

SOFT ERROR DETECTION IN ADDER SYSTEM

Nur Aisya Jasmin binti Mazlan

Bachelor of Engineering Electrical and Electronics Engineering with Honours

2022

UNIVERSITI MALAYSIA SARAWAK

Grade: _____

Please tick (√) Final Year Project Report Masters PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the day of..... 2022.

Student's Declaration:

I, NUR AISYA JASMIN BINTI MAZLAN (67068), FACULTY OF ENGINEERING hereby declare that the work entitled SOFT ERROR DETECTION IN ADDER SYSTEM is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Date submitted

Nur Aisya Jasmin binti Mazlan (67068)

Supervisor's Declaration:

I, NORHUZAIMIN BIN JULAI hereby certifies that the work entitled SOFT ERROR DETECTION IN ADDER SYSTEM was prepared by the above named student and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of BACHELOR OF ENGINEERING IN ELECTRICAL & ELECTRONIC WITH HONOURS, and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by:

Date:_____

(Prof. Madya Dr. Norhuzaimin bin Julai)

I declare that Project/Thesis is classified as (Please tick $(\sqrt{})$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature _____

Supervisor signature: _____

Current Address: KAMPUNG TENGAH LAMA GEDONG, SIMUNJAN, 94800 SARAWAK.

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

SOFT ERROR DETECTION IN ADDER SYSTEM

NUR AISYA JASMIN BINTI MAZLAN

A dissertation submitted in partial fulfilment of the requirement for the degree of Electrical and Electronics Engineering with Honours

Faculty of Engineering

Universiti Malaysia Sarawak

2022

To my beloved family and friends

ACKNOWLEDGEMENT

I would like to extend my heartfelt gratitude to a few of people and organisations for their unwavering support throughout this Final Year Project was carry through. First and foremost, I would like to thank and express my appreciation to Associate Professor Dr. Norhuzaimin bin Julai, who are willing to accept and giving a chance for me to become a student under his supervision. I also want to thank for his enthusiasm, patience, insightful comments, helpful information, practical advice, and never-ending ideas, all of which have greatly aided me in this research and writing of this project. I was able to successfully conduct this investigation thanks to his vast knowledge, extensive experience, and professional expertise. This project would not have been possible without his help and supervision. I couldn't have asked for a better supervisor to oversee our project's progress.

Next, I would like to thank my family especially my parents, Encik Mazlan bin Mohamed and Zaharah binti Bujang for their supports and encouragements during my study. Without them, I would not be able to complete all of this. Thank you for being my number one supporter through up and down.

I also want to express my gratitude to Dr Dayang Nur Salmi Dharmiza binti Awang Salleh as the coordinator for Final Year Project. Her guidance from the start of this project until the end has given a lot of ease and support for every student to finish our project during the project.

My faculty, the Faculty of Engineering, is also worth mentioning. Thank you to Universiti Malaysia Sarawak (UNIMAS) for providing me with this chance and experience. I hope to strengthen and expand my engineering capabilities in the future through this experience.

Finally, I also would like to acknowledge my friends, especially Khairul Fariena Hiew and Aida Khairina, and those who are directly or indirectly, providing me the supports that I need upon the completion of this project.

Thanks for all the encouragement from all of you!

ABSTRACT

Soft error can be simplified as a disruption that occurred in the circuit. Soft error can cause a malfunction in the whole digital system. The common source of soft error is caused by radiation and due to a charged particle strike at a sensitive node. It also can be called as Single Error Upset (SEU). The reliability of the digital system was disrupted and reduce because of this event. By conducting this project, the error will be detected in different configuration of circuit with the existence of adder system and c-element by using a logic gate. The adder system that will be used for this project is 8-bits Kogge-Stone Adder. Through this project, the configuration of the circuit will be designed, and the results will be compared and analysed one by one in order to get the desired result. An error will be injected into the circuit in order to imitate the soft error event that can occurred in the system. The error will try to be detected later by using logic gates. Each of the results will be analysed and recorded. By using Quartus Altera design software, this project can be conducted properly, and the circuits can be designed as what has been proposed.

ABSTRAK

Ralat lembut boleh dipermudahkan sebagai gangguan yang berlaku dalam litar. Ralat lembut boleh menyebabkan kerosakan pada keseluruhan sistem digital. Sumber biasa ralat lembut disebabkan oleh sinaran dan disebabkan oleh serangan zarah bercas pada nod sensitif. Ia juga boleh dipanggil sebagai Single Error Upset (SEU). Kebolehpercayaan sistem digital telah terganggu dan berkurangan kerana peristiwa ini. Dengan menjalankan projek ini, ralat akan dikesan dalam konfigurasi litar yang berbeza dengan kewujudan sistem penambah dan "c-element" dengan menggunakan get logik. Sistem penambah yang akan digunakan untuk projek ini ialah 8-bit Kogge-Stone Adder. Melalui projek ini, konfigurasi litar akan direka bentuk, dan hasilnya akan dibandingkan dan dianalisis satu persatu bagi mendapatkan hasil yang diinginkan. Ralat akan disuntik ke dalam litar untuk meniru peristiwa ralat lembut yang boleh berlaku dalam sistem. Ralat akan cuba dikesan kemudian dengan menggunakan get logik. Setiap keputusan akan dianalisis dan direkodkan. Dengan menggunakan perisian reka bentuk guartus Altera, projek ini dapat dijalankan dengan baik, dan litar boleh direka bentuk seperti yang telah dicadangkan.

TABLE OF CONTENTS

ACKNOWI	LEDGE	EMENT	iii
ABSTRAC	Г		iv
ABSTRAK			v
TABLE OF	CONI	ENTS	vi
LIST OF TA	ABLES	\$	xi
LIST OF FI	GURE	S	xii
LIST OF A	BBREV	/IATIONS	xvii
Chapter 1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Project Overview and Background	1
	1.3	Problem Statement	2
	1.4	Objectives	3
	1.5	Project Scope	3
	1.6	Summary	3
Chapter 2	LITI	ERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Static Random-Access Memory (SRAM)	5
	2.3	Soft Error	6
		2.3.1 Radiation Effects in Digital System	7
		2.3.2 Soft Error Rate (SER)	9
		2.3.3 Technology Scaling versus Memory SER Sensitivity	10
		2.3.4 Soft Error Mitigation Technique	13
	2.4	Adder System	16
		2.4.1 Half Adder	16
		2.4.2 Full Adder	17

		2.4.3	Parallel Prefix Adder	19
	2.5	Async	hronous Design	20
		2.5.1	Advantages of Asynchronous Design	20
		2.5.2	Classification of Asynchronous Circuits	22
		2.5.3	Asynchronous Circuit Implementation	23
		2.5.4	Latch-based C-element	24
		2.5.5	C-Element	24
		2.5.6	MUX and DEMUX	27
		2.5.7	Circuit Implementation Style	28
	2.6	Dual I	Rail Data	30
		2.6.1	Dual Rail Data Encoding	30
		2.6.2	Handshake Protocol	31
		2.6.3	Effects of SEU on Dual Rail Data	33
	2.7	Resea	rch Gap	34
Chapter 3		Resea	-	34 36
Chapter 3		HODO	-	
Chapter 3	MET	HODO	LOGY	36
Chapter 3	MET 3.1	HODO	LOGY uction	36 36
Chapter 3	MET 3.1	HODO Introd Projec 3.2.1	LOGY uction et Methodology	36 36 36
Chapter 3	MET 3.1 3.2	HODO Introd Projec 3.2.1 Struct	LOGY uction at Methodology The Flow Diagram of the Project Implementation	36 36 36 37
Chapter 3	MET3.13.23.3	HODO Introd Projec 3.2.1 Struct Design	LOGY uction et Methodology The Flow Diagram of the Project Implementation ure for the Proposed Design	36 36 36 37 37
Chapter 3	 MET 3.1 3.2 3.3 3.4 	HODO Introd Projec 3.2.1 Struct Design	LOGY uction et Methodology The Flow Diagram of the Project Implementation ure for the Proposed Design n Process of the Digital System Circuit	36 36 37 37 40
Chapter 3	 MET 3.1 3.2 3.3 3.4 	HODO Introd Projec 3.2.1 Struct Design Simul	LOGY uction et Methodology The Flow Diagram of the Project Implementation ure for the Proposed Design n Process of the Digital System Circuit ation process of the Circuit	 36 36 36 37 37 40 43
Chapter 3	 MET 3.1 3.2 3.3 3.4 	HODO Introd Projec 3.2.1 Struct Design Simul 3.5.1	LOGY uction et Methodology The Flow Diagram of the Project Implementation ure for the Proposed Design n Process of the Digital System Circuit ation process of the Circuit The Adder System	 36 36 36 37 37 40 43 43
Chapter 3	 MET 3.1 3.2 3.3 3.4 	HODO Introd Projec 3.2.1 Struct Design Simul 3.5.1 3.5.2	LOGY uction the Methodology The Flow Diagram of the Project Implementation ure for the Proposed Design n Process of the Digital System Circuit ation process of the Circuit The Adder System C-element	 36 36 36 37 37 40 43 43 43

		3.5.6	The Adder System with C-element	48
		3.5.7	Adder System with C-element and XOR gate	49
		3.5.8	Adder System with Rail	49
		3.5.9	Adder System with Rail and one C-element	50
		3.5.10	Adder System with Rail and 2 C-elements	54
		3.5.11	Adder System with 3 C-elements	58
	3.6	Softwa	are for the Project	62
	3.7	Summ	ary	64
Chapter 4	RESU	JLTS A	ND DISCUSSION	65
	4.1	Introdu	uction	65
	4.2	Result	s for the Components in the Circuit	65
		4.2.1	Waveform of Adder System Circuit	65
		4.2.2	Waveform for C-element	66
		4.2.3	Waveform for Single Rail to Dual Rail	67
		4.2.4	Waveform for Dual Rail to Single Rail	68
		4.2.5	Waveform for Adder System with C-element	68
		4.2.6	Waveform for Adder System and C-element w	ith Error
			Injection	69
		4.2.7	Waveform for Adder System with One C-element	
			the rail)	70
		4.2.8	Waveform for Adder System with One C-element the rail) with Error Injection	nt (before 71
		4.2.9	Waveform for Adder System with One C-elemen	
		7.2.9	the rail) and XNOR gate	72 rt
		4.2.10	Waveform for Adder System with One C-element	(between
			the rail)	73
		4.2.11	Waveform for Adder System with One C-element	(between
			the rail) with Error Injection	74

- 4.2.12 Waveform for Adder System with One C-element (between the rail) with Error Injection and XNOR gate 75
- 4.2.13 Waveform for Adder System with Two C-elements (before and between the rail) 76
- 4.2.14 Waveform for Adder System with Two C-elements (before and between the rail) with Error Injection at First Node 76
- 4.2.15 Waveform for Adder System with Two C-elements (before and between the rail) with Error Injection at Second Node 77
- 4.2.16 Waveform for Adder System with Two C-elements (before and between the rail) with Error Injection at First Node and XNOR gate78
- 4.2.17 Waveform for Adder System with Two C-elements (before and between the rail) with Error Injection at Second Node and XNOR gate80
- 4.2.18 Waveform for Adder System with Three C-Elements (before, between and after the rail) 82
- 4.2.19 Waveform for Adder System with Three C-Elements (before, between and after the rail) with Error Injection at First Node83
- 4.2.20 Waveform for Adder System with Three C-Elements (before, between and after the rail) with Error Injection at Second Node 84
- 4.2.21 Waveform for Adder System with Three C-Elements (before, between and after the rail) with Error Injection at First Node and XNOR gate86
- 4.2.22 Waveform for Adder System with Three C-Elements (before, between and after the rail) with Error Injection at Second Node and XNOR gate87
- 4.3 Discussion

88

Chapter 5	5 CONCLUSION		91
	5.1	Introduction	91
	5.2	Recommendations	92
REFERENC	ES		93
Appendix			96

LIST OF TABLES

Table

Page

Table 2.1 Truth Table for Half Adder [19]	17
Table 2.2 Full Adder Truth Table [19]	18
Table 2.3 Dual Rail Data Encoding	30
Table 2.4 Research Gap	34
Table 3.1 The Truth Table of C-Element	38
Table 3.2 The Truth Table for XOR Logic Gate	39
Table 3.3 The Truth Table for XNOR Logic Gate	40

LIST OF FIGURES

Figure

Figure 2.1 Due to a particle strike on a sensitive node, a transient current pulse is	
generated. [2]	8
Figure 2.2 Fission of 10B triggered by using the capture of a neutron that happene	d in
SRAMs. [4]	9
Figure 2.3 SRAM scaling trends: tool parameters, normalized storage node capaci	tance,
voltage, and normalized junction volume as a feature of technology node	[4] 11
Figure 2.4 DRAM SER versus DRAM Integration Level [4]	12
Figure 2.5 Radiation Hardened Process Technologies	15
Figure 2.6 Half Adder Circuit [20]	17
Figure 2.7 Full Adder Circuit [21]	18
Figure 2.8 Kogge-Stone Adder structure	19
Figure 2.9 Brent-Kung Adder structure	20
Figure 2.10 Asynchronous buffer implementation [9]	23
Figure 2.11 Asynchronous Implementation [9]	24
Figure 2.12 C-element	26
Figure 2.13 MUX and DEMUX implementation for 4-phase bundled-data [7]	28
Figure 2.14 4-phase bundled-data pipeline	29
Figure 2.15 2-phase bundled-data pipeline	29
Figure 2.16 Bundled-Data Signalling Model [11]	32
Figure 2.17 The four-phase dual rail protocol by using a delay-insensitive channel	[7]
	32
Figure 2.18 Handshaking illustration on a 2-phase dual-rail channel [7]	33
Figure 3.1 The Flow Diagram of Project Implementation	37
Figure 3.2 XOR logic gate [17]	39
Figure 3.3 XNOR logic gate [18]	40
Figure 3.4 The Option under the File Section	41
Figure 3.5 Option in New Quartus Project	42
Figure 3.6 Interface for Add Symbol	42
Figure 3.7 The Adder System	43

Figure 3.8 Block Diagram for C-element	44
Figure 3.9 Configuration of C-element	44
Figure 3.10 C-Element with XOR gate	45
Figure 3.11 Block Diagram for Single Rail to Dual Rail	45
Figure 3.12 Single Rail to Dual Rail configuration	46
Figure 3.13 Block Diagram for Dual Rail to Single Rail	47
Figure 3.14 Dual Rail to Single Rail configuration	47
Figure 3.15 Block Diagram for Parallel to Serial	48
Figure 3.16 Adder System with C-element	48
Figure 3.17 Adder System with C-element and XOR gate	49
Figure 3.18 Adder System with Rail	50
Figure 3.19 Adder System with Rail and one C-element (before the rail)	51
Figure 3.20 Adder System with Rail, one C-element (before the rail) and XOR gate	
Error! Bookmark not defin	ied.
Figure 3.21 Adder System with Rail, one C-element (before the rail) with addition of	f
XOR and XNOR gatesError! Bookmark not define	ied.
Figure 3.22 Adder System with Rail and C-element (between the rail)	53
Figure 3.23 Adder System with C-element (between the rail) and XOR gate	53
Figure 3.24 Adder System with rail, C-element (between the rail), XOR and XNOR	
gate	54
Figure 3.25 Adder System with 2 C-elements (before and middle the rail)	55
Figure 3.26 Adder System with XOR gate at the first node (before the rail)	55
Figure 3.27 Adder System with XOR gate at the second node (between the rail)	56
Figure 3.28 Adder System with XOR gate at the first node (before the rail) with	
addition of XNOR gates	57
Figure 3.29 Adder System with XOR gate at the second node (between the rail) with	l
addition of XNOR gates	57
Figure 3.30 Adder System with 3 C-elements (before, between and after the rail)	58
Figure 3.31 Adder System with 3 C-elements (before, between and after the rail) and	1
XOR gate at the first node (before the rail)	59
Figure 3.32 Adder System with 3 C-elements (before, between and after the rail) and	1
XOR gate at the second node (between the rail)	60
Figure 3.33 Adder System with 3 C-elements (before, between and after the rail) and	1
XOR gate at the first node (between the rail) with addition of XNOR gates	61

Figure 3.34 Adder System with 3 C-elements (before, between and after the rail) and XOR gate at the second node (between the rail) with addition of XNOR gates

	61
Figure 3.35 The Interface of the Software (version 18.1 Lite Edition)	62
Figure 4.1 Adder System Waveform	66
Figure 4.2 Example of Sum Value for the Adder System	66
Figure 4.3 The result for the simulation of C-element	67
Figure 4.4 The result for the simulation of C-element with XOR gate	67
Figure 4.5 Waveform for Single Rail to Dual Rail	68
Figure 4.6 Waveform for Dual Rail to Single Rail	68
Figure 4.7 Waveform for Adder System with C-element	69
Figure 4.8 Waveform for Adder System with C-element details	69
Figure 4.9 Waveform for Adder System and C-element with Error Injection	70
Figure 4.10 Waveform for Adder System and C-element with Error Injection details	70
Figure 4.11 Waveform for Adder System with One C-element (before the rail)	70
Figure 4.12 Waveform for Adder System with One C-element (before the rail) detail	ls
	71
Figure 4.13 Waveform for Adder System with One C-element (before the rail) with	
Error Injection	71
Figure 4.14 Waveform for Adder System with One C-element (before the rail) with	
Error Injection details	72
Figure 4.15 Waveform for Adder System with One C-element (before the rail) with	
XNOR gate	72
Figure 4.16 Waveform for Adder System with One C-element (between the rail)	73
Figure 4.17 Waveform for Adder System with One C-element (between the rail) det	ails
	74
Figure 4.18 Waveform for Adder System with One C-element (between the rail) with	h
Error Injection	74
Figure 4.19 Waveform for Adder System with One C-element (between the rail) with	h
Error Injection and XNOR gate	75
Figure 4.20 Waveform for Adder System with One C-element (between the rail) with	h
Error Injection and XNOR gate details	75
Figure 4.21 Waveform for Adder System with Two C-elements (before and between	I
the rail)	76

Figure 4.22 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at First Node	77
Figure 4.23 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at First Node details	77
Figure 4.24 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at Second Node	78
Figure 4.25 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at Second Node details	78
Figure 4.26 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at First Node and XNOR gate	79
Figure 4.27 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at First Node and XNOR gate without error det	ails
	79
Figure 4.28 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at First Node and XNOR gate with error details	s 80
Figure 4.29 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at Second Node and XNOR gate	81
Figure 4.30 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at Second Node and XNOR gate without error	
details	81
Figure 4.31 Waveform for Adder System with Two C-elements (before and between	l
the rail) with Error Injection at Second Node and XNOR gate with error det	ails
	81
Figure 4.32 Waveform for Adder System with Three C-Elements (before, between a	nd
after the rail)	82
Figure 4.33 Waveform for Adder System with Three C-Elements (before, between a	nd
after the rail) details	83
Figure 4.34 Waveform for Adder System with Three C-Elements (before, between a	nd
after the rail) with Error Injection at First Node	83
Figure 4.35 Waveform for Adder System with Three C-Elements (before, between a	nd
after the rail) with Error Injection at First Node without error details	84
Figure 4.36 Waveform for Adder System with Three C-Elements (before, between a	nd
after the rail) with Error Injection at First Node with error details	84

Figure 4.37 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at Second Node	85
Figure 4.38 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at Second Node without error details	85
Figure 4.39 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at Second Node with error details	86
Figure 4.40 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at First Node and XNOR gate	86
Figure 4.41 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at First Node and XNOR gate details	87
Figure 4.42 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at Second Node and XNOR gate	87
Figure 4.43 Waveform for Adder System with Three C-Elements (before, between an	nd
after the rail) with Error Injection at Second Node and XNOR gate details	88

LIST OF ABBREVIATIONS

ALU	Arithmetic Logic Design
BPSG	Borophosphosilicate glass
BKA	Brent-Kung Adder
CD	Code Detector
C _{out}	Carry Out
C _{in}	Carry In
CMOS	Complementary Metal Oxide Semiconductor
DI	Delay Insensitive
DRAM	Dynamic Random-Access Memory
ECC	Error Correcting Code
EDAC	Error Detection and Correction
FSM	Finite State Machine
GB	Gigabyte
KSA	Kogge-Stone Adder
MB	Megabyte
QDI	Quasi Delay Insensitive
RAM	Random-Access Memory
ROM	Read-Only Memory
S	Sum
SEU	Single Event Upset
SI	Speed Independent
SRAM	Static Random-Access Memory
x	Input data

Input data

Chapter 1

INTRODUCTION

1.1 Introduction

For this chapter, there will be a short explanation about the project that will be discussed to give a brief insight and the main idea of this project. Besides, the problem statement and the objectives of this project were also included to clarify the main goal of this project which based on title "Soft Error Detection in Adder System". The overview of this report was also discussed in this chapter.

1.2 Project Overview and Background

People continue to develop new circuit designs in order to achieve a goal that promotes the advancement of improved design approaches for reducing and decreasing the energy consumption of electronic systems, as well as their faster and wider industrial use. With the increased usage of mobile communication and information terminals, where a compact cell must endure for an extended length of time, low-power design became critical. Furthermore, high-performance electronics suffers from an ongoing increase in the dissipated power per square millimetre of silicon as a result of rising clock speeds, which causes reliability concerns and cooling or restricts performance.

Digital technology is used to store, process, and communicate data. They are employed in a variety of applications, including digital equipment, process control, consumer products, and communication system. The digital computer, commonly known as the computer, is a typical digital system.

The complementary metal-oxide-semiconductor (CMOS) technology is constantly evolving, and nanoscale circuits are becoming increasingly sensitive to soft errors triggered by single event particles as a result of current technological scaling. The current trend keeps shrinking the device but still having a great performance or even better than the previous device including increasing the operating speeds and reduce the power supply in order to save the energy. These goals are making the device become more complex than before. This indicates that radiation-induced particle impacts from radioactive decay and cosmic rays are becoming increasingly sensitive to digital designs. Soft delays, radiation-induced clock jitter and pulse, and single event (SE) coupling noise and delay effects are a few strategies that have been shown to increase CMOS performance.

The adder system is an important component of the data path. The common prefix adder system in the industry is Brent-Kung adder (BKA) and Kogge-Stone adder (KSA) where it is a common adder design that are preferable to use in processors today.

Soft errors in state holder circuits are a critical concern because they can cause a malfunction to the whole digital system. In asynchronous circuits, C-elements are one of the most common state bearers. If a low-energy particle flips a gate's output and propagates to a circuit output, it causes a soft error. Soft error tolerance has thus become an important requirement in the design of digital systems. The energy efficiency, latency, and area of the three most prominent CMOS implementations of the C-element are compared, with an emphasis on energy. This project is research about soft error detection in adder system.

1.3 Problem Statement

A soft error is a short-term error caused by a particle striking a circuit with enough energy to modify and manipulate the state. SEU occurrences can cause digital circuit faults in a variety of situations, including those sensitive nodes with just enough energy, striking any combinational logic, and impacting control signals such as the clock signals. By conducting this project, some of the problem statement that can be solve are:

- 1. How to detect soft error in the adder system?
- 2. What is the effect of soft error towards the adder system?

1.4 Objectives

The objectives of this project are:

1. To compare the effect of soft error at different node in adder system.

2. To determine the existence and absence of soft error in an adder system by analysing the change in the output waveform.

1.5 Project Scope

By considering the problem statement and objectives of this project, the scope of this project is to understand and compare the of different configuration of the circuit with adder system that can help to detect the Single Event Upset (SEU) in the digital system.

1.6 Summary

In this part, the structure of the report was summarized. This report contains several sections including key theories of this project, the previous research related to the project and the theoretical simulations. This report is divided into five chapters which including the introduction, literature review, methodology, research analysis and conclusion. The outline of this report was described as follows:

Chapter 1 represents the overall idea of the project. From this chapter, the main motivation and background of this project will be discussed. The project was introduced including the main objectives and problem statement of the project. The brief explanation of soft error, synchronous design circuit and asynchronous design circuit are mentioned.

Chapter 2 represents the backgrounds and theories which is gathered from various researchers and different perspective that is related to the project. It can be used to support the results after doing the simulation or project. By having all of the information that needed for this project, the project is hopefully can be conducted through the most preferable way.

Chapter 3 represents the suitable method to achieve the objectives of the project. In this part, the breakthrough of flow and development of this project will also be explained