

Document details

1 of 1

→ Export 上 Download More... >

Cited by 0 documents

Food and Chemical Toxicology Volume 133, November 2019, Article number 110800

Cytotoxic xanthones isolated from Calophyllum depressinervosum and Calophyllum buxifolium with antioxidant and cytotoxic activities (Article)

Zamakshshari, N.H., Ee, G.C.L., Ismail, I.S., Ibrahim, Z., Mah, S.H.

View additional authors \checkmark

🖪 Save all to author list

^aCentre for Natural Product Research and Drug Discovery (CENAR), Wellness Research Cluster, Jalan Universiti, Kuala Lumpur, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia

^bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia ^cDepartment of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota Campus, Kuantan, Pahang 25200, Malaysia

^dSchool of Biosciences, Taylor's University, Lakeside Campus 1, Jalan Taylor's, Subang Jaya, Selangor 47500, Malaysia

View additional affiliations 🗸

Abstract

The stem bark of Calophyllum depressinervosum and Calophyllum buxifolium were extracted and examined for their antioxidant activities, together with cytotoxicity towards human cancer cells. The methanol extract of C. depressinervosum exhibited good DPPH and NO scavenging effects. The strongest BCB inhibition and FIC effects were shown by dichloromethane and ethyl acetate extracts of both species. Overall, DPPH, FRAP and FIC assays showed strong correlation with TPC. For cytotoxicity, hexane extract of C. depressinervosum possessed the strongest anti-proliferative activities towards SNU-1 cells while the hexane extract of C. buxifolium showed the strongest activity towards LS-174T and K562 cells with the IC₅₀ values ranging from 7 to 17 μ g/mL. The purification of plant extracts afforded eight xanthones, ananixanthone (1), caloxanthone B (2), caloxanthone I (3), caloxanthone J (4) xanthochymone B (5), thwaitesixanthone (6), 1,3,5,6-tetrahydroxyxanthone (7) and dombakinaxanthone (8). All the xanthones, except 1 were reported for the first time from both Calophyllum species. The xanthones were examined for their cytotoxic effect against K562 leukemic cells. Compounds 1 and 2 showed strong cytotoxicity with the IC_{50} values of 2.96 and 1.23 μ g/mL, respectively. The molecular binding interaction of 2 was further investigated by performing molecular docking study with promising protein receptor Src kinase. © 2019 Elsevier Ltd

SciVal Topic Prominence ()

Topic: Calophyllum | Coumarins | Stem bark

Prominence percentile: 81.678

Author keywords

(Caloxanthone B) (K562 cells) (Molecular docking) (Radical scavenging activities)

()

Indexed keywords

EMTREE drug terms:	$\fbox{(1,3,5,6 tetrahydroxyxanthone)} (ananixanthone) (caloxanthone B) (caloxanthone I)$
	caloxanthone J (dombakinaxanthone) (thwaitesixanthone) (unclassified drug)
	(xanthochymone B) (xanthone derivative) (antineoplastic agent) (antioxidant) (plant extract)
	(protein binding) (protein tyrosine kinase) (xanthone derivative)

Inform me when this document

is cited in Scopus: Set citation Set citation alert > feed >

Related documents

Find more related documents in Scopus based on:

Authors > Keywords >

Author search Sources

瓮

EMTREE medical terms:	(antineoplastic activity) (antioxidant activity) (Article) (Calophyllum) (Calophyllum buxifolium) (Calophyllum depressinervosum) (carbon nuclear magnetic resonance) (column chromatography) (controlled study) (correlation analysis) (DPPH radical scavenging assay) (drug cytotoxicity) (drug protein binding) (drug structure) (ferric reducing antioxidant power assay) (human) (human cell) (IC50) (molecular docking) (phytochemistry) (proton nuclear magnetic resonance) (bark) (chemistry) (metabolism) (tumor cell line)
MeSH:	Antineoplastic Agents, Phytogenic Antioxidants Calophyllum Cell Line, Tumor Humans Molecular Docking Simulation Plant Bark Plant Extracts Protein Binding src-Family Kinases Xanthones

Chemicals and CAS Registry Numbers:

protein tyrosine kinase, 80449-02-1;

Antineoplastic Agents, Phytogenic; Antioxidants; Plant Extracts; src-Family Kinases; Xanthones

Funding details

Funding sponsor	Funding number	Acronym
Taylor's University	TRGS/ERFS/2/2018/SBS/019	

1

The authors acknowledge financial support from Taylor's University under Taylor's Research Grant Scheme (TRGS) (TRGS/ERFS/2/2018/SBS/019). The Sarawak Biodiversity Centre (SBC) is acknowledged.

ISSN: 02786915		
CODEN: FCTOD		
Source Type: Journal		
Original language: English		

DOI: 10.1016/j.fct.2019.110800 PubMed ID: 31479710 Document Type: Article Publisher: Elsevier Ltd

Mah, S.H.; School of Biosciences, Taylor's University, Lakeside Campus 1, Jalan Taylor's, Subang Jaya, Selangor, Malaysia;
© Copyright 2019 Elsevier B.V., All rights reserved.

About Scopus	Language
What is Scopus	日本語に切り替える
Content coverage Scopus blog	切换到简体中文 切换到繁體中文
Scopus API	Русский язык
Privacy matters	

Customer Service

Help Contact us

ELSEVIER

Terms and conditions *¬* Privacy policy *¬*

Copyright © Elsevier B.V ... All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.