Alonso P, Blondin L, Gladieux P et al (2020) Heterogeneity of the rice microbial community of the Chinese centuries-old Honghe Hani rice terraces system. Environ Microbiol 22:3429–3445. https://doi.org/10.1111/1462-2920.15114
Article
PubMed
PubMed Central
Google Scholar
Bertani I, Abbruscato P, Piffanelli P et al (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep 8:388–398. https://doi.org/10.1111/1758-2229.12403
CAS
Article
PubMed
Google Scholar
Bidyarani N, Prasanna R, Chawla G et al (2015) Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J Basic Microbiol 55:407–419. https://doi.org/10.1002/jobm.201400591
CAS
Article
PubMed
Google Scholar
Bittar TB, Pound P, Whitetree A et al (2018) Estimation of throughfall and stemflow bacterial flux in a subtropical oak-cedar forest. Geophys Res Lett 45:1410–1418. https://doi.org/10.1002/2017GL075827
Article
Google Scholar
Campisano A, Antonielli L, Pancher M et al (2014) Bacterial endophytic communities in the grapevine depend on pest management. PLoS ONE. https://doi.org/10.1371/journal.pone.0112763
Article
PubMed
PubMed Central
Google Scholar
Caporaso JG, Fierer N, Peña AG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335
CAS
Article
PubMed
PubMed Central
Google Scholar
Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951
CAS
Article
PubMed
PubMed Central
Google Scholar
da Silva TF, Vollú RE, Marques JM et al (2017) The bacterial community associated with rose-scented geranium (Pelargonium graveolens) leaves responds to anthracnose symptoms. Plant Soil 414:69–79. https://doi.org/10.1007/s11104-016-3102-z
CAS
Article
Google Scholar
Das K, Baruah KK (2008) Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol Plant 134:303–312. https://doi.org/10.1111/j.1399-3054.2008.01137.x
CAS
Article
PubMed
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong CJ, Wang LL, Li Q, Shang QM (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14:e0223847. https://doi.org/10.1371/journal.pone.0223847
CAS
Article
PubMed
PubMed Central
Google Scholar
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from frest tissue. Focus (madison) 12:13–15
Google Scholar
Durand A, Maillard F, Alvarez-Lopez V et al (2018) Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: community characterization and isolation of Hg-resistant plant growth-promoting bacteria. Sci Total Environ 622–623:1165–1177. https://doi.org/10.1016/j.scitotenv.2017.12.069
CAS
Article
PubMed
Google Scholar
Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920. https://doi.org/10.1073/pnas.1414592112
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferrando L, Mañay JF, Scavino AF (2012) Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties. FEMS Microbiol Ecol 80:696–708. https://doi.org/10.1111/j.1574-6941.2012.01339.x
CAS
Article
PubMed
Google Scholar
Fuentes A, Herrera H, Charles TC, Arriagada C (2020) Fungal and bacterial microbiome associated with the rhizosphere of native plants from the atacama desert. Microorganisms 8:1–14. https://doi.org/10.3390/microorganisms8020209
CAS
Article
Google Scholar
Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:1–13. https://doi.org/10.1186/s13568-015-0171-y
CAS
Article
Google Scholar
Geddes BA, Ryu MH, Mus F et al (2015) Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Curr Opin Biotechnol 32:216–222. https://doi.org/10.1016/j.copbio.2015.01.004
CAS
Article
PubMed
Google Scholar
Grünwald S, Pilhofer M, Höll W (2010) Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst Appl Microbiol 33:25–34. https://doi.org/10.1016/j.syapm.2009.10.002
CAS
Article
PubMed
Google Scholar
Hameed A, Yeh MW, Hsieh YT et al (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394:177–197. https://doi.org/10.1007/s11104-015-2506-5
CAS
Article
Google Scholar
Hanafi MM, Hartinie A, Shukor J, Mahmud TMM (2009) Upland rice varieties in Malaysia: agronomic and soil physico-chemical characteristics. Pertanika J Trop Agric Sci 32:225–246
Google Scholar
Hassan S, Yussof NA, Galadima M (2019) Farmers current agriculture practices on paddy cultivation and relationship with work performance in IADA Batang Lupar, Sarawak, Malaysia. Asian J Agric Ext Econ Sociol 31:1–14. https://doi.org/10.9734/ajaees/2019/v31i330134
Article
Google Scholar
Humphrey PT, Whiteman NK (2020) Insect herbivory reshapes a native leaf microbiome. Nat Ecol Evol 4:221–229. https://doi.org/10.1038/s41559-019-1085-x
Article
PubMed
PubMed Central
Google Scholar
Ikeda S, Okubo T, Takeda N et al (2011) The genotype of the calcium/calmodulin-dependent protein kinase gene (CCaMK) determines bacterial community diversity in rice roots under paddy and upland field conditions. Appl Environ Microbiol 77:4399–4405. https://doi.org/10.1128/AEM.00315-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikeda S, Sasaki K, Okubo T et al (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 29:50–59. https://doi.org/10.1264/jsme2.ME13110
Article
PubMed
PubMed Central
Google Scholar
Jin H, Yang XY, Yan ZQ et al (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37:376–385. https://doi.org/10.1016/j.syapm.2014.05.001
Article
PubMed
Google Scholar
Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE. https://doi.org/10.1371/journal.pone.0020396
Article
PubMed
PubMed Central
Google Scholar
Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390. https://doi.org/10.1038/ismej.2011.192
CAS
Article
PubMed
Google Scholar
Kobayashi R, Nagaoka K, Nishimura N et al (2020) Comparison of the fecal microbiota of two monogastric herbivorous and five omnivorous mammals. Anim Sci J 91:e13366. https://doi.org/10.1111/asj.13366
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar M, Kour D, Yadav AN et al (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia (bratisl) 74:287–308. https://doi.org/10.2478/s11756-019-00190-6
CAS
Article
Google Scholar
Li Y, Sun H, Wu Z et al (2019) Urban traffic changes the biodiversity, abundance, and activity of phyllospheric nitrogen-fixing bacteria. Environ Sci Pollut Res 26:16097–16104. https://doi.org/10.1007/s11356-019-05008-1
CAS
Article
Google Scholar
Li R, Li M, Yan J, Zhang H (2020) Composition and function of the microbiotas in the different parts of the midgut of Pyrrhocoris sibiricus (Hemiptera: Pyrrhocoridae) revealed using high-throughput sequencing of 16S rRNA. Eur J Entomol 117:352–371. https://doi.org/10.14411/EJE.2020.040
Article
Google Scholar
Liu Y, Zuo S, Xu L et al (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012. https://doi.org/10.1007/s00203-012-0836-8
CAS
Article
PubMed
Google Scholar
Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104:759–768. https://doi.org/10.1007/s10482-013-9984-3
Article
PubMed
Google Scholar
Madhaiyan M, Poonguzhali S, Senthilkumar M et al (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–324. https://doi.org/10.7016/BBAS.200410.0315
Article
Google Scholar
Mano H, Tanaka F, Nakamura C et al (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 22:175–185. https://doi.org/10.1264/jsme2.22.175
Article
Google Scholar
Mbai F, Magiri E, Matiru V (2013) Isolation and characterisation of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati Rice. Am Int J Contemp Res 3:25–40
Google Scholar
Mingma R, Duangmal K (2018) Characterization, antifungal activity and plant growth promoting potential of endophytic actinomycetes isolated from rice (Oryza sativa L.). Chiang Mai J Sci 45:2652–2665
CAS
Google Scholar
Moronta-Barrios F, Gionechetti F, Pallavicini A et al (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6:14. https://doi.org/10.3390/microorganisms6010014
CAS
Article
PubMed Central
Google Scholar
Mwadondo EM, Ghilamicael A, Alakonya AE, Kasili RW (2017) Midgut bacterial diversity analysis of laboratory reared and wild Anopheles gambiae and Culex quinquefasciatus mosquitoes in Kenya. Afr J Microbiol Res 11:1171–1183. https://doi.org/10.5897/ajmr2016.8256
CAS
Article
Google Scholar
Nevita T, Sharma GD, Pandey P (2018) Differences in rice rhizosphere bacterial community structure by application of lignocellulolytic plant-probiotic bacteria with rapid composting traits. Ecol Eng 120:209–221. https://doi.org/10.1016/j.ecoleng.2018.06.007
Article
Google Scholar
Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:343–359. https://doi.org/10.1111/j.1744-7348.2010.00437.x
Article
Google Scholar
Nutaratat P, Monprasit A, Srisuk N (2017) High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech 7:305. https://doi.org/10.1007/s13205-017-0937-9
Article
PubMed
PubMed Central
Google Scholar
Okubo T, Ikeda S, Sasaki K et al (2014) Phylogeny and functions of bacterial communities associated with field-grown rice shoots. Microbes Environ 29:329–332. https://doi.org/10.1264/jsme2.me14077
Article
PubMed
PubMed Central
Google Scholar
Oliveros JC (2007) Venny. An interactive tool for comparing lists with Venn’s diagrams.
Pinto-Tomás AA, Sittenfeld A, Uribe-Lorío L et al (2011) Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ Entomol 40:1111–1122. https://doi.org/10.1603/EN11083
Article
PubMed
Google Scholar
Raj G, Shadab M, Deka S et al (2019) Seed interior microbiome of rice genotypes indigenous to three agroecosystems of Indo-Burma biodiversity hotspot. BMC Genom 20:1–16. https://doi.org/10.1186/s12864-019-6334-5
CAS
Article
Google Scholar
Rasul M, Yasmin S, Hakim S, et al (2020) Metagenomic analysis of bacterial community associated with rhizosphere and phyllosphere of Basmati rice, bioRxiv Microbiol, doi: https://doi.org/10.1101/2020.04.09.034009
Ren G, Zhang H, Lin X et al (2015) Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Front Microbiol 6:1–13. https://doi.org/10.3389/fmicb.2015.00855
Article
Google Scholar
Ren Z, Tang S, Jiang Y et al (2018) High-throughput sequencing analysis of endophytic bacteria diversity in fruits of white and red pitayas from three different origins. Polish J Microbiol 67:27–35. https://doi.org/10.5604/01.3001.0011.6139
Article
Google Scholar
Ruiz-Pérez CA, Restrepo S, Zambrano MM (2016) Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean high-mountain ecosystem. Appl Environ Microbiol 82:1807–1817. https://doi.org/10.1128/AEM.02781-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Sáber ML, Andreot FD, Kavamura VN et al (2014) Effect of ultraviolet-B (UV-B) radiation on bacterial community in the soybean phyllosphere. Afr J Agric Res 8:2916–2923.
Google Scholar
Sasaki K, Ikeda S, Ohkubo T et al (2013) Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots. Microbes Environ 28:391–395. https://doi.org/10.1264/jsme2.ME12212
Article
PubMed
PubMed Central
Google Scholar
Schlaeppi K, Dombrowski N, Oter RG et al (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA 111:585–592. https://doi.org/10.1073/pnas.1321597111
CAS
Article
PubMed
Google Scholar
Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18. https://doi.org/10.1186/gb-2011-12-6-r60
Article
Google Scholar
Senthilkumar M, Madhaiyan M, Sundaram S, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res 164:92–104. https://doi.org/10.1016/j.micres.2006.10.007
CAS
Article
PubMed
Google Scholar
Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36. https://doi.org/10.1094/mpmi-08-11-0204
CAS
Article
PubMed
Google Scholar
Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x
CAS
Article
PubMed
Google Scholar
Shi Y, Yang H, Zhang T et al (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385. https://doi.org/10.1007/s00253-014-5720-9
CAS
Article
PubMed
Google Scholar
Shrestha BK, Karki HS, Groth DE et al (2016) Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE 11:e0146764. https://doi.org/10.1371/journal.pone.0146764
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang X, Freitak D, Vogel H et al (2012) Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 7:e36978. https://doi.org/10.1371/journal.pone.0036978
CAS
Article
PubMed
PubMed Central
Google Scholar
Thapa S, Ranjan K, Ramakrishnan B et al (2017) Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J Basic Microbiol 58:172–186. https://doi.org/10.1002/jobm.201700402
CAS
Article
PubMed
Google Scholar
Thomas P, Agrawal M, Bharathkumar CB (2019) Diverse cellular colonizing endophytic bacteria in field shoots and in vitro cultured papaya with physiological and functional implications. Physiol Plant 166:729–747. https://doi.org/10.1111/ppl.12825
CAS
Article
PubMed
Google Scholar
Toju H, Peay KG, Yamamichi M et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257. https://doi.org/10.1038/s41477-018-0139-4
Article
PubMed
Google Scholar
Uzmi S, Sureshan CS, Ghosh S, Habeeb SKM (2019) Identification of microbial community colonizing the gut of Dysdercus cingulatus fabricius (Hemiptera: Pyrrhocoridae). J Microbiol Biotechnol Food Sci 9:496–501. https://doi.org/10.15414/jmbfs.2019/20.9.3.496-501
CAS
Article
Google Scholar
Venkatachalam S, Ranjan K, Prasanna R et al (2016) Diversity and functional traits of culturable microbiome members, including Cyanobacteria in the rice phyllosphere. Plant Biol 18:627–637. https://doi.org/10.1111/plb.12441
CAS
Article
PubMed
Google Scholar
Vionnet L, De Vrieze M, Dutartre A et al (2018) Microbial life in the grapevine: what can we expect from the leaf microbiome? OENO One 52:219–224. https://doi.org/10.20870/oeno-one.2018.52.3.2120
CAS
Article
Google Scholar
Wagner MR, Lundberg DS, Del Rio TG et al (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151. https://doi.org/10.1038/ncomms12151
CAS
Article
PubMed
PubMed Central
Google Scholar
Walitang DI, Kim CG, Kim K et al (2018) The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC Plant Biol 18:51. https://doi.org/10.1186/s12870-018-1261-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang W, Zhai Y, Cao L et al (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188–189:1–8. https://doi.org/10.1016/j.micres.2016.04.009
Article
PubMed
Google Scholar
Wang P, Kong X, Chen H et al (2021) Exploration of intrinsic microbial community modulators in the rice endosphere indicates a key role of distinct bacterial taxa across different cultivars. Front Microbiol. https://doi.org/10.3389/fmicb.2021.629852
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Ge Y, Song J, Rensing C (2020) Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol Fertil Soils 56:249–260. https://doi.org/10.1007/s00374-019-01406-2
CAS
Article
Google Scholar
Yang R, Liu P, Ye W (2017) Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Braz J Microbiol 48:695–705. https://doi.org/10.1016/j.bjm.2017.02.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeo FKS, Kalu M, Shabdin Z et al (2018) Diversity of Sarawak rice in Kampung Lebor, Serian—a first insight. In: Chong YL, Yeo FKS, Khan FAA (eds) Glimpses of Bornean Biodiversity. UNIMAS Publisher, Sarawak, Malaysia, pp 155–167
Google Scholar
Zhang XX, Tang X, Sheirdil RA et al (2014) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377. https://doi.org/10.1099/ijs.0.056325-0
CAS
Article
PubMed
Google Scholar
Zhang S, Wang Y, Chen X et al (2020) Variety features differentiate microbiota in the grape leaves. Can J Microbiol 66:653–663. https://doi.org/10.1139/cjm-2019-0551
CAS
Article
PubMed
Google Scholar
Zhao JJ, Zhang J, Sun L et al (2017) Rhizobium oryziradicis sp. Nov., isolated from rice roots. Int J Syst Evol Microbiol 67:963–968. https://doi.org/10.1099/ijsem.0.001724
CAS
Article
PubMed
Google Scholar