} :	T - Transpose operator for matrix
λ:	Eigenvalue
<i>v</i> :	Eigenvector
epsilon :	Stopping criteria in a loop
maxIteration :	Maximum number of iteration
PNG :	Portable Network Graphics, an image file format

ABSTRACT

Malaria has been described as one of the major killer diseases. There were about 219 million cases of malaria in 2010 and an estimated 660,000 deaths. This deserves urgent scientific investigations and studies on malaria transmission. Since malaria is a vector borne disease, this project aims to produce a visualisation tool to model the disease transmission through formulating a heterogeneous bipartite contact network of two node types (public places and human beings). In addition, the Hypertext Induced Topical Search (HITS) web search algorithm was adapted to implement a search engine, which uses the bipartite contact network as the input. Java was used to implement the visualisation tool. The output from this visualisation tool shows predicted hotspots which harbour the infected malaria vectors. This output was validated with UCINET 6.0 as the benchmark system. A similar dominant node ranking output was obtained when the output from the benchmark system is compared with that of the modelling tool. The resulting information is believed helpful to tackle the issue of malaria transmission from the perspective of vectors detection.

ABSTRAK

Malaria telah digambarkan sebagai salah satu penyakit pembunuh yang utama. Terdapat kira-kira 219 juta kes-kes malaria pada tahun 2010 dengan anggaran 660,000 kematian. Hal ini memerlukan penyiasatan saintifik segera dan kajian mengenai transmisi malaria. Oleh kerana malaria merupakan penyakit bawaan vektor, projek ini bertujuan untuk menghasilkan alat visualisasi untuk memodelkan transmisi penyakit melalui merumuskan jaringan hubungan heterogen dwibahagian daripada dua jenis nod (tempat-tempat awam dan manusia). Di samping itu, algoritma carian web *Hypertext Induced Topical Search (HITS)* telah diguna pakai untuk dilaksanakan dalam enjin carian yang menggunakan jaringan hubungan dwibahagian sebagai input. *Java* digunakan untuk melaksanakan alat visualisasi. Output dari alat visualisasi ini menunjukkan *hotspot* yang diramal meliputi vektor malaria yang dijangkiti. Output itu telah disahkan dengan menggunakan UCINET 6.0 sebagai system penanda aras. Output kedudukan nod dominan yang serupa telah diperolehi apabila output system penanda aras dibandingkan dengan output alat peragaan itu. Maklumat terhasil dipercayai berguna untuk menangani masalah transmisi malaria dari segi pengesanan vektor.

CHAPTER ONE

INTRODUCTION

1.0 Introduction

Malaria is one of the major killers and dangerous diseases. It is a mosquito-borne infectious disease of humans that caused by a parasite called *Plasmodium*. This disease is transmitted via bites from an infected female *Anopheles* mosquito. Every year, there are 350 to 500 million people infected with this disease. In 2010 malaria caused an estimated 655,000 deaths worldwide (WHO, 2013). Thus, it deserves attentions and further scientific investigations on malaria transmission.

The purpose of this project is to develop a Java-based visualisation tool to represent and communicate malaria transmission information clearly and effectively through graphical means. This tool aims to allow users to see, explore and understand large amount of malaria transmission information more easily by providing visual representations and interactive interfaces. The user or analyst does not have to learn the sophisticated network modelling method to study the malaria transmission. Thus, the focus of this project will be on building a visualisation tool that models humans and their visits to public places which might expose them to malaria disease.

1.1 **Problem Statement**

Malaria transmission in public places is a problem in terms of vector detection that needs scientific investigation. A thesis by Eze (2012) gave a practical scenario observed in 2010 when a team of vector control experts visited UNIMAS to carry out fogging work against malaria and dengue vectors, the team mentioned that they lacked of vector detection tools which resulted in the team possibly does fogging in the wrong places.

There are quite a number of disease modelling and vector detection methods in existence that have some associated disadvantages. One of the examples is the disease modelling methods that assume homogeneity in population where it refers to the assumption that every individual in the disease transmission environment has same probability of mixing with one another and hence get infected. The results based on this assumption may lead to an inaccurate and unrealistic modelling of disease. An improvement over this fault strategy is to employ the proposed network modelling method that takes into account the variation of contacts which leads to disease transmission.

Humans move around in public places that might expose them to risks of being bitten by mosquitoes carrying the malaria disease. Up until now, no system has been developed to study and predict the exposure risks of humans in public places such as markets, schools, food courts and fields. Thus, the purpose of this malaria disease transmission study is to predict transmission of this disease in public places and develop a visualisation tool for such transmission model.

1.2 Objectives

The objectives of project can be listed as follows:

- To apply and implement a network-based model of malaria transmission using HITS web search algorithm.
- To develop a Java-based visualisation tool for such transmission model.
- To predict public places that are hotspots for malaria infections using the visualisation tool.

1.3 Methodology

The purpose of this project is to study and model malaria transmission using contact network model. The model produced is then passed as an input to the Hypertext Induced Topic Search (HITS) web search algorithm to predict and rank the public places that are likely to expose people to risk of malaria infection. To provide better presentation of malaria transmission modelling, a Java-based visualisation tool will be developed based on the network model and HITS algorithm. This project is based mainly on the thesis by Eze (2012) published in Faculty of Computer Science and Information Technology in UNIMAS with the title of "Web Algorithm Search Engine Based Network Modeling of Malaria Transmission". The visualisation tool will be built by implementing the network modelling technique and web search engine algorithm introduced in the thesis. The methodology for carrying out the project involves a number of procedures as follows:

o Literature Review

Research on malaria disease transmission, contact network modelling, HITS search algorithm and existing software or system in disease transmission modelling.

• Feasibility Analysis

Assess the feasibility of different methods to model the disease transmission. The contact network modelling is preferred since it provides better data modelling result.

• Project Plan

This step includes specifying the scope of this project based on the time available. The project scheduling and activities planning are also be defined.

System Development

After the project plan, the Java-based visualisation system is implemented. Java provides a framework that supports social network analysis for modelling and visualisation of relational data. This available Java API is adopted to develop the visualisation tool that helps in study of malaria disease transmission in public places.

o Benchmark Validation

UCINET 6 is chosen as a benchmark validation system to determine the appropriateness and accuracy of the resulting system.

o Project Evaluation

Project review should be conducted to determine whether or not the project objectives are achieved.

Pusat Khidmet Maklumat Akademik UNIVERSITI MALAYSIA SARAWA

1.4 Scope

The scope of the project covers how to implement contact network in modelling of disease transmission such as malaria. This work includes understand and implement this modelling method into building a visualisation system. Besides, this project will be looking at a web search algorithm, Hypertext Induced Topic Search (HITS), which will be implemented into the visualisation system to detect and rank public places (such as markets, schools and fields in Kuching area) in terms of their vector density. The factors that are taken into consideration for model calculation in this project are only a few, such as instance human movements, but not all (e.g. weather) of them. The effects of such unused factors are assumed negligible to the study.

The main intention of this project is to develop a visualisation tool to model malaria transmission. The implementation of this visualisation tool is built based mainly upon the published thesis in malaria disease transmission modelling using contact network model by Eze (2012). Thus, it is of assumption that a contact network model is appropriate to study and predict malaria transmission. It is beyond the scope of this work to include further enhancement and study out of the referred thesis, and may indeed be considered as future work.

1.5 Significance of Project

Since malaria disease is transmitted via bites of infected mosquitoes to humans and human beings have different attributes and behaviours in mixing with others, therefore a heterogeneous network rather than a single-node network modelling method would be more suitable in studying malaria disease transmission in public places. With a contact network model given, a search engine algorithm would be appropriate to be used to detect the public places of interest. The HITS web search algorithm is chosen to be implemented in this system for vector density detection.

As no existing tool that implements contact network method in the study of malaria transmission, the significant contribution of this project is to offer a disease modelling system for researchers to visualise and study malaria transmission. This system also aims to provide disease modelling experts an interactive tool to predict and rank public places in terms of their vector population or density, so that appropriate action can be taken to control the disease transmission in those public places. This in turn is believed and expected that this visualisation tool will have a huge impact on malaria transmission detection and control in public places.

1.6 **Project Schedule**

The project schedule is attached in Appendix A.

1.7 **Project Report Outline**

This report consists of six chapters. Following this introductory chapter, reviews on some existing disease transmission modelling systems and papers related to the field are presented in Chapter 2. In Chapter 3, the methodology and requirement analysis and design of the proposed system are discussed. Output of the system and their functionalities are also described and explained. Chapter 4 describes the details of the implementation of this project. System specification and requirements are given as well. The programming codes and library functions used will be discussed in detail. In Chapter 5, the system is tested and validated. Besides that, the results of the proposed system are presented. This project's conclusion and future works are in the final chapter, Chapter 6.

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

The aim of this chapter is to present the study and research conducted by other researchers on disease transmission modelling, and to review existing software and system that are related to this work. In particular, this chapter shows what malaria is and how its transmission can be modelled using a contact network. Then, a review and study on existing software systems that used to visualise and model disease transmission will be presented. This chapter ends with a brief conclusion.

2.1 Malaria

Malaria is a dangerous disease caused by a parasite called *Plasmodium*, which is transmitted through the bites of infected mosquito (*Anopheles*) to human beings. Without proper treatment, malaria can quickly become life-threatening by disrupting the blood supply to vital organs in human body (W.H.O, 2013). Several efforts towards reducing the spread of malaria have failed since the parasites have developed resistance to a number of malaria medicine and drugs (Erah et al., 2003). World Malaria Day held recently by World Health Organization has urged for research and academic institutions to join and invest in malaria prevention and control (W.H.O, 2013).

2.2 Contact Network

In disease transmission model, a contact network is a graph structure that is used to represent interactions that lead to disease infections (Eze, 2012). Meyers (2007) describes that a contact network is a graph structure where each vertex represents a person (or location) and the edges represent contacts among people (or locations) in the network (Eze, 2012). Hence for this work, the contact network for modelling malaria transmission is a graph with two types of node which are public places that contain the infected malaria vectors and human beings. The edges of the networks depict the relationship between the human beings and the public places, and this relationship is formed as a result of the human visiting those public places such as markets and fields (Eze, 2012).

2.3 Contact Strength Algorithm

The objective of this section is to give a brief review of the algorithm to generate contact strength in malaria transmission network model. Before the algorithm discussion, it is necessary to give a review on the malaria transmission network model.

2.3.1 Malaria Transmission Network

Since malaria transmitted through mosquito bites, there must be points of contact between human beings and mosquitoes. This implies that there is an interaction between these two nodes (human beings and mosquitoes), which can be utilised by researchers to build network models to study malaria transmission (Eze et al., 2011). This contact strength generating algorithm is used to determine the strength of relationship between these interacting nodes of the network.

2.3.2 Contact Strength Generating Algorithm

As discussed by Eze et al. (2011), the major aim of this algorithm is to quantify in numerical terms the strength of relationship between the interacting nodes. Research in the medical field has shown that the higher the exposure to disease-causing agents (such as vectors), the greater the likelihood to contact with such disease. A professor of medicine, Agius (2011) defined exposure as the product of duration and frequency of contact with the disease-causing agents network (Eze et al., 2011). Thus, duration and frequency of visits among other parameters is used to build the strength of relationship between human beings and public places nodes in this network model.

The contact strength generating algorithm assumed that each human being has predictable and scheduled contact time with public places where, for instance, a student goes to school from Monday to Friday. This algorithm gives rise to a normalized contact strength matrix and it is probability theory compliant. The results show that any two heterogeneous nodes can be generated using this algorithm, implying that probabilistic techniques for further analysis and study will be possible (Eze et al., 2011).

The research on network modelling of malaria transmission has contributed in understanding of malaria transmission in a network of interactions comprised of human beings and mosquitoes. Contact strength generating algorithm is proved to be an important component of network modelling research.

9