

Examining the impacts of individual lot stormwater detention in a housing estate

Darrien Y.S. Mah^{1,*}, Johnny O.K. Ngu², P.D. Caroline³ and M. A. Malek³

¹Faculty of Engineering, Universiti Malaysia Sarawak, Sarawak, Malaysia
²Faculty of Civil Engineering, Universiti Teknologi MARA, Sarawak, Malaysia
³Institute of Sustainable Energy, Universiti Tenaga Nasional, Selangor, Malaysia
*Corresponding author: ysmah@unimas.my

Received 28 October 2020 Revised 21 January 2021 Accepted 25 January 2021

Abstract

This paper describes the Storm Water Management Model (SWMM) simulations of three individual lot stormwater detention systems under the car porches of houses. These three systems consist of ready-made modular units presumably fitted under 49 m² car porches of 204 double-story terrace houses. The 37,032 m² housing estate is calculated to have 75% of land covered with houses, 25% with roads and other infrastructures. The housing estate was subjected to 5-minute, 10-year Average Recurrent Interval (ARI) short-duration design rainfall. The model predicted that all three systems could reduce the peak runoff at outfall from 2.79 to 0.38 m³/s. It indicated that any of the system could cause 86% reduction of the runoff for the whole housing estate. In order to differentiate the performance of the three systems, the housing lot was further investigated. When Type 1 system (1.15 m high with 49 m³ per lot) was analysed by the SWMM model, only 8% of its storage volume was filled that highlights an over design. Type 2 system (0.3 m high with 6 m³ per lot) modelled at 84% while Type 3 system (0.3 m high with 9 m³ per lot), at 54%. The difference in heights between the systems explained the low percentage of filling for the Type 1 system. Comparing Type 2 and Type 3, concrete structure within Type 3 had only half of its volume filled. In this light, the Type 2 system made of polyethylene pieces was found the most efficient in lowering post-development peak runoff.

Keywords: Car porch, Drainage, Mekarsari, Modular, Sustainable development, Urban runoff

1. Introduction

Modifications to natural land cover cause changes to the flow mechanism of the local water cycle [1]. Forested land that is often a representation of pre-development condition could absorb runoff via the soil layers and plant roots. The resulted hydrograph in the presence of rooted plants has a low peak runoff and longer time to peak. Its baseflow is large due to the slow releases of water from the soils and plant roots [2,3]. Once the vegetations are replaced with buildings and roads, the built-up surfaces block water from infiltrating to the soils. Therefore, this so-called post-development condition causes a hike in both peak runoff and time to peak as well as a significant increase in the volume of runoff. Accumulated runoffs in the form of flash flooding come and go rapidly, a phenomenon often observed in the urban areas [4].

One of goals of urban stormwater management is to lower the post-development peak runoff to near the predevelopment condition [5]. Stormwater detention is one of the practices to mimic the natural function of soils and plant roots [6]. In this paper, attention is paid to individual lots of stormwater detention systems. As the name suggests, this is a system installed within a private property's lot [7]. When portions of the stormwater runoff were captured at a lot scale, significant reduction in the discharge volume was achieved based on a case study in Western Australia [8]. Lot scaled devices were reported as locally efficient to reduce the flooding risks in another case study in China [9], reinstating the finding from the Western Australian study. However, in addition, appropriate locations to install the lot scaled devices were vital on reducing the impacts on a catchment's hydrographs [10]. This study is proposing the manipulation of common Malaysian house car

Research Article