

ANALYSIS OF BATCH ELECTROCOAGULATION OF NATIONAL PARK AND PALM OIL PLANTATION PEAT WATER IN SOUTHERN SARAWAK

NOORANISHA BINTI BAHARUDIN

Bachelor of Chemical Engineering with Honours

2022

DECLARATION OF ORIGINAL WORK

UNIVERSITI MALAYSIA SARAWAK

Grade:
Please tick (/)
Final Year Project Report (/)
Masters ()
PhD()

DECLARATION OF ORIGINAL WORK

This declaration is made on the **Declaration Date**

Student's Declaration:

I, <u>NOORANISHA BINTI BAHARUDIN (65008)</u>, DEPARTMENT OF CHEMICAL ENGINEERING AND ENERGY SUSTAINABILITY, FACULTY OF ENGINEERING, hereby declare that the work entitled <u>ANALYSIS OF BATCH</u> <u>ELECTROCOAGULATION OF NATIONAL PARK AND PALM OIL</u> <u>PLANTATION PEAT WATER IN SOUTHERN SARAWAK</u> is my original work. I have not copied from any other student's work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

.....

.....

Submission Date

Name: Nooranisha Binti Baharudin Matrix Number: 65008

Final Year Project Supervisor's Declaration

I <u>DR. NAZERI ABDUL RAHMAN</u>, hereby certifies that the work entitled ANALYSIS OF BATCH ELECTROCOAGULATION OF NATIONAL PARK AND PALM OIL PLANTATION PEAT WATER IN SOUTHERN SARAWAK was prepared by the above-named student and was submitted to the "FACULTY" as a partial/full fulfillment for the conferment of <u>BACHELOR OF ENGINEERING WITH</u> HONOURS (CHEMICAL ENGINEERING) and the aforementioned work to the best of my knowledge, is the said students' work.

Received for examination by

Date:

••••••

Name: Dr. Nazeri Abdul Rahman

Declaration Date

I declare this Report is classified a	as (Please tick $()$):
---------------------------------------	-------------------------

Validation of Report

We therefore duly affirmed with free consent and willingness declared that this said Report shall be placed officially in Department of Chemical Engineering and Energy Sustainability with the abide interest and right as follows:

- This Report is the sole legal property of Department of Chemical Engineering and Energy Sustainability, Universiti Malaysia Sarawak (UNIMAS).
- The Department of Chemical Engineering and Energy Sustainability has the lawful right to make copies for the purpose of academic and research only and not for other purposes.
- The Department of Chemical Engineering and Energy Sustainability has the lawful right to digitize the content to for the Local Content Database.
- The Department of Chemical Engineering and Energy Sustainability has the lawful right to make copies of the Report for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Report once it becomes sole property of The Department of Chemical Engineering and Energy Sustainability, Universiti Malaysia Sarawak (UNIMAS).
- This Report or any other material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with The Department of Chemical Engineering and Energy Sustainability, Universiti Malaysia Sarawak (UNIMAS) permission.

Student's		Supervisor's	
signature:		signature:	
	Date:		Date:

Current Address:

DEPT. OF CHEMICAL ENGINEERING AND ENERGY SUTAINABILITY, FACULTY OF ENGINEERING, 94300 KOTA SAMARAHAN SARAWAK.Notes: *If the Report is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organization with the period and reasons for confidentially and restriction.

APPROVAL SHEET

This final year project thesis, entitles "<u>ANALYSIS OF BATCH</u> <u>ELECTROCOAGULATION OF NATIONAL PARK AND PALM OIL</u> <u>PLANTATION PEAT WATER IN SOUTHERN SARAWAK</u>" was prepared by <u>NOORANISHA BINTI BAHARUDIN (65008)</u> as partial fulfilment for the Bachelor of Engineering with Honours (Chemical Engineering) is hereby read and approved by:

DR. NAZERI ABDUL RAHMAN

Date

(FINAL YEAR PROJECT SUPERVISOR)

ANALYSIS OF BATCH ELECTROCOAGULATION OF NATIONAL PARK AND PALM OIL PLANTATION PEAT WATER IN SOUTHERN SARAWAK

Analysis Of Batch Electrocoagulation Of National Park And Palm Oil Plantation Peat Water In Southern Sarawak NOORANISHA BINTI BAHARUDIN

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering with Honours (Chemical Engineering)

(Chenneur Engineering)

Faculty of Engineering

Universiti Malaysia Sarawak

2021

Bismillahirrahmanirrahim

Dedicated to my beloved Mama and Ayah,

For all their endless love, prayers, and limitless sacrifices to make me a better person.

Not forgetting, Fakeh for your efforts and hard work.

'kencana itu tidak hilang nilainya meski pudar kilaunya'

'Ya Allah, there is no ease except in that which You have made easy, and You make the difficulty, if You wish, easy'

ACKNOWLEDGEMENT

The author would like to thank all individuals and organizations that have contributed and cooperated for the completion of this final year project report especially to the Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, UNIMAS. Special thanks are dedicated to the author's supervisor, Dr Nazeri Abdul Rahman for all the guidance and knowledge that was shared throughout the completion of this project. Lastly, the author would like to express the highest gratitude to beloved family members, and friends who gave their endless support and motivation in making this project a success.

ABSTRACT

Domestic water is the most fundamental necessity required for living. However, not all people are privileged to have access to clean water every day especially those who live in rural areas or estates and plantation areas. In the plantation area of rural Sarawak, the local community in the area relies on water from various sources for their daily usage such as rainwater, peat water, and river water. However, water obtained from these sources has questionable qualities especially nearby the palm oil plantation areas. The water might be contaminated with pesticides or the heavy metals that are present in the pesticides used in the plantation. Therefore, the innovation of this electrocoagulation treatment system is needed to be implemented especially in the rural plantation areas of Sarawak. The electrocoagulation treatment system is used to treat the peat water so that it can be consumed by the locals as their domestic water for daily life consumption. Several parameters are studied in this research including turbidity, colour, pH, total suspended solids (TSS), and total dissolved solids (TDS). Other than that, the flocs composition analysis, and heavy metal removal efficiency were also studied in this research. Kinetic and statistical models are developed for the electrocoagulation treatment system. Lastly, an economic analysis is performed to evaluate the cost of the electrocoagulation treatment system to ensure it is affordable and low-cost to be implemented in the rural plantation area.

Keyword: peat water, electrocoagulation, kinetic modeling, response surface methodology, ANOVA

ABSTRAK

Air domestik adalah keperluan paling asas yang diperlukan untuk hidup. Namun, tidak semua rakyat mendapat keistimewaan untuk mendapat bekalan air bersih setiap hari terutamanya mereka yang tinggal di kawasan luar bandar atau estet dan kawasan ladang. Di kawasan ladang luar bandar Sarawak, masyarakat setempat di kawasan itu bergantung kepada air daripada pelbagai sumber untuk kegunaan harian mereka seperti air hujan, air paya, dan air sungai. Walau bagaimanapun, air yang diperoleh daripada sumber ini mempunyai kualiti yang boleh dipersoalkan terutamanya berhampiran kawasan ladang kelapa sawit. Air mungkin tercemar dengan racun perosak atau logam berat yang terdapat dalam racun perosak yang digunakan di ladang. Oleh itu, inovasi sistem rawatan elektrokoagulasi ini amat diperlukan untuk dilaksanakan khususnya di kawasan ladang luar bandar Sarawak. Sistem rawatan elektrokoagulasi digunakan untuk mengolah air paya supaya dapat digunakan oleh penduduk tempatan sebagai air domestik untuk kegunaan harian. Beberapa parameter yang dikaji dalam penyelidikan ini termasuklah kekeruhan, warna, pH, jumlah pepejal terampai (TSS), dan jumlah pepejal terlarut (TDS). Selain itu, analisis komposisi flok, dan kecekapan penyingkiran logam berat turut dikaji dalam penyelidikan ini. Model kinetik dan statistik dibangunkan untuk sistem rawatan elektrokoagulasi. Akhir sekali, analisis ekonomi dilakukan untuk menilai kos sistem rawatan elektrokoagulasi bagi memastikan ia berpatutan dan kos rendah untuk dilaksanakan di kawasan ladang luar bandar.

Kata kunci: air paya, elektrokoagulasi, pemodelan kinetik, metodologi permukaan tindak balas, ANOVA

TABLE OF CONTENTS

DECLARA	TION	OF ORIGINAL WORK	ii
APPROVA	L SHE	ЕТ	ii
ACKNOWI	LEDGI	EMENT	v
ABSTRAC	Г		vi
ABSTRAK			vii
TABLE OF	CONT	TENTS	viii
LIST OF T	ABLES	5	xii
LIST OF FI	IGURE	ZS	xiii
LIST OF A	BBRE	VIATIONS	XV
LIST OF N	OMEN	ICLATURE	xvi
Chapter 1	INT	RODUCTION	1
	1.1	Domestic Water	1
	1.2	Peat Water	2
	1.3	Electrocoagulation	4
	1.4	Research Problem	5
	1.5	Scopes of Study	6
	1.6	Aim and Objectives	6
	1.7	Methodology	7
	1.8	Summary	10
Chapter 2	LITI	ERATURE REVIEW	11
	2.1	Introduction	11
	2.2	Pollution in Palm Oil Plantation Area	11
	2.3	Electrocoagulation Treatment System	13
	2.4	Theory of Electrocoagulation	14
	2.5	Batch Electrocoagulation System Design	15

	2.6	Factors Affecting the Performance of Electrocoagula	tion
		Treatment	16
	2.7	Kinetic Study of Batch Electrocoagulation Treatment	21
	2.8	Statistical Study of Batch Electrocoagulation Treatment	22
	2.9	Summary	23
Chapter 3	MET	HODOLOGY	24
	3.1	Introduction	24
	3.2	Literature Review	24
	3.3	Site Visit and Data Sampling	25
	3.4	Experimental Analysis	26
	3.5	Treated Water Analysis	27
	3.6	Kinetic Study	29
	3.7	Statistical Study	29
	3.8	Economic Analysis	30
	3.9	Results and Discussion	31
	3.10	Summary	31
Chapter 4	RESU	JLTS AND DISCUSSIONS	33
	4.1	Introduction	33
	4.2	Design of Batch Electrocoagulation Treatment System	33
	4.3	Effect of Applied Voltage and Treatment Time	36
		4.3.1 Effect of Voltage for Natural Peat Water (National P	ark)
			37
		4.3.2 Effect of Voltage for Peat Water from Palm Oil Planta	tion
		(Sebat Plantation)	39
		4.3.3 Effect of Voltage for Peat Water from Palm Oil Planta	
		(Tamang Plantation)	41

		4.3.4	•	of	Batch	Electrocoagulation	
		~	Performance				44
	4.4	Compa	rison to Nation	nal V	Vater Q	uality Standard (NW	QS) 45
	4.5	Kinetic	e Study of Bate	h El	ectrocoa	agulation Treatment S	System 46
		4.5.1	Kinetic Study	for	Natural	Peat Water from Na	ational Park 47
		4.5.2	Kinetic Study	for	Peat Wa	ter from Sebat Planta	
			•			ter from Tamang Pla	
			Kinetic Rate (C	56
	4.6		cal Study	00115		inp u nson	58
	4.0		Design of Exp	perin	nent		58
		4.6.2	Analysis of V	ariaı	nce (AN	OVA)	60
		4.6.3	Coefficient of	Det	erminat	ion	62
		4.6.4	RSM Contour	. Plo	t & 3D \$	Surface Plot	64
	4.7	Econor	nic Analysis				68
		4.7.1	Economic An	alysi	is agains	st Applied Voltage	69
		4.7.2	Economic An	alysi	is agains	st Treatment Time	70
	4.8	Summa	ary				72
Chapter 5	CON	CLUSIC	ON AND REC	ОМ	MEND	ATIONS	73
	5.1	Introdu	iction				73
	5.2	Conclu	Conclusion			73	
	5.3	Recom	Recommendation			76	
	5.4	Summa	ary				76
BIBLIOGR	APHY						77
Appendix A							82
Appendix B							89
Appendix C							97

LIST OF TABLES

Table

Page

Table 1.1 : Peat Soil Distribution Area (Sa don et al., 2014)	3
Table 3.1: Summary of investigated variables	26
Table 3.2: National Water Quality Standards for Malaysia (Department of	
Environment, 2020)	27
Table 3.3: Water classes and use (Department of Environment, 2020)	27
Table 3.4: Water quality analysis method	28
Table 4.1: Concentration Removal and Removal Efficiency of Natural Peat Water	37
Table 4.2: Concentration Removal and Removal Efficiency of Peat Water in Sebat	
Plantation	39
Table 4.3: Concentration Removal and Removal Efficiency of Peat Water in Taman	ıg
Plantation	42
Table 4.4: Removal Efficiency Comparison	44
Table 4.5: Comparison of Treated Water and National Water Quality Standard	45
Table 4.6: Amounts of Aluminium Electrode Dissolved at Different Voltages	47
Table 4.7: Reaction Rate Constant with Various Applied Voltage	57
Table 4.8: Design of Experiment (Natural)	59
Table 4.9: Design of Experiment (Sebat Plantation)	59
Table 4.10: Design of Experiment (Tamang Plantation)	59
Table 4.11: ANOVA for Natural Peat Water	61
Table 4.12: ANOVA for Sebat Plantation	61
Table 4.13: ANOVA for Tamang Plantation	62
Table 4.14: Coefficient of Determination (Natural Peat Water)	63
Table 4.15: Coefficient of Determination (Sebat Plantation)	63
Table 4.16: Coefficient of Determination (Tamang Plantation)	64
Table 4.17: Contour Plot and 3D Surface Plot from RSM (Natural Peat Water)	65
Table 4.18: Contour Plot and 3D Surface Plot from RSM (Sebat)	66
Table 4.19: Contour Plot and 3D Surface Plot from RSM (Tamang)	67

LIST OF FIGURES

Figure

Page

Figure 1.1: Domestic water consumption in Malaysia from 2012 to 2019 (Müller-	Dum
et al., 2019)	2
Figure 1.2: Peat Area in Sarawak (Sa don et al., 2014)	3
Figure 1.3: Methodology	10
Figure 2.1: Land Cover Map Sarawak in 2009 (Teo et al., 2022)	12
Figure 2.2: Areas planted for oil palm in Sarawak from 2011 to 2020	13
Figure 2.3: Electrode Arrangement (Demirci et al., 2015)	18
Figure 3.1: Flow chart of methodology	25
Figure 3.2: Steps for Response Surface Methodology	30
Figure 4.1: Isometric View of the Batch Reactor	34
Figure 4.2: Side View of the Batch Reactor	34
Figure 4.3: Front View of the Batch Reactor	35
Figure 4.4: Electrode measurement	35
Figure 4.5: Electrode arrangement	35
Figure 4.6: Peat water colour transition during batch electrocoagulation process	36
Figure 4.7: Kinetic Rate Constant for Colour Removal against Time	48
Figure 4.8: Kinetic Rate Constant for Turbidity Removal against Time	49
Figure 4.9: Kinetic Rate Constant for TSS Removal against Time	49
Figure 4.10: Kinetic Rate Constant for COD Removal against Time	50
Figure 4.11: Kinetic Rate Constant for Colour Removal against Time	51
Figure 4.12: Kinetic Rate Constant for Turbidity Removal against Time	51
Figure 4.13: Kinetic Rate Constant for TSS Removal against Time	52
Figure 4.14: Kinetic Rate Constant for COD Removal against Time	53
Figure 4.15: Kinetic Rate Constant for Colour Removal against Time	54
Figure 4.16: Kinetic Rate Constant for Turbidity Removal against Time	55
Figure 4.17: Kinetic Rate Constant for TSS Removal against Time	55
Figure 4.18: Kinetic Rate Constant for COD Removal against Time	56
Figure 4.19: Operating Cost against Applied Voltage	69
Figure 4.20: Operating Cost against Treatment Time (National Park)	70

Figure 4.21:	Operating	Cost against '	Treatment	Time (Sebat	Plantation)	71
Figure 4.22:	Operating	Cost against '	Treatment	Time (Tamar	ng Plantation)	71

LIST OF ABBREVIATIONS

ANOVA	-	Analysis of Variance
BOD	-	Biochemical Oxygen Demand
CCD	-	Central Composite Design
COD	-	Chemical Oxygen Demand
DC	-	Direct Current
EC	-	Electrocoagulation
NWQS	-	National Water Quality Standard
RSM	-	Response Surface Methodology
SS	-	Suspended Solids
TDS	-	Total Dissolved Solids
TSS	-	Total Suspended Solids
WHO	-	World Health Organization
WQI	-	Water Quality Index

LIST OF NOMENCLATURE

°C	-	Degree Celcius
%	-	Percentage
μs/cm	-	microSiemens per centimeter
А	-	Ampere
A/m^2	-	Ampere per square meter
cm	-	Centimeter
g/mol	-	Gram per mol
H ₂ O	-	Water
min	-	Minutes
NTU	-	Nephelometric Turbidity Unit
рН	-	Potential of Hydrogen
ppm	-	Part per million
RM	-	Ringgit Malaysia
TCU	-	True Color Units
V	-	Voltage
W	-	Watt

INTRODUCTION

1.1 Domestic Water

Domestic water is the water consumed by consumer in daily life for drinking, cooking, bathing, and other household chores. It is one of the most basic necessities required for human being to keep living. However, due to increasing human population, daily domestic water consumption is also increasing. Hence, having access to clean water supply is almost a privilege nowadays. According to Boretti and Rosa (2019), global water demand has rapidly increase by 600% corresponding to 1.8% of increment rate annually. Lau (2017) stated that in 2017, the reported average amount of water consumed daily in Malaysia is 210 liters per capita. The recommended amount of daily water consumption per capita by World Health Organization was only at 165 liters per capita daily, therefore, the amount consumed by Malaysians were 27% higher than the recommended amount. **Figure 1.1** below shows the increasing trend of domestic water consumption in Malaysia from 2012 to 2019 in billions per day. In 2019, approximately 6.83 billion of water consumed by Malaysian on a daily basis.

In Sarawak specifically, the main sources of raw water for daily domestic consumption comes from the surface water and groundwater. Some parts of Sarawak would also opt for rainwater and desalinated water as their source of raw water supply (Mahyan & Selaman, 2016). Although the water supply is provided across the state by the Sarawak Water Supply Authority, there are some rural areas does not fully receive the water supply provided. Therefore, people in those rural area will opt to utilize the rainwater collection, mechanical pump, or ramp pump to supply water to their home for domestic use (Ng et al., 2004). Other than that, some rural area would also utilize peat water that is available as their raw water sources.

Figure 1.1: Domestic water consumption in Malaysia from 2012 to 2019 (Müller-Dum et al., 2019)

1.2 Peat Water

Water that are derived from peatlands can be classified as peat water. Based on the data obtained from Department of Irrigation and Drainage (2018), the peatland is mostly covered by peat swamp forest, with a coverage of 19% of the state land area. Hence, Sarawak has approximately 1.7 million hectares of freshwater peat that is commonly located in the coastal area of Southern and Central Sarawak. Due to lack of clean water supply in rural area of Sarawak, locals in the area are forced to use peat water as their main source of daily domestic consumption. However, the problems arise with the consumption of peat water is that it might contains organic matters with unpleasant smell and colour. The colour of peat water is dark brown-orange due to the high dissolved organic carbon content (Labadz et al., 2010). Sakarinen (2016) also stated that the consumption of untreated peat water may cause harm to human health due to the content of peat water such as humic substances. Other than that, the peat water has an acidic characteristics which is cause by the plant residues or animal decay (Rahman et al., 2020).

Therefore, continuous consumption of peat water that is treated improperly might results in serious health problems such as diarrhoea and other waterborne disease as well as serious illnesses such as typhoid or poisoning. Hence, the abundance of peat water supply in Sarawak allows it to be explored and treated as an alternative treatment method and let the community in rural Sarawak to have access to clean water supply. **Figure 1.2** shows the map distribution of peat area in Sarawak where the dark shaded region represents the peat soil. It can be observed that Sibu area has the largest area covered by peat soil followed by Sri Aman and Miri division. **Table 1.1** below shows the distribution of peat soil area in Sarawak.

Figure 1.2: Peat Area in Sarawak (Sa don et al., 2014).

Table 1.1: Peat Soil Distribution	Area (Sa don et al., 2014)
-----------------------------------	----------------------------

Division	Area (ha.)
Kuching	23,059
Kota Samarahan	192,775
Sri Aman	283,076
Sibu	540,800
Sarikei	169,900
Bintulu	146,121
Miri	276,579
Limbang	25,300

From **Table 1.1**, the largest coverage of peat soil area is in Sibu Division with the coverage of approximately 540,800 ha. from total peat soil coverage which are 1,657,000 ha. Followed by Sri Aman and Miri where the peat soil area cover approximately 283,076 and 276,579 respectively in both divisions. Based on the selected division in **Table 1.1**, Kuching division are known to have the least coverage of peat soil among the selected division.

1.3 Electrocoagulation

In Malaysia, the raw water obtained will be treated in a conventional water treatment plant before it is distributed to the consumers for domestic use and other consumption. Typically, a conventional water treatment plant combines physical, chemical, and biological processes to treat the raw water and remove the pollutants (Moussa et al., 2017). Despite the conventional treatment system is feasible method that was used since a long time, it also consumes a large amount of energy. Therefore, non-conventional method such as electrocoagulation are studied and implemented to be fully utilized in water treatment as it is environmentally friendly with low cost and low maintenance.

Electrocoagulation occurs when there is electrical current pass through an untreated water, and the ability was proven as there are high efficiency of pollutants removal from the untreated water. According to Lu et al. (2016), electrocoagulation is also able to treat wastewater with heavy metals ion and toxic organic in an environmentally friendly process. By implementing the basic principle of electrochemistry, the cathode will be losing electrons meanwhile the water will be gaining electron as the contaminated water will be treated. Electrocoagulation process involves metal cations dissolutions at the anode electrode while the hydrogen gas and hydroxyl ions being formed at the cathode. According to Akanksha et al. (2014), iron and aluminium electrodes are the most commonly used metals as it is locally available, non-toxic characteristics, and it is proven to be reliable compared to other metals.

The most fundamental electrocoagulation system can be developed with a pair of electrodes that consist of anode and cathode which will be connected to a power supply. As the power supply is turned on, the current will pass through the metal electrode, and oxidation will occur where water component is reduced to hydrogen gas and hydroxyl ion

simultaneously. Metal cation that is used in this electrocoagulation process will provide a neutral charge that will destabilize colloidal particles meanwhile the electrocoagulation process will also produce chemicals that acts as a coagulant to help in the process (Charisiadis, 2017).

There are a few advantages of implementing the electrocoagulation treatment system which are requiring simple equipment which leads to the ease of operation of water treatment, less treatment time, little to no use of chemicals for treatment, and lesser amount of sludge (Charisiadis, 2017). To add more, according to Tezcan Un et al. (2009), the electrocoagulation process provides rapid sedimentation of the electro-generated flocs with less sludge production. Despite the positive result obtained from the electrocoagulation treatment system, the water treated should be adhere to the National Water Quality Standard (NWQS) as imposed by Ministry of Health Malaysia (MOH).

1.4 Research Problem

Sarawak with 22% of the nation's palm oil plantation area is the second largest palm oil contributor in Malaysia (Aghamohammadi et al., 2016). Fertilizers, pesticides, and rodenticides are some of the agrochemical pollutants that are commonly used by planters in palm oil plantation (Sulaiman et al., 2019). Lack of the fertilizing regulations has cause adverse effects towards the water quality in the palm oil plantation area. Hence, the clean water supply to the community in the will also be affected.

Furthermore, the demand for clean water supply is also increasing due to the rapid growth of population in Sarawak (Mahyan & Selaman, 2016). As reported in Bernama (2018), source of raw water to supply clean water in rural area of Sarawak is in severe level. It is estimated that 97% of Malaysian are able to receive clean water supply except for the 3% of the population that live in rural areas.

Therefore, in some palm oil plantation area in Lundu and Sematan, Sarawak, the locals had to rely to the water supply from untreated sources such as river water, rainwater, and peat water. As peat water is easily available in Sarawak due to the nature of the peat swamp forest, the chances of getting peat water as raw water supply are possible. However, water obtained from these sources have questionable qualities especially nearby the palm oil plantation areas. Water consumed by the locals might be contaminated with the pesticides or the heavy metals that present in the pesticides used

in the plantation. Hence, the problem that might be faced is treating the peat water with conventional treatment method. Implementing the conventional treatment method to treat peat water might rise problems due to the properties of the peat water specifically the dissolved organic carbons as well as the presence of heavy metals in the peat water. Thus, the innovation of this electrocoagulation treatment system is needed to be implemented and utilized especially in the rural plantation areas of Sarawak.

1.5 Scopes of Study

This study focuses on the treatment of peat water in the palm oil plantation and the peat water from the natural source by using the batch electrocoagulation treatment system. The kinetic and statistical modelling for the performance of the treatment system is also developed. Other than that, the economic analysis is also conducted to ensure that the treatment system is affordable to be implemented in the palm oil plantation area in Sarawak.

1.6 Aim and Objectives

The aim of this study is to compare the treated water of the peat water from palm oil plantations and natural peat water from the national park in southern Sarawak. Several objectives are devised to achieve the aim of this study which are as follows:

 To conduct an experimental study for peat water from both sources
The factors affecting the performance of the batch electrocoagulation treatment system such as turbidity, colour, and pH level are studied to obtain the best operating condition.

To analyze the treated water and compare to the standard The untreated and treated peat water quality will be examined and compared according to the National Water Quality Standard (NWQS) and the flocs produced in the batch electrocoagulation process are also studied in detail.

iii) To develop kinetic and statistical models for optimization

Kinetic model is conducted by investigating the parameters that is involved in the chemical reaction kinetic such as the amount of the metal dissolved and the reaction rates. Then, the statistical model is developed by using Response