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Abstract
The effect of chemical treatment on silicon manganese slag and the effect of curing time on the compressive strength of 
completely replacement coarse aggregate silicon manganese concrete (SMC) relative to normal weight concrete (NWC) 
with gravel as coarse aggregate is the subject of this paper. Alkali and acidic base chemicals are used to alter the neat silicon 
manganese slag during chemical preparation. The mixture pattern proportions for Grade 30 and Grade 50, respectively, 
were used to create the concrete. Before the compressive strength tests, the samples were cast and cured for 7-, 14-, and 
28-days. The properties of the silicon manganese slag and its concrete were studied using a scanning electron microscope 
(SEM), energy dispersive x-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The compressive 
strength of SMC30 and SMC50 obtained were 37.3 MPa and 51.1 MPa, respectively, on the 28-day. The alkaline treatment 
smoothest the matrix, while the acid treatment roughens the composition of the silicon manganese slag, according to SEM. 
The functional group demonstrated a major improvement in FTIR, while EDS revealed a high content of both silicon (Si) 
and manganese (Mn) elements. As a result, it can be observed that the power of SMC increases as the curing time increases 
for samples with complete replacement of normal aggregates using silicon slag.
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1 Introduction

It has become more popular in the construction of many 
high-rise buildings due to the vast growth in every country 
worldwide, particularly in the big city, which emphasized 

the conservation and sustainability against the environment 
[1–6]. These high-rise buildings play an important role in 
housing the communities, while minimizing environmental 
impact [1–6]. The lightweight concrete structural, which 
uses either natural or artificial lightweight aggregates [7], 
is commonly used in these high-rise structures, which are 
made up of a combination of heavyweight and lightweight 
materials. Through lighter weight of construction materials 
used in massive self-weight structures, a low weight unit 
of lightweight structural concrete has been produced [1–6]. 
Many scarce natural lightweight materials, such as shale, 
limestone, and sand, may be conserved with the increment 
usage as construction materials, hence artificial light weight 
aggregates are source as alternative replacement [8–10]. 
However, it was top developed and emerging countries such 
as China, Russia, India, Korea, Japan, the United States, 
and Australia that contributed to technical understanding 
on the use of artificial aggregates. Malaysia is only a few 
years behind the rest of the world in terms of technological 
innovation [11, 12]. Despite the current environmental dam-
age and aggregate source depletion problems, there is little 
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research on aggregate use and development as a substitute 
for natural lightweight by using artificial aggregates, espe-
cially in Malaysia [13].

Using the example of one of the most popular and effec-
tive byproducts in the world, bottom and fly ash as a com-
busted inorganic material, which is considered to be used 
as artificial lightweight aggregates from raw material 
due to its volume expansion stability [14–16]. However, 
greenhouse gases are highly created and extracted by ther-
mal power plants where a significant amount of energy is 
required, which is expensive, as the production of artificial 
lightweight aggregates may require a sintering process at 
900–1300 °C, which is typically combined with an inorganic 
material [17]. To address these issues, various studies have 
been performed using physical non-sintering coal ash pro-
cessing processes, such as generating aggregates by mixing 
with binders [18–20].

Apart from blast furnace slag, which was traditionally 
used as a concrete admixture, most slags produced in the 
steel, iron, or metal industries have no applications due to 
their extraction process and technique [21]. However, owing 
to underdevelopment and a lack of research information on 
the usage of blast furnace slags in Malaysia, these slags are 
simply thrown away in the landfill as waste [22]. The lack 
of awareness and misinterpretation that most slags gener-
ated contain significant amounts of iron oxides (Fe-oxides), 
free-calcium oxide (free-CaO), and free-magnesium oxide 
(free-MgO) may explain the lack of information toward 
the application [23]. The majority of these free-CaO and 
-MgO can form during slow cooling, while the amorphous 
phase forms during rapid cooling, and the high-tempera-
ture molten slag has an amorphous structure until cooling 
[24–26]. Despite their Fe-based hydroxides, Mg(OH)2, and 
Ca(OH)2 forms, the majority of these compounds extend as 
they come into contact with water [27–29]. Furthermore, 
most steel slags produced had high thermal conductivity and 
net mass, making them unsuitable for use in normal-weight 
concrete. Slags are not used as by-products as fillers, bind-
ers, or aggregates for concrete in Malaysia, and have never 
been used as raw materials for any artificial lightweight 
aggregates. The Malaysian Standard (MS) and the Works 
Department (WD)do not have it completely registered and 
standardized. Furthermore, the Department of Environment 
(DOE) classifies it as a schedule waste. As a result, extensive 
research is needed to determine the most suitable use of 
slags as a building material.

A nonferrous metal, silicon manganese (SiMn) slag, is 
produced during the smelting process. It contains a lot of 
Si-based oxide and a little Fe-based oxide. Frias et al. [30] 
identified a fine SiMn slag powder suitable for use as aggre-
gate in concrete, which improves volumetric and thermal 
stability when used as a cement admixture [31, 32]. The 
molten SiMn slag induces water evaporation when it comes 

into contact with water due to its high thermal temperature, 
which created small pores on the inner layer of the slag and 
large pores on the outer slag layer as the cooling process 
progressed. Since the pore formation could intimidate an 
important lightweight aggregates resource, it has a lot of 
potential for commercialization in construction and building 
materials, particularly in Malaysia.

The three most popular cooling methods are (i) air cool-
ing, (ii) water cooling (by quenching), and (iii) compound 
quenching (by oil, chemical aqueous solution, etc.). Further-
more, slow cooling by air-cooled by leaving the slag in an 
open storage until it cooled for a certain time, if sprinkling 
occurred, either through water, etc., can have a variety of 
effects on the slag’s consistency, with dust, restricted open 
storage, and leachate generation all contributing to the issues 
[33]. Furthermore, most molten SiMn slag in Malaysia are 
condensed, solidified as big rocks, and deposited as waste 
in landfills, while it needed to be compressed to be used as 
coarse aggregate. This results in a rise in waste in the land-
fill’s small capacity.

In this paper, the potentials of SiMn slag aggregates are 
reported, in which SiMn slag aggregates were studied using 
alkali, acid, and heat treatment in this analysis. To describe 
and analyses the effect of chemical and heat alteration on 
SiMn slag, limestone, Ordinary Portland Cement (OPC), 
and Silicon Manganese Concrete, scanning electron micros-
copy (SEM), energy dispersive x-ray spectroscopy (EDX/
EDS), and Fourier transform infrared spectroscopy (FTIR) 
are used (SMC). A fundamental research wasalso carried out 
to compare and measure the usability of SiMn Slag Manga-
nese Concrete (SMC) as standard concrete aggregates with 
OPC. The concrete’s compressive strength was compared 
to that of Normal Weight Concrete (NWC), and the com-
pression strength properties of both were investigated and 
documented.

2  Methodology

2.1  Materials

Silicon manganese slag (SiMn slag) was obtained from OM 
Materials Sdn. Bhd., Bintulu, Sarawak, Malaysia. Ordi-
nary Portland cement (OPC) were obtained from Cahaya 
Mata Sarawak (CMS) Berhad. Kuching, Sarawak, Malay-
sia. Crushed aggregates as coarse aggregates for NWC and 
river sand as fine aggregates for both NWC and SMC were 
obtained locally from Sarawak. Plasticizing REAL FLOW 
671 admixuture cement was supplied by Real Point Sdn. 
Bhd, Selangor Malaysia. For chemical treatment, sodium 
hydroxide, NaOH (alkaline) (CAS 1310-73-2), hydrochloric 
acid, HCl (acidic) (CAS 7647-01-0), sulfuric acid,  H2SO4 
(acidic acid) (CAS 7664-93-9) were used. These inorganic 
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chemicals were supplied by Fisher Scientific International, 
Inc. from United States. The caustic soda of NaOH obtained 
is industrially produced through electrolytic chloralkaline 
process. It is dissolves in water to form a colorless solution. 
HCl obtained is in aqueous form captured from hydrogen 
chloride gas. It is soluble in water and alcohol, clear and 
colorless liquid with strong pungent smell, which act as rea-
gent for samples.  H2SO4 is formed naturally oxidation of 
sulfide mineral. It also commercially produced when sulfur 
trioxide is dissolved in water.

2.2  Silicon Manganese Slag Chemical Treatment

The obtained silicon manganese, SiMn slag was divided 
into 4 categories: Neat-SiMn, NaOH-SiMn, HCl-SiMn, 
 H2SO4-SiMn. For chemical treatment, solution was created 
by mixing 5 wt% of caustic soda of NaOH with 95 wt% of 
distilled water to prepare NaOH solution, 5 wt% aqueous of 
HCl with 95 wt% of distilled water to prepare HCl solution, 
5 wt% aqueous of  H2SO4 with 95 wt% of distilled water to 
prepare  H2SO4 solution. The solid SiMn was crunch into 
10 mm size and soaked in each of the chemical solution to 
create modified NaOH-SiMn, HCl-SiMn, and  H2SO4-SiMn 
for 15 min before filtered and dry for heat treatment in an 
open-ventilated drying oven for 30 min under temperature 
of 90 °C.
2.3  Concrete Mixture Proportions

The mixture proportions design is shown in Table 1. It was 
designed to achieve a concrete compressive strength of 
Grade 30 MPa (which is labeled as NWC30 and SMC30) 
and Grade 50  MPa (which is labeled as NWC50 and 
SMC50), respectively. Silicon manganese slag was used as 
coarse aggregates for SMC. Meanwhile, for NWC, gravel 
was used as the coarse aggregates. Both samples, NWC 
and SMC used 20 mm size coarse aggregates. For the fine 
aggregates, river sand was used. The admixture used has an 
admixture of high-range water-reducing and set-retarding for 
concrete, which complied with Type B, D and G of ASTM 
C494–19 [34] and BS 5075–1:1982 [35]. The specifications 

and the amount were shown in Table 1 for each concrete 
type.

2.4  Concrete Preparation

For each batch of concrete, nine samples of concrete cubes 
were prepared. The samples were cast, cured and tested on 
the 7-day, 14-day, and 28-day, respectively. During the cast 
for NWC30 and NWC50, natural river sand and crushed 
aggregates was used for fine and coarse aggregate, respec-
tively. While for SMC30 and SMC50, natural sand and sili-
con manganese slag was used for fine and coarse aggregates, 
respectively. The samples were mixed using concrete mixing 
drum according to mixture proportions shown in Table 1. 
Water with respect to water to binder ratio shown in Table 1 
was added into the concrete mixture, and the concrete were 
mixed thoroughly for 15 min. The concrete mixture was 
then placed into the concrete steel cube molds of 150 mm 
X 150 mm X 150 mm with 3 equal layers of compaction 
applied. Compaction was carried out using vibration table 
to remove the entrapped air and to avoid segregation of par-
ticles. Subsequently, the concrete mixture in the steel cube 
molds were left to dry in the lab for 24 h before demolding 
were carried out. The samples were then placed in water 
tank filled with water, which cured up to 7 days, 14 days, and 
28 days prior to compressive test. The procedures of casting 
and curing is in accordance the IS 10262:2019 standard [36].

2.5  Characterization and Testing

2.5.1  SEM and EDX/EDS Analysis

ASTM E2015–04 [37], ASTM E2142–08 [38], and ASTM 
C1723–16 [39] standards were used to perform scanning 
electron microscopy (SEM) with energy dispersive x-ray 
spectroscopy (EDX/EDS). A magnification of 500x was 
used to examine a variety of SiMn slag, granite, and ordi-
nary Portland cement samples, as well as their concrete. 
Furthermore, EDX/EDS was performed in accordance with 
ASTM E1508–12 [40]. Three points were chosen at random 
from the neat and modified SiMn slag, limestone, Portland 
cement, and concrete samples. The elemental composition 
percentages analysis was automated by the program. The 
EDX/EDS was replicated several times for each study, and 
the most common findings were carefully selected. For 
the SEM and EDX/EDS, A Hitachi TM4000Plus Tabletop 
Microscope with a Quantax75™ Series Energy Dispersive 
X-Ray Spectrometer (Hitachi Ltd., Tokyo, Japan) was used 
to analyses the neat and modified SiMn, limestone, ordinary 
Portland cement, and silicon manganese concrete (SMC) 
samples to investigate its composition, size and surface 
structure.

Table 1  The Mixture Proportions for normal weight concrete (NWC) 
and silicon manganese concrete (SMC)

Mix Proportions by 
Weight (kg/m3)

NWC30 NWC50 SMC30 SMC50

Cement 360 500 360 500
Fine Aggregate 730 710 730 710
Coarse Aggregate 1100 1040 1100 1040
Water 166 168 166 168
Admixture (ml) 2880 ml 5500 ml 2880 ml 5500 ml
Water to binder ratio 0.46 0.34 0.46 0.34
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2.5.2  FTIR Analysis

A Fourier-transform infrared spectroscopy  (IRAffinity−1, 
Shimadzu Corporation, Kyoto, Japan) was used for the FTIR 
analysis of the neat and modified SiMn slag, limestone, ordi-
nary Portland cement, and SiMn slag aggregate concrete 
(SMC) samples for comparison. Fourier-transform infra-
red spectroscopy was conducted according to the ASTM 
E168–16 [41] and ASTM E1252–98 [42] standards for 
qualitative and quantitative analysis. The spectrum scanning 
was conducted in the wavenumber range of 4000  cm−1 to 
400  cm−1 for each sample. Fourier-transform infrared spec-
troscopy utilized the infrared spectrum transmittance and 
absorption of the samples to develop a unique molecular 
fingerprint spectrum. The test was repeated numerous times 
for each sample, and the most representative results were 
selected.

2.5.3  Compressive Test

On the testing day, the concrete samples were removed 
from the water tank and the compressive strength test was 
conducted in accordance with BS EN 196–1:2016 [43] 
using the electrically operated U20CrEL Model of Motor-
ized Hydraulic Compression Testing Machine. During the 
compressive test, load was applied gradually on top of the 
concrete samples at 2.4 ± 0.2 kN/s, until the samples failed. 
Results obtained from the same three concrete batch samples 
of on same testing days with respect to 7-, 14- and 28-days 
were averaged and reported.

3  Results and Discussions

3.1  Compressive Strength

Figure 1 shows the compressive strength of NWC and SMC 
with full replacements of gravels using silicon manganese 
slag at 7-, 14- and 28-days. For both NWC and SMC, the 
compressive strength increases with the curing duration. 
Although SMC samples had shown slightly lower compres-
sive strength compared to NWC at all curing period, SMC30 
and SMC50 achieved compressive strength of 37.3 MPa and 
51.1 MPa at the 28-days, which passed Grade 30 and Grade 
50 mixture design proportion standards. At the 7-days, 
SMC30 demonstrate 6.3% compressive strength reduction 
compared to NWC30 whilst SMC50 achieve 10% compres-
sive strength lesser than NWC50. At the 14-days, SMC30 
achieve comparable compressive strength with NWC30 
while SMC50 demonstrate 16% compressive strength reduc-
tion compared to NWC50. While at the 28-days, SMC30 
and NWC30 displayed comparable compressive strength. 
However, SMC50 shown 9.2% compressive strength reduc-
tion compared to NWC50.

It was observed that both NWC and SMC samples had 
surpassed the typical specified compressive strength for 
structural application of 30 MPa and 50 MPa. Ganesh et al. 
[44] found a similar result for Grade 30 concrete, where 
the complete substitution of coarse aggregates with silicon 
manganese slag reached 30.44 MPa at the 28-day with a 
slightly lower cement content of 330 kg/m3 and a slightly 
lower cement content of 330 kg/m3.
3.2  Morphological Analysis

SEM photographs of limestone, ordinary Portland cement, 
and silicon manganese slag aggregate concrete are seen in 

Fig. 1  The compressive strength 
of normal weight concrete 
(NWC) and silicon manganese 
concrete (SMC)
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Fig. 2 (a), (b), and (c) at 500x magnification (SMC). Fig-
ure 2 (a) depicts a limestone sample aggregate that was 
used in architecture, housing, paving, and road materials in 
Sarawak, Malaysia. According to the samples, the limestone 
is brittle mosaic in surface structures of inconsistent grain 
size, with some having small soft bit structures that vary in 
form and grove [45–48]. Many researchers [49] have stated 
that the brittle and inconsistently sized, shapes, groove sur-
face structures, and poor hydration of limestone can cause 
weak adhesion at certain parts of the concrete and compos-
ites, particularly when bonded with polymer, bitumen, or 
cement. Initial cracks may occur before or after the lime-
stone has been bonded, particularly when the materials are 
loaded [49]. When a load is added to the components, this 
results in a random breaking point at a certain region of the 
threshold [49].

The ordinary Portland cement without admixture is seen 
in Fig. 2(b). The hydration process was irregular, as there 
was a combination of un-hydrated and hydrated cement in 
some areas, resulting in a small size crack on the cement 
surface [50]. In contrast, Fig. 2(c) depicts a slight crack 
between the silicon manganese slag and ordinary Portland 
cement used by SMC. The smooth surface of silicon man-
ganese slag slipped, transferred, or moved due to the load 
added to it during the compressive strength test, which was 
also a typical failure in many forms of concrete [50–52]. It 
is also worth noting that for SMC, the interaction between 

sand and other materials is correctly combined, resulting in 
better samples.

Figure 3(a), (b), (c), and (d) reveal images of Neat-SiMn, 
NaOH-SiMn, HCl-SiMn, and H2SO4-SiMn slag at 500x 
magnification. The alkaline treatment results in a smoother 
surface with less grain, as seen in Fig. 3(b), while the acidic 
treatment results in porosity on the surface of the silicon 
manganese slag, as seen in Fig. 3(c) and (d). It was also 
discovered that different chemical compositions and concen-
trations on the surface of the silicon manganese slag produce 
different reactions. The acid concentration and composition 
in Fig. 3(d) appear to produce a special needle fascinated 
shape, resulting in a rougher and more readily absorbent 
surface [53]. When comparing Fig. 3(c) and (d), it can be 
shown that the acidic concentration and composition appear 
to eliminate unwanted weak structures, resulting in a small 
amount of porous structure on the surface [53].

3.3  EDX/EDS Analysis

Tables 1, 2 and 3 shows the EDS/EDX elemental analyses 
for limestone, ordinary Portland cement, and silicon manga-
nese concrete (SMC). Figures 4, 5, and 6 depicted the graph 
continuum of Tables 2, 3 and 4 correlation results, respec-
tively. Carbon (C), oxygen (O), calcium (Ca), natrium (Na), 
and chlorine (Cl) were found in the samples, according to 
Table 2. Table 3 shows the presence of carbon (C), calcium 
(Ca), oxygen (O), silicon (Si), potassium (K), natrium (Na), 

Fig. 2  The SEM images at 500x 
magnification for (a) limestone, 
(b) ordinary Portland cement 
(OPC), and (c) silicon manga-
nese concrete (SMC)
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chlorine (Cl), and aluminium (Al) throughout the samples. 
Figures 4 and 5 and Tables 2 and 3 indicate that oxygen has 
the largest mass percentage, followed by calcium and carbon, 

while other elements have low mass percentages. This shows 
that limestone contained mostly  CaCO3, CaO,  Na2O, and 
slight amount of NaCl [54]. While ordinary Portland cement 

Fig. 3  The SEM images at 
500x magnification for (a) Neat 
silicon manganese (Neat-SiMn), 
(b) Treated sodium hydorixe 
silicon manganese (NaOH-
SiMn), (c) Treated hydrochlo-
ric acid silicon manganese 
(HCl-SiMn), and (d) Treated 
sulfuric acid silicon manganese 
 (H2SO4-SiMn)

Table 2  EDS element 
composition for limestone

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 47.05 54.89 6.78 12.52
Ca 20 33.59 15.64 1.18 3.05
C 6 18.62 28.94 2.83 13.22
Na 11 0.50 0.41 0.07 12.07
Cl 17 0.24 0.12 0.04 14.15
Total 100 100

Table 3  EDS element 
composition for ordinary 
Portland cement (OPS)

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 41.72 48.86 5.72 12.82
Ca 20 32.51 15.20 1.07 3.06
C 6 21.15 33.00 3.01 13.31
Si 14 1.97 1.31 0.12 5.57
K 19 1.01 0.48 0.06 5.91
Na 11 0.79 0.64 0.09 10.19
Cl 17 0.51 0.27 0.05 8.69
Al 13 0.34 0.24 0.05 12.74
Total 100 100
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contained mostly  CaCO3, CaO,  SiO2,  Al2O3,  Na2O,  K2O, 
and slight amount of NaCl [55–57]. The present of  CaCO3 
and CaO helps strengthen and increase the durability of the 
limestone and ordinary Portland cement, which also acceler-
ate the effect of hydration reactivity rate [58]. However, the 
present of slight NaCl may promote corrosion towards steel 
in concrete, which make it weaker in long period [59, 60].

In silicon manganese concrete, as shown in Table 4, the 
present element in the samples were calcium (Ca), oxygen 
(O), silicon (Si), carbon (C), aluminium (Al), manganese 
(Mn), barium (Ba), magnesium, (Mg), natrium (Na), and 
potassium (K). From Fig. 6 and Table 4, it showed that oxy-
gen had the highest content mass percentage, followed by 

calcium and silicon, while the other elements mass percent-
age remain low. This shows that silicon manganese concrete 
contained mostly  CaCO3, CaO,  Na2O,  SiO2,  Al2O3,  Na2O, 
 K2O, BaO,  BaCO3, MgO, SiMn, MnO [4, 32]. The present 
of  CaCO3 and CaO helps strengthen concrete, and accelerate 
the effect of hydration rate, while BaO, and  BaCO3 increase 
the dense of the concrete [32, 58]. However, the absence of 
NaCl, especially chlorine, reduced corrosion effects towards 
steel in concrete, which could retain its strength in long 
period [4, 61, 62].

The EDS/EDX elemental analysis for Neat-SiMn, NaOH-
SiMn, HCl-SiMn and  H2SO4-SiMn slag are shown in 
Tables 5, 6, 7, and 8. While Figs. 7, 8, 9 and 10 showed the 

Fig. 4  EDS spectrum graph of 
limestone

Fig. 5  EDS spectrum graph of 
ordinary Portland cement (OPS)
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graph spectrum correlation with data in Tables 5, 6, 7, and 
8, respectively. Based on Tables 5, 6, 7 and 8, similar pre-
sent element in all the samples were calcium (Ca), oxygen 
(O), silicon (Si), carbon (C), potassium (K), barium (Ba), 
and aluminium (Al). It is also noted that in the Neat-SiMn, 

NaOH-SiMn, and HCl-SiMn, there is a present of manga-
nese (Mn), magnesium (Mg), and natrium (Na), even though 
it is not present in  H2SO4-SiMn. NaOH treatment cause the 
present of nitrogen (N) in NaOH-SiMn, while HCl cause 
the present of chlorine (Cl) and lead (Pb), and  H2SO4-SiMn 

Fig. 6  EDS spectrum graph 
of silicon manganese cement 
(SMC)

Table 4  EDS element 
composition for silicon 
manganese cement (SMC)

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 46.33 63.38 4.29 12.67
Ca 20 29.35 16.03 0.67 3.12
Si 14 10.63 8.28 0.35 4.53
C 6 3.65 6.60 0.58 22.04
Al 13 3.36 2.73 0.14 5.85
Mn 25 2.93 1.17 0.10 4.85
Ba 56 1.75 0.28 0.08 5.89
Mg 12 1.07 0.97 0.07 9.18
K 19 0.70 0.39 0.05 8.91
Na 11 0.25 0.17 0.03 19.09
Total 100 100

Table 5  EDS element 
composition for neat silicon 
manganese (Neat-SiMn)

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 44.63 55.73 6.36 12.18
Si 14 13.18 9.37 0.67 4.36
C 6 11.70 19.47 2.25 16.40
Ca 20 10.81 5.39 0.41 3.25
Al 13 6.77 5.01 0.40 5.04
Ba 56 5.18 0.75 0.22 3.63
Mn 25 4.03 1.47 0.18 3.91
Mg 12 2.34 1.92 0.18 6.52
K 19 0.82 0.42 0.06 6.48
Na 11 0.53 0.46 0.07 11.80
Total 100 100
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Table 6  EDS element 
composition for treated sodium 
hydroxide silicon manganese 
(NaOH-SiMn)

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 47.05 57.21 7.26 12.07
Si 14 13.51 9.36 0.75 4.34
C 6 10.13 16.41 2.17 16.77
Ca 20 10.09 4.90 0.42 3.25
Al 13 5.99 4.32 0.39 5.06
Mn 25 4.15 1.47 0.20 3.83
Ba 56 2.81 0.40 0.15 4.14
Mg 12 2.49 1.99 0.20 6.36
N 7 1.93 2.68 0.68 27.66
Na 11 0.99 0.84 0.11 9.09
K 19 0.87 0.43 0.07 6.06
Total 100 100

Table 7  EDS element 
composition for treated 
hydrochloric acid silicon 
manganese (HCl-SiMn)

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 42.09 58.62 4.13 12.36
Si 14 13.39 10.62 0.47 4.44
Ca 20 11.27 6.27 0.30 3.35
Ba 56 10.90 1.77 0.29 3.36
Al 13 7.62 6.29 0.31 5.14
C 6 6.21 11.52 0.98 19.94
Mn 25 4.49 1.82 0.15 4.16
Mg 12 1.44 1.32 0.09 8.05
Cl 17 1.01 0.64 0.06 7.12
K 19 1.00 0.57 0.06 6.99
Na 11 0.58 0.56 0.06 13.25
Pb 82 0.00 0.00 0.00 1.51
Total 100 100

Table 8  EDS element 
composition for treated sulfuric 
acid silicon manganese  (H2SO4-
SiMn)

Element Atomic No. Mass Normal (%) Atom (%) Absolute Error 
(%) (1 sigma)

Relative Error 
(%) (1 sigma)

O 8 56.54 71.56 7.53 11.96
Ca 20 14.88 7.52 0.53 3.19
S 16 11.08 6.99 0.47 3.78
Ba 56 7.30 1.08 0.28 3.44
C 6 5.75 9.69 1.25 19.46
Si 14 2.19 1.58 0.13 5.43
Al 13 1.79 1.34 0.12 6.23
K 19 0.48 0.25 0.05 9.10
Total 100 100
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cause the present of sulphur (S). From Figs. 7, 8, 9 and 10, 
and Tables 5, 6, 7 and 8, it showed that the highest content 
was oxygen mass percentage, while other elements mass 
percentage remain low. This shows that Neat-SiMn slag 
contained mostly  CaCO3, CaO,  Na2O, SiMn,  Al2O3, BaO, 
 BaCO3,  Na2O,  K2O, SiO,  SiO2, and MgO [4, 32, 63–65]. 
While BaO, and  BaCO3 increase the density,  CaCO3 and 
CaO helps to strengthen by increasing the durability of sili-
con manganese slag, by accelerating the hydration reactivity 
rate [32, 58]. The present of SiO and  SiO2 created mixture 

of crystalline and amorphous structure, depending on the 
chemical reaction towards the chemical treatments, which 
was reflected in SEM result in Fig. 3.

From the analysis it is noted that there are few possible 
chemical reactions happened during the treatments. Equation 
(1) to (6) shows the possibilities of the chemical reactions.

(1)Mn + 2HCl → MnCl
2
+ H

2

(2)Si + 2HCl → SiCl
2
+ H

2

Fig. 7  EDS spectrum graph of 
neat silicon manganese (Neat-
SiMn)

Fig. 8  EDS spectrum graph of 
treated sodium hydroxide sili-
con manganese (NaOH-SiMn)
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(3)Mn + H
2
SO

4
→ MnSO

4
+ H

2

(4)Si + H
2
SO

4
→ SiO

2
+ H

2
O

2

(5)Mn + 2NaOH → Mn(OH)
2
+ 2Na

(6)Si + 2NaOH + H
2
O → +Na

2
SiO

3
+ 2H

2

3.4  FTIR Analysis

Figures 11, 12 and 13 shows the FTIR images for lime-
stone, ordinary Portland cement and silicon manganese 
concrete. According to Fig. 13, the broad band intensity of 
3500  cm−1-3000  cm−1 designated to the water molecules, 
which is due to stretching of -OH and vibrations of H-0-H. 
The small sharp peaks in Fig. 11 at 3940  cm−1, 3817  cm−1, 
3745  cm−1 and Fig. 12 at 3739  cm−1 was due to the free 
hydroxyl groups. This free hydroxyl group tend to react 
during hydraulic hydration process. The reaction caused 
the surface materials entrapped in cavities or void in the 

Fig. 9  EDS spectrum graph of 
treated hydrochloric acid silicon 
manganese (HCl-SiMn)

Fig. 10  EDS spectrum graph 
of treated sulfuric acid silicon 
manganese  (H2SO4-SiMn)
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polymeric framework. In Figs. 11, 12 and 13, few small 
sharp peaks spotted throughout the 2520 to 1037  cm−1, 
2453 to 866  cm−1, 2520 to 690  cm−1, absorption band was 
designated to the calcium in the form of calcite  (CaCO3) 
[66–68]. Whereas most  CO3

2− having asymmetric stretch-
ing, in-plane and out-of-plane bending [69]. In Fig. 13, at 
1425 and 999  cm−1, the peak was designated for asymmetric 
stretching and vibration of Si-O-Al and/or Si-O-Si, respec-
tively [70, 71].

Figures 14, 15, 16 and 17 shows the FTIR images for 
Neat-SiMn, NaOH-SiMn, HCl-SiMn, and  H2SO4-SiMn. It 
is noted that multiple peaks at 2000–2500  cm−1 was due 
to stretching vibration of Si-O and Si-Mn, which occurred 
in and out of phase for SiO for silicon manganese slag 
[70–72]. The alkaline treatment causes the peak almost 
diminished which shows the Si-Mn and Si-O structure 
were in plane, while acid caused the bending of Si-O and 
Si-Mn which at the end created rougher needle structure of 

Fig. 11  FTIR spectrum graph 
for limestone

Fig. 12  FTIR spectrum graph 
for ordinary Portland cement 
(OPC)

Fig. 13  FTIR spectrum graph 
for silicon manganese concrete 
(SMC)
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silicon manganese slag [70–72]. In Fig. 15, the peak at 977 
to 1176  cm−1 was due to asymmetric and symmetric tetrahe-
dral of SiO or stretch vibration of  Al2O3, whereas 977  cm−1 
was due to vibration bending of Si-O-Si [71]. It also noted 
that  H2SO4 had eliminated Na and Mg as shown by EDS/
EDX and FTIR in Figs. 10, 17 and Table 8, which created 
the rough needle surface as shown in Fig. 3(d).

4  Conclusions

In conclusion, the compressive strength of silicon man-
ganese concrete (SMC) achieved concrete strength of 
37.3 MPa and 51.1 MPa at 28th day for the SMC30 and 
SMC50, respectively which complied with Grade 30 and 
Grade 50 standards. Alkali and acid modified the neat silicon 
manganese slag structure as shown by SEM, whereas the 

Fig. 14  FTIR spectrum graph 
for neat silicon manganese 
(Neat-SiMn)

Fig. 15  FTIR spectrum graph 
for treated sodium hydroxide 
silicon manganese (NaOH-
SiMn)

Fig. 16  FTIR spectrum graph 
for treated hydrochloric acid 
silicon manganese (HCl-SiMn)
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alkaline treatment smoothen the structure and acid treatment 
roughen the surface of the silicon manganese slag. FTIR 
showed there are significant change in the functional group 
which caused stretching and vibration of Si-O and Si-Mn 
functional groups of silicon manganese slag due to modifi-
cations, while EDS significantly showed the high content of 
both silicon (Si) and manganese (Mn) elements. Therefore, 
it was concluded that curing duration increases the strength 
of SMC, which is useful for fully replacement of NWC.
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