

# EXTRACTION OF ESSENTIAL OIL FROM POTENTIAL RESOURCES (CYMBOPOGON CITRATUS) PLANT WITH INSECT REPELLENT PROEPRTIES

MASMORYNE MESHA ANAK RUBI

Bachelor of Chemical Engineering with Honours

2022

#### UNIVERSITI MALAYSIA SARAWAK

| Grada  |  |  |
|--------|--|--|
| Graue. |  |  |

Please tick (√) Final Year Project Report Masters PhD

#### **DECLARATION OF ORIGINAL WORK**

This declaration is made on the <u>15 of July 2022.</u>

#### **Student's Declaration**:

I,MASMORYNE MESHA ANAK RUBI (66592), DEPT OF CHEMICAL ENGINEERING AND ENERGY SUSTAINABILITY, FACULTY OF ENGINEERING hereby declare that the work entitled EXTRACTION OF ESSENTIAL OIL FROM POTENTIAL RESOURCES (CYMBOPOGON CITRATUS) WITH INSECT REPELLENT PROPERTIES is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

<u>15<sup>th</sup> July 2022</u> Date submitted MASMORYNE MESHA ANAK RUBI (66592) Name of the student (Matric No.)

#### Supervisor's Declaration:

I,<u>AP DR. RUBIYAH BT HAJI BAINI</u> hereby certifies that the work entitled **EXTRACTION OF ESSENTIAL OIL FROM POTENTIAL RESOURCES (CYMBOPOGON CITRATUS) WITH INSECT REPELLENT PROPERTIES** was prepared by the above named student, and was submitted to the "FACULTY" as a \* partial/full fulfillment for the conferment of <u>BACHELOR OF</u> <u>ENGINEERING WITH HONOURS (CHEMICAL ENGINEERING</u>) and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: <u>AP DR. RUBIYAH BT HAJI BAINI</u> Date:<u>15<sup>th</sup> July 2022</u> (Name of the supervisor) I declare that Project/Thesis is classified as (Please tick  $(\sqrt{)}$ ):



CONFIDENTIAL(Contains confidential information under the Official Secret Act 1972)\* RESTRICTED (Contains restricted information as specified by the organisation where research was done)\*



**OPEN ACCESS** 

### Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature \_

(15<sup>th</sup> July 2022)

Supervisor signature: \_<u>Rubiyah</u>

(15th July 2022)

Current Address:

Department Of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak

Notes: \* If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

# **APPROVAL SHEET**

This final year project report, which entitled **EXTRACTION OF ESSENTIAL OIL FROM POTENTIAL RESOURCES PLANT (CYMBOPOGON CITRATUS) WITH INSECT REPELLENT PROPERTIES** was prepared by Masmoryne Mesha anak Rubi (66592) as a partial fulfilment for Degree of Bachelor of Chemical Engineering is hereby read and approved by:

Rubiyah

15<sup>th</sup> July 2022

(AP. DR.RUBIYAH BINTI HJ BAINI)

Date

# EXTRACTION OF ESSENTIAL OIL FROM POTENTIAL RESOURCES (CYMBOPOGON CITRATUS) PLANT WITH INSECT REPELLENT PROPERTIES

### MASMORYNE MESHA ANAK RUBI

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering (Hons) Chemical Engineering

Faculty of Engineering

Universiti Malaysia Sarawak

### ACKNOWLEDGEMENT

First and foremost, the author would like to express her gratitude to following amazing people, without whom she would not be able to complete this research, and without whom she would not made it through this degree journey. These sincere thanks and deepest gratitude are extended to her supervisor, AP Dr. Rubiyah bt Hj Baini, whose constantly supervise and willing to share her endless knowledge, guidance, advice towards completion of this research. Next, the author would like to thank both of her parents for their blessing and support in both financially and emotionally throughout the culmination of four years of distance learning. Not forgetting, the author would like to thank her fellow close friends and classmates, who providing comfort and endless support, both mentally and emotionally throughout her studies.

### ABSTRACT

Cymbopogon citratus or also known as lemongrass, is a fast-growing species can be found abundantly in all houses such as in Sarawak. The unique characteristics of its chemical compound enhance the possibility of producing safer insect repellent to overcome the side effects of synthetic insect repellent. In this study, a comparison of various solvents used in extraction as well as the extraction parameters (extraction time and extraction temperature) has been studied to determine the suitable condition for extracting the essential oil from Cymbopogon Citratus. Apart from that, the suitability of models (Pseudo First Order Model and Pseudo Second Order Model) to describe the kinetic analysis of extraction together with process optimization using Response Surface Methodology (RSM) also been conducted. By the end of this study, extraction using Soxhlet extraction found that water was chosen as the most suitable solvent in extracting essential oil from Cymbopogon Citratus and based on the FTIR characterization of the extracted essential oil, all three solvents (water, ethanol and n-hexane) able to extract the main active compound with repellent properties(geranial and neral under aldehyde group and citronellos and geraniol under aliphatic alcohol group). Pseudo First Order Model and Pseudo Second Order Model as well as the RSM model able to predicts the extraction kinetic together with process optimization with the value of T=51.27°C and t=8h which resulting a 74% of extracted essential oil.

**Keywords**: Insect repellent; Essential oil; Cymbopogon Citratus; Soxhlet Extraction; Fourier-Transform Infrared Spectroscopy (FTIR); Response Surface Methodology (RSM)

#### ABSTRAK

Cvmbopogon citratus atau lebih dikenali sebagai "serai wangi" adalah sejenis tumbuhan yang mampu tumbuh dengan cepat dan sering banyak ditemui di setiap rumah seperti di Sarawak. Keunikan dalam komponan kimia yang terdapat di dalam minyak pati Cymbopogon citratus menyebabkan peningkatan kecenderungan dalam menghasilkan penghalau serangga yang lebih selamat untuk menangani kesan negatif penghalau sintetik. Sehubungan dengan itu, perbandingan pelbagai jenis pelarut dan parameter dalam pengesktraksan (suhu dan masa) telah dijalakan demi menentukan jenis pelarut dan parameter pengesktraksan yang terbaik untuk mengesktrak minyak pati dari Cymbopogon citratus. Di samping itu, kesesuaian modal (Pseudo First Order dan Pseudo Second Order) untuk menjelaskan analisis kinetik dan proses pengoptimuman menggunakan RSM juga dijalankan dalam kajian ini. Sebagai kesimpulan, jenis pelarut air mempunyai nilai esktrak minyak pati yang tertinggi berbanding pelarut yang lain dan berdasarkan analisis FTIR, kesemua pelarut berjaya mengesktrak kesemua komponen aktif yang mempunyai sifat penghalau. Kesemua modal analisis kinetik yang terpilih juga mampu menjelaskan analisis pengesktrak kinetik dengan baik dan berdasarkan nilai pengoptimumam analisis menggunakan RSM, modal tersebut mampu memperoleh 74% minyak pati dengan suhu optimum sebanyak 51.27°C dan 8 jam masa mengesktrak.

*Kata kunci*: Penghalau serangga; minyak pati; Cymbopogon Citratus; kaedah Soxhlet; proses pengoptimuman; FTIR; RSM

## **TABLE OF CONTENTS**

| ACKNOWI    | LEDGH | EMENT                                                      | ii       |
|------------|-------|------------------------------------------------------------|----------|
| ABSTRAC    | Г     |                                                            | iii      |
| ABSTRAK    |       |                                                            | iv       |
| TABLE OF   | CONT  | TENTS                                                      | v        |
| LIST OF TA | ABLES | 5                                                          | viii     |
| LIST OF FI | IGURE | S                                                          | X        |
| LIST OF A  | BBREV | VIATIONS                                                   | xiii     |
| Chapter 1  | INT   | RODUCTION                                                  | 1        |
|            | 1.1   | Background of insect repellent                             | 1        |
|            | 1.2   | Problem statement                                          | 2        |
|            | 1.3   | Research questions                                         | 3        |
|            | 1.4   | Research gap                                               | 4        |
|            | 1.5   | Research objectives                                        | 6        |
|            | 1.6   | Research Scope                                             | 6        |
|            | 1.7   | Thesis Structure                                           | 6        |
|            | 1.8   | Summary                                                    | 7        |
| Chapter 2  | LITI  | ERATURE REVIEW                                             | 8        |
|            | 2.1   | Overview                                                   | 8        |
|            | 2.2   | Synthetic insect repellent                                 | 8        |
|            |       | 2.2.1 Health effects of using synthetic insect repellent   | 10       |
|            | 2.3   | Natural insect repellent derived from local resources with | h incest |
|            |       | repellent properties.                                      | 11       |
|            |       | 2.3.1 Cymbopogon Citratus                                  | 11       |
|            |       | 2.3.2 Mentha (Mint)                                        | 13       |
|            |       | 2.3.3 Citrus limon peel (Lemon skin)                       | 14       |
|            | 2.4   | Potential routes in extracting essential oil               | 16       |

|           |      | 2.4.1  | Steam Distillation                                              | 16       |
|-----------|------|--------|-----------------------------------------------------------------|----------|
|           |      | 2.4.2  | Water Distillation                                              | 18       |
|           |      | 2.4.3  | Hydrodistillation                                               | 18       |
|           |      | 2.4.4  | Soxhlet Distillation                                            | 20       |
|           | 2.5  | Factor | s affecting extraction methods                                  | 23       |
|           |      | 2.5.1  | Type of solvent used                                            | 23       |
|           |      | 2.5.2  | Temperature                                                     | 25       |
|           |      | 2.5.3  | Time of extraction                                              | 25       |
|           | 2.6  | Kineti | c equation                                                      | 26       |
|           |      | 2.6.1  | Pseudo First Order Model                                        | 26       |
|           |      | 2.6.2  | Pseudo Second Order Model                                       | 27       |
|           | 2.7  | Respo  | nse Surface Methodology (RSM)                                   | 27       |
|           | 2.8  | Rotary | v Evaporator                                                    | 28       |
|           | 2.9  | Fourie | r Transform Infrared Spectroscopy (FTIR)                        | 30       |
|           | 2.10 | Summ   | ary                                                             | 33       |
| Chapter 3 | MET  | HODO   | LOGY                                                            | 34       |
|           | 3.1  | Overv  | iew                                                             | 34       |
|           | 3.2  | Genera | al frameworks                                                   | 34       |
|           | 3.3  | Experi | mental procedure                                                | 35       |
|           |      | 3.3.1  | Sample preparation                                              | 35       |
|           |      | 3.3.2  | Extraction of essential oil by using Soxhlet extraction         | 37       |
|           |      | 3.3.3  | Separation of mixture                                           | 39       |
|           |      | 3.3.4  | Determination of yield of extracted essential oil<br>C.Citratus | of<br>40 |
|           | 3.4  | Detern | nination of functional groups using FTIR analysis               | 41       |
|           | 3.5  | Kineti | c study of extraction of C. Citratus essential oil              | 41       |

|            |      | 3.5.1   | Least-Squares Fitting Procedure                              | 42   |
|------------|------|---------|--------------------------------------------------------------|------|
|            |      | 3.5.2   | Response Surface Methodology (RSM)                           | 43   |
|            | 3.6  | Summ    | ary                                                          | 44   |
| Chapter 4  | RESU | LTS A   | ND DISCUSSION                                                | 45   |
|            | 4.1  | Overv   | iew                                                          | 45   |
|            | 4.2  | Factor  | s affecting oil yield of extracted C.citratus essential oil  | 45   |
|            |      | 4.2.1   | Effect of type of solvent on oil yield                       | 45   |
|            |      | 4.2.2   | Effect of extraction time on oil yield                       | 50   |
|            |      | 4.2.3   | Effect of extraction temperature on oil yield                | 53   |
|            | 4.3  | Deterr  | nination of functional groups based on Fourier Transf        | form |
|            |      | Infrare | ed Spectroscopy (FTIR) analysis                              | 54   |
|            | 4.4  | Analy   | sis of extracted oil by GC-FID                               | 62   |
|            | 4.5  | Kineti  | c analysis for extraction of <i>C.citratus</i> essential oil | 65   |
|            |      | 4.5.1   | Effect of extraction time on kinetic variables               | 65   |
|            |      | 4.5.2   | Optimization using Response Surface Methodology (R           | SM)  |
|            |      |         |                                                              | 72   |
|            | 4.6  | Summ    | ary                                                          | 84   |
| Chapter 5  | CON  | CLUSI   | ONS                                                          | 85   |
|            | 5.1  | Gener   | al Conclusions                                               | 85   |
|            | 5.2  | Recon   | nmendations                                                  | 87   |
| REFERENC   | ES   |         |                                                              | 88   |
| Appendix A |      |         |                                                              | 108  |
| Appendix B |      |         |                                                              | 111  |

# LIST OF TABLES

## Table

| 1.1  | Summary of several research done on extracting of essential oils form poter  | itial |
|------|------------------------------------------------------------------------------|-------|
|      | natural plant.                                                               | 4     |
| 2.1  | The summary of all chemical compounds in potential plant that has repellen   | ıt    |
|      | properties                                                                   | 15    |
| 2.2  | Advantages and Disadvantage or Limitation of Various Extraction Method       | 22    |
| 2.3  | Typical solvent being chosen for extraction of essential oil                 | 24    |
| 3.1  | Equations used for kinetic study of extraction of C.citratus                 | 41    |
| 4.1  | The structure and dipole moment of the three solvents used for extraction    | n of  |
|      | C.Citratus essential oil.                                                    | 46    |
| 4.2  | Oil yield obtained at different extraction time for different solvents       | 50    |
| 4.3  | Oil yield obtained at different extraction temperatures when water is chosen | as    |
|      | the extraction solvent                                                       | 53    |
| 4.4  | The obtained corresponding chemical classification based on IR-Analyze-      |       |
|      | RAManalyze 2022 Software (Water as solvent)                                  | 55    |
| 4.5  | The obtained matching functional groups based on the IR-Analyze-             |       |
|      | RAManalyze 2022 Software (Water as solvent)                                  | 56    |
| 4.6  | The obtained corresponding chemical classification based on IR-Analyze-      |       |
|      | RAManalyze 2022 Software (Ethanol as solvent)                                | 58    |
| 4.7  | The obtained matching functional groups based on the IR-Analyze-             |       |
|      | RAManalyze 2022 Software (Ethanol as solvent)                                | 59    |
| 4.8  | The obtained corresponding chemical classification based on IR-Analyze-      |       |
|      | RAManalyze 2022 Software (n-hexane as solvent)                               | 60    |
| 4.9  | The obtained matching functional groups based on the IR-Analyze-             |       |
|      | RAManalyze 2022 Software (n-hexane as solvent)                               | 61    |
| 4.10 | GC-FID analysis (Okpo & Otaraku, 2020)                                       | 62    |
| 4.11 | Comparison of Experimental and Predicted data of Pseudo Models when us       | ing   |
|      | water solvent                                                                | 66    |

| 4.12 | Comparison of Experimental and Predicted data of Pseudo Models when us        | ing |
|------|-------------------------------------------------------------------------------|-----|
|      | ethanol solvent                                                               | 68  |
| 4.13 | Comparison of Experimental and Predicted data of Pseudo Models when us        | ing |
|      | n-hexane solvent                                                              | 70  |
| 4.14 | Complete design matrix and its response of parameters                         | 73  |
| 4.15 | Model Summary Statistics                                                      | 74  |
| 4.16 | ANOVA for linear model                                                        | 75  |
| 4.17 | Fit statistics                                                                | 75  |
| 4.18 | Coefficient in terms of coded factors in equation predicting the oil yield of |     |
|      | extracted essential oil                                                       | 77  |
| 4.19 | Data for oil yield versus extraction temperature for experimental data and    |     |
|      | predicted RSM model data                                                      | 78  |
| 4.20 | Data for oil yield versus extraction time for experimental data and predicted |     |
|      | RSM model data                                                                | 79  |
| 4.21 | Optimum parameters for extraction of C.citratus essential oil                 | 82  |
|      |                                                                               |     |

## **LIST OF FIGURES**

## Figure

| 2.1  | Typical synthetic repellent available in the market                             | 9      |
|------|---------------------------------------------------------------------------------|--------|
| 2.2  | Cymbopogon Citratus                                                             | 11     |
| 2.3  | Mentha                                                                          | 13     |
| 2.4  | Citrus limon                                                                    | 14     |
| 2.5  | Diagrammatic representation of steam distillation method (Aziz et al., 201      | 8) 17  |
| 2.6  | Diagrammatic representation of Water Distillation method (Ahmet &               |        |
|      | Ergin., 2019)                                                                   | 18     |
| 2.7  | Diagrammatic representation of Hydrodistillation method (Hesham et al.,         |        |
|      | 2016)                                                                           | 20     |
| 2.8  | Diagrammatic representation of Soxhlet extractor method (Aris & Morad,          |        |
|      | 2014)                                                                           | 21     |
| 2.9  | Typical components in Rotary Evaporator (Schnyder, 2005)                        | 29     |
| 2.10 | The working principle of a typical FTIR machine (Ramaiah et al, 2017)           | 31     |
| 2.11 | IR absorption spectra of C.citratus oil (Shahzadi, 2017)                        | 32     |
| 3.1  | Experimental flow chart                                                         | 35     |
| 3.2  | Preparation of sample. a) Pounding of dried C.Citratus using laboratory pe      | estle  |
|      | and mortar, b) Powdered sample of C.Citratus                                    | 36     |
| 3.3  | Schematic illustration of Soxhlet extraction (Wegglar et al., 2020)             | 37     |
| 3.4  | Extraction using Soxhlet extraction. a) Set up of the Soxhlet apparatus, b)     |        |
|      | Extraction process of essential oil from C.citratus                             | 38     |
| 3.5  | Rotary evaporator apparatus for removing solvent from essential oil obtain      | ned.   |
|      |                                                                                 | 39     |
| 3.6  | Steps for Response Surface Methodology                                          | 44     |
| 4.1  | A graph of oil yield against different types of solvent used during the         |        |
|      | extraction of C. Citratus essential oil.                                        | 47     |
| 4.2  | Extraction of C.citratus essential oil when using water as solvent. a) Mixtu    | ure of |
|      | extracted essential oil and solvent after extraction, b) Essential oil obtained | d      |
|      | after evaporation                                                               | 49     |

| 4.3  | <b>4.3</b> Extraction of <i>C.citratus</i> essential oil when using ethanol as solvent. |            |  |  |
|------|-----------------------------------------------------------------------------------------|------------|--|--|
|      | of extracted essential oil and solvent after extraction, b) Essential oil obtained      |            |  |  |
|      | after evaporation                                                                       | 49         |  |  |
| 4.4  | Extraction of C.citratus essential oil when using n-hexane as solvent.                  | a)         |  |  |
|      | Mixture of extracted essential oil and solvent after extraction, b) Esse                | ntial oil  |  |  |
|      | obtained after evaporation                                                              | 50         |  |  |
| 4.5  | A graph of oil yield against various extraction time for different solve                | ents       |  |  |
|      | during the extraction of C. Citratus essential oil.                                     | 51         |  |  |
| 4.6  | Effect of reaction rate against extraction time                                         | 51         |  |  |
| 4.7  | A graph of oil yield against different extraction temperatures during t                 | he         |  |  |
|      | extraction of C.citratus essential oil.                                                 | 53         |  |  |
| 4.8  | The FTIR analysis for extraction of essential oil using water as a solv                 | ent at     |  |  |
|      | different extraction time                                                               | 55         |  |  |
| 4.9  | The FTIR analysis for extraction of essential oil using ethanol as a so                 | lvent at   |  |  |
|      | different extraction time.                                                              | 58         |  |  |
| 4.10 | The FTIR analysis for extraction of essential oil using n-hexane as a s                 | solvent at |  |  |
|      | different extraction time                                                               | 60         |  |  |
| 4.11 | Chromotogram for lemongrass oil when using ethanol as solvent.(Ok                       | po &       |  |  |
|      | Otaraku, 2020)                                                                          | 64         |  |  |
| 4.12 | Predicted oil yield using First Order Model Compared with the exper                     | imental    |  |  |
|      | data for water solvent                                                                  | 67         |  |  |
| 4.13 | Predicted oil yield using Second Order Model Compared with the exp                      | perimental |  |  |
|      | data for water solvent                                                                  | 67         |  |  |
| 4.14 | Predicted oil yield using First Order Model Compared with the exper                     | imental    |  |  |
|      | data for ethanol solvent                                                                | 69         |  |  |
| 4.15 | Predicted oil yield using Second Order Model Compared with the exp                      | perimental |  |  |
|      | data for ethanol solvent                                                                | 69         |  |  |
| 4.16 | Predicted oil yield using First Order Model Compared with the exper                     | imental    |  |  |
|      | data for n-hexane solvent                                                               | 71         |  |  |
| 4.17 | Predicted oil yield using Second Order Model Compared with the exp                      | perimental |  |  |
|      | data for n-hexane solvent                                                               | 71         |  |  |
| 4.18 | Graph of predicted value versus experimental data                                       | 76         |  |  |
| 4.19 | Graph of oil yield versus extraction temperature for the experimental                   | data and   |  |  |
|      | predicted data using RSM model                                                          | 78         |  |  |

| 4.20 | Graph of oil yield versus extraction time for the experimental data and    |     |
|------|----------------------------------------------------------------------------|-----|
|      | predicted data using RSM model                                             | 79  |
| 4.21 | The contour plots of the oil yield affected by extraction temperature and  |     |
|      | extraction time.                                                           | 80  |
| 4.22 | 3D diagram for the effect of extraction temperature and extraction time on | the |
|      | oil yield                                                                  | 81  |

# LIST OF ABBREVIATIONS

| DEET | : | N,N-diethyl-meta-toluamide   |
|------|---|------------------------------|
|      |   | (DEET)                       |
| RSM  | : | Response Surface Methodology |
| FTIR | : | Fourier-Transform Infrared   |
|      |   | Spectroscopy                 |

# NOMENCLETURE

| °C | : | Degree Celsius |
|----|---|----------------|
| %  | : | Percentage     |
| g  | : | Gram           |

# **CHAPTER 1**

# **INTRODUCTION**

#### 1.1 Background of insect repellent

Oppositely to the properties of an insecticides, an insect repellent is a chemical that often being applied to human skin to create a protective barrier against insect, mites, lice, or mosquitoes' bites (Peterson & Coats, 2001). Various type of insect repellent has been invented over the past decades, including both natural and synthetic repellents. Typically, chemical compounds including N,N-diethyl-meta-toluamide (DEET), N,N-diethyl mendelic acid amide, and Diethyl phthalate are often found in synthetic repellents (Alayo et al., 2015). In fact, the first synthetic insect repellent, N,N-diethyl-meta-toluamide (DEET), was first discovered in 1950s and invented by the United States government in 1956 after screening over 20,000 potential mosquito repellent compounds. Up until this day, DEET is still one of the most prevalent compounds in most synthetic insect repellent however, several issues arise on the usage of synthetic repellent as these products promotes some environmental and health effects. Sanghong et al. (2015) claimed that these substances are not safe for public health and therefore must be used with caution as their negative impacts towards synthetic fabric and plastic as well as toxic reactions, such as allergy, dermatitis, and cardiovascular and neurological side effects, which have been reported frequently following their misuse.

Moving to next is natural-based insect repellent, precisely plant-based repellent. Over the past generations, plant-based insect repellent is being utilised as a personal protective strategy against insects and arthropods. One of the oldest approaches and yet still being practice up until this day is the act of hanging bruised plants in house (Moore et al., 2006).The majority of plants contains a variety of chemical qualities, including repellents, growth regulators, feeding deterrents, and toxicity. In fact, these distinct chemical qualities may be divided into five (5) key chemical compounds: growth regulators, terpenoids, primary alkaloids, phenolics, and proteinase inhibitors (Maia & Moore, 2011). Not only these chemicals' primary role is to protect against phytophagous insect, these compounds also practical against mosquitoes' repellences. Traditionally, rural communities will burn the plant to produce a crude fumigant to repel nuisance mosquitoes. This approach is still intensively practiced in rural area because not only it is the only accessible protection against mosquito bites, communities in North America and Europe claimed this "natural" scented repellents are safer yet reliable in controlling mosquito bites (Trumble, 2002). Corymbia citriodora, Cymbopogon citratus, Mentha spp. M. piperata and Citrus limon peel are the typical plant-based repellent in which their essential oils are being extracted before further processed into repellent products. Among these species, the most common plant species to be used is the *Cymbopogon citratus* or also known as lemongrass, as is a fast-growing species can be found abundantly in all houses as it able to grow well under the hot and humid climate in Malaysia. In fact, this plant can be found abundantly in Sarawak, the largest land in Malaysia and able to hold over 1000 known plant species with medical properties (Chai, 2020). Hence, this Cymbopogon Citratus not only has benefits in producing a safer insect repellent, due to its unique characteristics of chemical compound in repelling insect, but it also able to be one of the income generation choice for farmers as they can become the supplier to the manufacturing industry as this plant is easy to grow and can be harvested frequently during active growing season, up to once every month.

#### **1.2 Problem statement**

Insect repellents are useful for both civilians and military personnel during outdoor activities such as fighting, peacekeeping, and training. One of the typical synthetic repellents that is usually found in household is mosquito coils. Although mosquito coils apply the same concept of usage with the natural repellent, which is by burning, mosquito coil according Lawrance & Croft (2004) is an incense-like product that is made from a mixture of granulated pesticide and a filler, such as sawdust or other solid materials, and then extruded into a coiled shape. Although this product able to provide a protection up until 8 hours, it gradually releases some toxic pollutants including CO, SO2, NO2 and others (Jetter et al., 2004). Synthetic repellents bring many side effects although it promotes to a long and fast protection towards consumer. Hence, to overcome the side effect of synthetic repellent, natural repellents made from plants, such as essential oils, might be an excellent option.

Shukla et al (2018) claimed that traditional plant-based repellents such as Cymbopogon Citratus are still widely utilised in rural communities across the Asian subcontinent, notably in India and Sri Lanka. Over the years, many research has been conducted discussing on the good effect of implementing plant-based repellent. In comparison to synthetic repellents, they are considered harmless and ecologically beneficial. Essential oils and their components have received a lot of interest in recent years due to their relative safety for both the environment and human health, well accepted by consumers, and they may be used for a variety of purposes. However, one of the big issues when dealing with natural based insect repellent is how to fully extract the oil from potential plant. Most research found on extraction of essential oil focusses on techniques in extracting the essential oil from Cymbopogon Citratus and limited information found on the kinetics analysis of Cymbopogon Citratus oil extraction for using RSM. Next, according to Khater et al (2019), the availability of natural repellent is still low due to lack of understanding the chemical compound that available in the extracted essential oils. Therefore, this research is conducted to study the extraction of essential oils from local resources with insect repellent properties such as Cymbopogon Citratus, a potential safer repellent, focussing on the kinetics study as well as modelling of oil extraction using Pseudo Model (First and Second Model) and Response Surface Methodology (RSM).

#### **1.3** Research questions

The research questions to be discussed in this study are listed as below:

- i. What is the best method in extracting essential oil and how to analyse the properties of the extracted essential oils?
- ii. What are the effects of different types of solvent, temperature, and extraction time towards yield of extracted essential oil?
- iii. How does the extraction profiles to illustrate the kinetics of essential oil extraction at different temperature and time?; Can the pseudo-first order or pseudo-second order models illustrate the kinetics of essential oil extraction?

#### 1.4 Research gap

There are quite number of studies have been conducted on essential oil extraction from potential plant for different objectives and extraction methods. **Table 1** shows several research papers published with similar research scope. According to **Table 1**, several research on essential oil extraction has been conducted using different types of extraction methods and all of the listed research use the same type of solvent in extracting essential oil which is water. However, the effect of different solvents on the oil extraction have not been studied in depth. Next, less study found on the kinetic study of essential oils particularly Soxhlet extraction using Response Surface Methodology (RSM) analysis. In addition, there also seems to be less study on relating Pseudo-First Order and Pseudo-Second Order Models to illustrate the kinetics of essential oil extraction for Soxhlet extraction. Therefore, in the present research, Soxhlet extraction is used as the main method in extracting essential oil of *Cymbopogon Citratus* and the operating parameters include type of solvent, extraction temperature and time are optimised by RSM to obtain the highest essential oil yield. The kinetics of extraction process will also be investigated.

| Table 1.1: Summary of several research done on extracting of essential oils form |
|----------------------------------------------------------------------------------|
| potential natural plant.                                                         |
|                                                                                  |

| Research       | Properties being      | Extraction        | Chemical | Time of    | Research |
|----------------|-----------------------|-------------------|----------|------------|----------|
| scope          | analysed              | method            | solvent  | extraction | by       |
| Research on    | Aroma and volatile    | Hydrodistillation | Water    | 4hours     | (Devi et |
| the antifungal | components were       |                   |          |            | al.,     |
| activity and   | analysed using solid- |                   |          |            | 2021)    |
| volatile       | phase                 |                   |          |            |          |
| compound of    | microextraction-gas-  |                   |          |            |          |
| essential oil  | chromatography-       |                   |          |            |          |
| from           | mass spectrometry     |                   |          |            |          |
| Cymbopogon     |                       |                   |          |            |          |
| species plant  |                       |                   |          |            |          |
| (C.flexuosus,  |                       |                   |          |            |          |

### C.winterianus,

## C.martini)

| Research of    | Chemical            | Water             | Water | 5hours   | (Ghavam |     |
|----------------|---------------------|-------------------|-------|----------|---------|-----|
| chemical       | components were     | distillation      |       |          | et      | al, |
| composition    | observed by using   |                   |       |          | 2020)   |     |
| and            | Gas                 |                   |       |          |         |     |
| antimicrobial  | chromatography/ma   | SS                |       |          |         |     |
| activity of    | spectrometry (GC-   |                   |       |          |         |     |
| essential oils | MIS) analysis       |                   |       |          |         |     |
| from leaves    |                     |                   |       |          |         |     |
| and flowers of |                     |                   |       |          |         |     |
| Lamiaceae      |                     |                   |       |          |         |     |
| Plant (Salvia  |                     |                   |       |          |         |     |
| hydrangea)     |                     |                   |       |          |         |     |
| Research on    | Antibacterial       | Hydrodistillation | Water | 4-8hours | (Dinh   | et  |
| extraction of  | compounds we        | re                |       |          | al, 201 | 9)  |
| jasmine        | analysed by using G | as                |       |          |         |     |
| essential oils | chromatography/ma   | SS                |       |          |         |     |
|                | spectrometry (GG    | C-                |       |          |         |     |
|                | MIS) analysis       |                   |       |          |         |     |