

BEHAVIOUR OF CLEAVAGE PROPERTIES OF SMALL CLEAR LAMINATED ACACIA HYBRID SPECIES OF SARAWAK

DAVIDSON SATING ANAK RIANG

Bachelor of Engineering with Honours (Civil Engineering) 2020

UNIVERSITI MALAYSIA SARAWAK

	BORANG PENGES	
Judul:	BEHAVIOUR OF CLEAVAGE	PROPERTIES OF SMALL CLEAR
	LAMINATED ACACIA HY	BRID SPECIES OF SARAWAK
	SESI PENGA	JIAN: 2016 – 2020
Saya:	DAVIDSON SATING ANAK RIANG	
		AMA PENUH)
	membenarkan tesis * ini disimpan di Pusat Khidn arat-syarat kegunaan seperti berikut:	nat Maklumat Akademik. Universiti Malaysia Sarawak
2. Pusat	esis adalah hak milik Universiti Malaysia Sarawak. Isat Khidmat Maklumat Akademik. Universiti Malaysia Sarawak dibenarkan membuat Salinan untuk tuj engajian sahaja. embuat pendigitan untuk membangunkan Pangkalan Data Kandungan Tempatan. Isat Khidmat Maklumat Akademik. Universiti Malaysia Sarawak dibenarkan membuat Salinan tesis ini seba ihan pertukaran antara institusi pengajian tinggi. sila tandakan (✓) di kotak yang berkenaan.	
k. Pusat bahar	t Khidmat Maklumat Akademik, Universiti Malaysia n pertukaran antara institusi pengajian tinggi.	ata Kandungan Tempatan. I Sarawak dibenarkan membuat Salinan tesis ini sebaga
 Pusat bahar 	t Khidmat Maklumat Akademik, Universiti Malaysia n pertukaran antara institusi pengajian tinggi. la tandakan (✓) di kotak yang berkenaan. SULIT (Mengandungi maklumat yang b yang termaktub di di dalam AK TERHAD (Mengandungi maklumat TERH	a Sarawak dibenarkan membuat Salinan tesis ini sebaga perdarjah keselamatan atau kepentingan Malaysia sepert FA RAHSIA RASMI 1972)
4. Pusat bahar	t Khidmat Maklumat Akademik, Universiti Malaysia n pertukaran antara institusi pengajian tinggi. la tandakan (✓) di kotak yang berkenaan. SULIT (Mengandungi maklumat yang b yang termaktub di di dalam AK	a Sarawak dibenarkan membuat Salinan tesis ini sebaga perdarjah keselamatan atau kepentingan Malaysia seperti
4. Pusat bahar	 Khidmat Maklumat Akademik, Universiti Malaysian pertukaran antara institusi pengajian tinggi. la tandakan (✓) di kotak yang berkenaan. SULIT (Mengandungi maklumat yang by yang termaktub di di dalam AKT) TERHAD (Mengandungi maklumat TERH) 	a Sarawak dibenarkan membuat Salinan tesis ini sebaga perdarjah keselamatan atau kepentingan Malaysia seperti FA RAHSIA RASMI 1972)
4. Pusat bahar	 Khidmat Maklumat Akademik, Universiti Malaysian pertukaran antara institusi pengajian tinggi. la tandakan (✓) di kotak yang berkenaan. SULIT (Mengandungi maklumat yang by yang termaktub di di dalam AKT) TERHAD (Mengandungi maklumat TERH) 	a Sarawak dibenarkan membuat Salinan tesis ini sebaga perdarjah keselamatan atau kepentingan Malaysia seperti FA RAHSIA RASMI 1972) AD yang telah ditentukan oleh organisasi/badan di mana
4. Pusat bahar 5. ** sil	 Khidmat Maklumat Akademik, Universiti Malaysian pertukaran antara institusi pengajian tinggi. la tandakan (✓) di kotak yang berkenaan. SULIT (Mengandungi maklumat yang by yang termaktub di di dalam AKT) TERHAD (Mengandungi maklumat TERH) 	a Sarawak dibenarkan membuat Salinan tesis ini sebaga perdarjah keselamatan atau kepentingan Malaysia seperti FA RAHSIA RASMI 1972) AD yang telah ditentukan oleh organisasi/badan di mana
4. Pusat bahar 5. ** sil	 Khidmat Maklumat Akademik, Universiti Malaysia n pertukaran antara institusi pengajian tinggi. la tandakan (✓) di kotak yang berkenaan. SULIT (Mengandungi maklumat yang b yang termaktub di di dalam AK TERHAD (Mengandungi maklumat TERH penyelidikan dijalankan) TIDAK TERHAD 	a Sarawak dibenarkan membuat Salinan tesis ini sebaga berdarjah keselamatan atau kepentingan Malaysia sepert FA RAHSIA RASMI 1972) AD yang telah ditentukan oleh organisasi/badan di mana Disahkan oleh:

SULIT dan TERHAD.

The following Final Year Project Report:

Title: Behaviour of Cleavage Properties of Small Clear Laminated AcaciaHybrid Species of Sarawak

.

Name : Davidson Sating Anak Riang

Matric No. : 55790

has been read and approved by:

4 - 8 - 2020

(Supervisor): MR. Gaddafi Bin Ismaili

Project Supervisor

Date

BEHAVIOUR OF CLEAVAGE PROPERTIES OF SMALL CLEAR LAMINATED ACACIA HYBRID SPECIES OF SARAWAK

DAVIDSON SATING ANAK RIANG

This project is submitted in partial fulfillment of the requirements for the Degree of Bachelor of Engineering with Honours (Civil Engineering) 2020

-

Dedicated to my beloved family, friends, and everyone

For their love, endless support, encouragement, and sacrifices

-

ACKNOWLEDGEMENTS

I would like to express my appreciation to my supervisor, Mr. Gaddafi bin Ismaili for his constant supervision, help, valuable knowledge, advice and enthusiastic support throughout his research. The project report would not have been completed smoothly without his guidance. He gives me a lot of information about this research so that I can explore more about timber engineering.

A special thanks to Universiti Malaysia Sarawak (UNIMAS) for giving me a chance to conducts this research successfully and always provide good facilities for me to carried out research work inside UNIMAS. My gratitude also goes to Dr. Alik Duju. Mr. Leong, Mr. Nungah Liang and Mr. Wong from Sarawak Forestry Corporation (SFC) at Kuching province for their full cooperation in providing the testing samples. machinery and equipment for this project. They always contribute energy and time for us every time we go to SFC lab for preparing and testing the samples.

A special thanks to my family for their continuous morale and financial support during the period of the project. They always give me advice and motivation for me to be more confident to conduct this research. My sincere appreciation also goes to all my teammates that helped me during the period of laboratory works as it was impossible to carry out such a huge amount of work alone without delaying too much time. They also help me to go to the laboratory since the distance of SFC (Sarawak Forestry Corporation) lab is too far from UNIMAS.

Last but not least, a sincere thanks goes to all others who contributed, directly and indirectly, to help enable this project to be completed successfully. I am proud of being a part of student who joins this research. I hope this research can go for further study because Malaysia is a tropical country which is rich with timber sources.

ii

ABSTRACT

The aim of this research to determine the behaviour properties of small clear laminated Acacia hybrid species of Sarawak. The realisation has grown that many earth's resources are non-renewable. Hence, it is important to develop a more economical construction that is eco-friendly and long-lasting product. Therefore, timber such as Acacia mangium and Acacia auriculiformis are selected for study purpose as they are fast-growing time, durable and high strength properties. These properties are the main reason Acacia mangium and Acacia auriculiformis are one of the resources suitable used for construction. In this study, the Acacia mangium and Acacia auriculiformis are combined, forming Acacia hybrid. Then, the Acacia hybrid was laminated with different years which are, 7 years with 10 years, 7 years with 13 years, and 10 years with 13 years. Basic information on physical and mechanical properties for introducing good use of Acacia hybrid species of Sarawak was tabulated to determine the best cleavage properties result of the combination. The relationship between density, moisture content and cleavage properties of small clear specimens were investigated for each group of age combination. The relationship of Acacia between physical properties and mechanical are directly proportional. As proved by Dr. Alik Duju, the relationship between moisture content and density are linear regression. The basic density is lower as the moisture content is higher. The cleavage strength properties of timber also affected by the change of density and moisture content. Strength properties of timber is lower as the basic density become lower. The strength of Acacia hybrid can be increased throughout detail study and effective further laboratory works. All data are analysed by using statistical analysis, where the graph and line graph used to compare the value on each combination with significant level of 95%. The average value or mean, standard deviation, and variance also calculated for each group of combination to analyse more detail of the strength of combination.

ABSTRAK

Tujuan penyelidikan ini untuk mengetahui sifat-sifat spesies Akasia hybrid di Sarawak yang dilaminasi kecil. Realisasi telah berkembang bahawa banyak sumber bumi tidak boleh diperbaharui. Oleh itu, adalah mustahak untuk mengembangkan pembinaan vang lebih ekonomik, iaitu produk mesra alam dan tahan lama. Oleh itu, kayu seperti Acacia mangium dan Acacia auriculiformis dipilih untuk tujuan kajian kerana kayu tersebut mempunyai sifat pertubuhan pada masa yang cepat, tahan lama dan mempuyai sifat kekuatan yang tinggi. Sifat-sifat ini adalah sebab utama Acacia mangium dan Akasia auriculiformis adalah salah satu sumber yang sesuai digunakan untuk pembinaan. Dalam kajian ini, Acacia mangium dan Acacia auriculiformis digabungkan, membentuk Akasia hybrid. Kemudian, Akasia hibrid dilaminasi dengan umur Acacia hybrid lain yang berbeza umur, iaitu, 7 tahun dengan 10 tahun, 7 tahun dengan 13 tahun, dan 10 years dengan 13 tahun. Maklumat asas mengenai sifat fizikal dan mekanikal untuk memperkenalkan penggunaan kayu jenis spesies Acacia hibrid di Sarawak dijadualkan untuk menentukan hasil sifat pembelahan terbaik dari kombinasi tersebut. Hubungan antara ketumpatan, kandungan kelembapan dan sifat pembelahan spesimen kecil disiasat untuk setiap kumpulan umur. Hubungan Acacia antara sifat fizikal dan mekanikal adalah berkadar terus. Seperti yang dibuktikan oleh Dr. Alik Duju, hubungan antara kandungan kelembapan dan ketumpatan adalah regresi linier. Ketumpatan asas kayu Acacia lebih rendah kerana kandungan lembapannya lebih tinggi. Sifat kekuatan pembelahan kayu juga dipengaruhi oleh perubahan kepadatan dan kandungan lembapan. Sifat kekuatan kayu lebih rendah kerana ketumpatan asas menjadi lebih rendah. Kekuatan Acacia hybrid dapat dipertingkatkan melalui kajian terperinci dan kerja makmal yang lebih berkesan. Semua data dianalisis dengan menggunakan analisis statistik, di mana graf bar dan graf jenis garisan digunakan untuk membandingkan nilai pada setiap kombinasi dengan tahap signifikan 95%. Min purata, sisihan piawai, dan varians juga dikira untuk setiap kumpulan gabungan untuk menganalisis lebih terperinci mengenai kekuatan gabungan.

CONTENTS

Pages

DEDICATION	i
ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
ABSTRAK	iv
CONTENT	v
LIST OF TABLES	viii
LIST OF PHOTOS	ix
LIST OF FIGURES	xii
LIST ABBREVIATION AND NOTATIONS	xiv

CHAPTER 1 INTRODUCTION

1.1 General .	1
1.2 Problem Statement	2
1.3 Aim and Objectives	3
1.4 Works Scope	3
1.5 Significant of Study	4
1.6 Chapter Outline	5

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction to Timber	6
2.2 History of Timber	9
2.3 Timber Industry in Malaysia	13
2.4 Timber Issues	18
2.5 Timber · Management	22
2.6 Hardwood and Softwood	24
2.7 Timber Classes and Species	30

2.8 Acacia Auriculiformis	34
2.9 Acacia Mangium	37
2.10 Acacia Hybrid	
2.11 Physical Properties	39
2.11.1 Density	40
2.11.2 Specific Gravity	42
2.11.3 Moisture Content	42
2.11.4 Durability	44
2.12 Mechanical Properties	45
2.12.1 Tensile Strength	45
2.12.2 Bending Strength	46
2.12.3 Compressive Strength	47
2.12.4 Hardness	48
2.12.5 Impact Bending	49
2.12.6 Shear Strength	50
2.12.7 Cleavability	51
2.13 Quality of Good Timber	52
2.14 Seasoning of Timber	53
2.15 Timber Defects	56
2.16 Glulam (Glued-Laminated) Timber	57
2.17 Manufacturing of Glulam	58
2.18 Microscopy and Macroscopy	59
2.19 Summary of Literature Review	60

CHAPTER 3 METHODOLOGY

3.1	General			

62

3.2 Material Preparation	65
3.3 Laboratory Works	
3.3.1 Cleavage Properties Test	74
3.3.2 Moisture Content	75
3.3.3 Specific Gravity and Density	75
3.3.4 Microscopic	73

CHAPTER 4 RESULT AND DISCUSSION

4.1 Introduction	77
4.2 Testing Result	78
4.3 Data Analysis	78
4.4 Physical Properties	79
4.4.1 Moisture Content	80
4.4.2 Density	82
4.4.3 Correlation Between Moisture Content and Density	84
4.5 Mechanical Properties	87
4.5.1 Cleavage Strength in Radial and Tangential Direction	87
4.5.2 Correlation Between Cleavage Strength Direction and Moisture Content	94
4.5.3 Correlation Between Cleavage Strength Direction and Density	97

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction	101
5.2 Recommendations	102
REFERENCES	103
APPENDIX	

LIST OF TABLES

.

Table	Pages
Table 2.1 Malaysia's Timber – Based Industries	14
Table 2.2 Projected of Average Annual Log Production from Natural Forest	15
Table 2.3 Existing Forest Plantation by State	16
Table 2.4 Major Timber Export by Malaysia and Timber Products	16
Table 2.5 Malaysia Import of Major Timber and Timber Products	17
Table 2.6 Negative Impact of Illegal Logging	19
Table 2.7 Illegal Harvesting of Wood Estimated in Some Countries	20
Table 2.8 Softwood Species	30
Table 2.9 Temperate Hardwoods	31
Table 2.10 Tropical Hardwoods	31
Table 2.11 Class of Timber	32
Table 2.12 Classification of Malaysian Hardwood	33
Table 2.13 Classification of Timber According to Density	41
Table 2.14 Classes for Tropical and Temperate Exposure and Laboratory Exposure	45
Table 2.15 Comparison Between Natural and Kiln Seasoning	55
Table 2.16 Defects in Timber	56
Table 3.1 Selected Plot Number	62
Table 4.1 Meter of Regression R-value	79
Table 4.2 Summary of R-value Between Moisture Content and Density	86
Table 4.3 Average of Maximum Load and Stress	91
Table 4.4 Detail of Maximum Load (N) for All Combination	92
Table 4.5 Detail of Stress Value (N/mm) for All Combination	93
Table 4.6 Summary of R-value for Moisture Content and Age of Combination	96

LIST OF PHOTOS

99

Photo	Pages
Photo 1.1 Horyu-ji temple	1
Photo 2.1 Bamboo Plants is An Endogenous Tree	7
Photo 2.2 Sugarcane is An Endogenous Tree	7
Photo 2.3 Palm Tree is An Endogenous Tree	7
Photo 2.4 Examples of Coniferous Trees	8
Photo 2.5 Deciduous Tree	8
Photo 2.6 Early 20th Century timber post and beam and trust construction	9
Photo 2.7 St. Andrew Church at Greensted, England	10
Photo 2.8 Pagoda, Pogong Temple, Yingxian	11
Photo 2.9 Hall of Spiritual Favors	11
Photo 2.10 Jueshan Monastery, Lingqiu, Shanxi, ca. 11th century	12
Photo 2.11 Trucks carrying logs in Gunung Lumut, East Kalimantan, Indonesia	21
Photo 2.12 Illegal logging of Meranti timber	21
Photo 2.13 Damar minyak (Agathis borneensis)	24
Photo 2.14 Podo (Podocarpus sp.)	25
Photo 2.15 Sempilor (Dacrydium spp; Phyllocladius spp.)	25
Photo 2.16 Chengal (Neobalanocarpus heimii)	26
Photo 2.17 Belian ((Eusideroxylon zwageri)	26
Photo 2.18 Merbau (Intsia spp.)	27
Photo 2.19 Kempas ((Koompassia malaccensis)	27

Photo 2.20 Keruing Kipas (Dipterocarpus costulatus)	28
Photo 2.21 Kapur (Dyrobalanops spp.)	28
Photo 2.22 Meranti (Shorea spp.)	29
Photo 2.23 Rubberwood (Hevea brasiliensis)	29
Photo 2.24 Nyatoh (Sapotaceae spp.)	30
Photo 2.25 Acacia auriculiformis Tree in Bidadari Cemetery, Singapore	35
Photo 2.26 Acacia auriculiformis Tree	35
Photo 2.27 Wood of Acacia auriculiformis	36
Photo 2.28 Leaves of Acacia auriculiformis	36
Photo 2.29 Seed Pods	36
Photo 2.30 Leaves and Seeds	36
Photo 2.31 A 10-year-old, thinned stand of Acacia mangium	37
Photo 2.32 Inflorescences and Acacia mangium seed pod	38
Photo 2.33 Two emergent Acacia mangium x Acacia auriculiformis Hybrids	39
Photo 2.34 Tissue culture-issued A. mangium x A auriculiformis hybrids	39
Photo 2.35 Lignum vitae (Guaicum officinale)	40
Photo 2.36 Tropical American balsa (Ochroma pyramidale)	41
Photo 2.37 Natural (air) Seasoning of Timber at Site	54
Photo 2.38 Water Seasoning at Vancouver Island, Canada	54
Photo 2.39 Laboratory of Forest Products located in Madison, Wisconsin	58
Photo 2.40 Process of Glulam in WeiHag's Fabrication Site in Altheim, Austria	59
Photo 3.1 Material separated into difference age	65
Photo 3.2 Wood Planing Machine, Type GT-610A	65
Photo 3.3 Wood Planing Process	66
Photo 3.4 Final Product of Wood Planing Process	66
Photo 3.5 The Process of Cutting Material into Desired Dimension	66

Photo 3.6 A Non-toxic Waterbased Adhesive Glue	67
Photo 3.7 The Process of Applying Glue to The Wood Surface	67
Photo 3.8 Laminated Sample Left for 1-3 Days at Laminating Machine	68
Photo 3.9 Final Product of Small Clear Laminated	68
Photo 3.10 Marking Process into Desired Dimension	69
Photo 3.11 BOSCH GCM 12 GDL Mitre Saw	69
Photo 3.12 Process of Cutting into Dimension Required for Each Testing	70
Photo 3.13 Specimens Classified into Each Mechanical Testing	70
Photo 3.14 Hitachi B 13S Bench Drilling Machine	71
Photo 3.15 The Process of Drilling Holes on Specimens	71
Photo 3.16 The Process of Cutting Specimen	71
Photo 3.17 Final Shape of Specimen for Cleavage Testing	72
Photo 3.18 Sorting Process	74
Photo 4.1 Selecting Good Sample Free from Defect	99
Photo 4.2 Labelling the Dimension of Sample Before Cutting Process	99
Photo 4.3 Position of Specimen During Cleavage Testing	100
Photo 4.4 Data Obtained During Testing	100
Photo 4.5 The Condition of Sample After Testing	100

٠

LIST OF FIGURES

Figure	Pages
Figure 2.1 Timber Raw Material Production & Domestic Demand Project	15
Figure 2.2 Trend of Timber Export by Malaysia	17
Figure 2.3 Malaysia Export of Timber Products Seasonal Adj. Forecast	18
Figure 2.4 Sarawak – Enforcement of Cross Border Important Timber	23
Figure 2.5 Acacia Species Distribution	35
Figure 2.6 Shrinkage vs Moisture Content	44
Figure 2.7 Compressive Strength	47
Figure 2.8 Schematic Diagram of The Janka Hardness Test Arrangement	49
Figure 2.9 Test Set-up of Impact Bending	49
Figure 2.10 Wood Density vs Impact Drop Height	50
Figure 2.11 ASTM standard shear specimen and apparatus for shear testing	50
Figure 2.12 Dimension of Specimen for Cleavage Testing	51
Figure 2.13 Kiln Seasoning	55
Figure 2.14 Natural and Conversion Defects	57
Figure 2.15 Types of Defects Caused by Seasoning	57
Figure 2.16 Example of microscopic identification under 100x magnification	60
Figure 3.1 Cleavage Shape with Full Dimension	72
Figure 3.2 Combination Age of Specimen	73
Figure 3.3 Cleavage Shape for Radial Direction	73
Figure 3.4 Cleavage Shape for Tangential Direction	73
Figure 4.1 Graph of Moisture Content for Combination 7 years with 10 years	81
Figure 4.2 Graph of Moisture Content for Combination 7 years with 13 years	81
Figure 4.3 Graph of Moisture Content for Combination 10 years with 13 years	82

Figure 4.4 Graph of Density for Combination 7 years with 10 years	83
Figure 4.5 Graph of Density for Combination 7 years with 13 years	83
Figure 4.6 Graph of Density for Combination 10 years with 13 years	84
Figure 4.7 Graph of Moisture Content Against Density for Combination 7 years with years	10 85
Figure 4.8 Graph of Moisture Content Against Density for Combination 7 years with years	13 85
Figure 4.9 Graph of Moisture Content Against Density for Combination 10 years with 13 years	h 86
Figure 4.10 Graph of Maximum Load for 7 years with 10 years Combination	88
Figure 4.11 Graph of Maximum Load for 7 years with 13 years Combination	88
Figure 4.12 Graph of Maximum Load for 10 years with 13 years Combination	89
Figure 4.13 Stress Value for Combination of 7 years with 10 years	89
Figure 4.14 Stress value for Combination of 7 years with 13 years	90
Figure 4.15 Stress value for Combination of 10 years with 13 years	90
Figure 4.16 Error Bar Graph of Average of Maximum Load (N)	91
Figure 4.17 Error Bar Graph of Average of Stress (N/mm)	92
Figure 4.18 Stress Value for Radial Direction (N/mm)	93
Figure 4.19 Stress Value for Tangential Direction (N/mm)	94
Figure 4.20 Graph of Moisture Content Against Stress for Combination 7 years with 1 years	0 95
Figure 4.21 Graph of Moisture Content Against Stress for Combination 7 years with 1 years	.3 95
Figure 4.22 Graph of Moisture Content Against Stress for Combination 10 years with 13 years	96
Figure 4.23 Graph of Density Against Stress for Combination 7 years with 10 years	97

Figure 4.24 Graph of Density Against Stress for Combination 7 years with 13 years 98 Figure 4.25 Graph of Density Against Stress for Combination 10 years with 13 years 98

LIST OF ABBREVIATION AND NOTATIONS

- AFOCEL Association Foret-Cellulose
- ASTM American Society for Testing and Materials
- BS British Standard
- CIDB Construction Industry Development Board
- FAO Food and Agriculture Organization
- FPDSB Forest Plantation Development Sdn Bhd
- FRIM Forest Research Institute Malaysia
- GTA Global Trade Atlas
- ITTO International Tropical Timber Organization
- JHS Jabatan Hutan Sarawak
- JPS Jabatan Pengairan dan Saliran
- JPSM Jabatan Perhutanan Semenanjung Malaysia
- MDF Plant Medium-density Fireboard Plant
- MOE Modulus of Elasticity
- MOR Modulus of Rupture
- MTC Malaysian Timber Council
- MTIB Malaysian Timber Industry Board
- NRE Ministry of Natural Resources and Environment
- PFR Plant and Food Research
- PRF Phenol Rersorcinol-Formadehyde

SFC – Sarawak Forestry Corporation

TRADA – Timber Research and Development Association

- UM University of Malaya
- UNESCO The United Nations Educational, Scientific and Cultural Organization
- UPM University of Putra Malaysia
- UTM University of Technology Malaysia
- WWF Worldwide Fund for Nature

.

•

INTRODUCTION

CHAPTER 1

1.1 General

Timber is an essential material in buildings and bridges construction since ancient time. Figure 1.1 shows one such evidence the oldest temple near Nara, Japan completed by 607 AD. The temple originally named Wakakusadera when it was commissioned by Prince Shotoku before the name changed to Horyu-ji after devoted to the Buddha of healing and in honour of the prince's father, named Yakushi Nyorai. Once upon a time, Horyu-ji one of the powerful Seven Great Temples in Japan located near Ikaruga, Nara Prefecture. In the modern era today, UNESCO was gazzeted Horyu-ji as a world heritage site. This evidence shows that the Japanese ancient was practice use of timber as their main component to build their building. According to Mechtild (2016), Japan's abundance of wood species is reflected in Japanese culture. The Japanese themselves frequently define their culture as being *a ki no bunka*, or "culture of wood".

Photo 1.1: Horyu-ji temple (Marian et al., 2003)

Nowadays, timber has been used in a whole country around the world to produces economics. durability and stability of product therefore, the product can stand for a long time. Malaysia, a rainforest tropical country was among the main suppliers of the excellent quality timbers that are very highly demanded over the globe. However, in fact, the country is not fully utilising the resources for engineering field for structural materials when compared with well-developed countries. The application on timber as a structural member in the country still unsatisfactory. The problems can be observed when timber trusses and formworks in the construction project ongoing in this country is very limited. The practice of using timber is still hard to compete with other materials. Some factors that contribute to this problem is the knowledge of design and properties of timber is still lack between the architects and engineers (Jumaat et al., 2006). This phenomenon more serious as courses on timber design offered by universities is very limited.

1.2 Problem Statement

In Malaysia, there are very limited research works and study are done on timber engineering when compared with other materials used for construction such as concrete and steel. Research on timber only began by Forest Research Institute of Malaysia (FRIM) after late 60s. Following that actions, several universities and organisations such as Universiti Malaya (UM), Universiti Teknologi Malaysia (UTM), Universiti Putra Malaysia (UPM) and Kolej Universiti Tun Hussien Onn was volunteer in developing the usage of the timber for structural use. Meanwhile, several organisations are involved such as the Malaysian Timber Council (MTC), Malaysian Timber Industry Board (MTIB) and Construction Industry Development Board (CIDB). From the research, the Code of Practise MS 544 starts to develop. Besides, the timber joint strength, engineered wood product and trusses of roof also included.

For this research, the information about laminated Acacia hybrid species of Sarawak has limited sources. Only the general information about timber has many founded. The problem might happen due to the research for the past years only focus on common species which mostly founded around the world. In addition, research on *Acacia mangium* and *Acacia Auriculiformis* can easily found on book, journal, internet or magazine but, the species of Acacia hybrids for that species is very little.

1.3 Aim & Objectives

Analyse and examine the behaviour properties in terms of mechanical and physical of small clear laminated Acacia hybrid species of Sarawak was the aim of this research. The research will concern more on cleavage mechanical properties, while for physical properties, density and moisture content was considered. Specifically, these were contingent on fulfilling the three objectives:

- 1. Determining the engineering properties of small clear laminated Acacia hybrid,
- 2. To compare and evaluate the behaviour of cleavage properties of small clear laminated Acacia hybrid, and
- To identify the best result cleavage properties of small clear laminated Acacia hybrid from different age combination

As mentioned in the above objectives, this study will be focused on Acacia hybrid combination at age 7 years with 10 years, 7 years with 13 years, and 10 years with 13 years.

1.4 Works Scope

The behaviour of Acacia hybrid in term of cleavage properties is the main research to study with two combinations of different age, which are 7 years, 10 years and 10 years. Totally, the testing requires 180 samples of small clear laminated Acacia hybrid (which is of the 'Monnin' type) with dimension 4.5 cm \times 2.0 cm \times 2.0 cm (length \times width \times height). The test pieces have applying by the load at a constant crosshead speed of 0.254 cm/min or 0.0042 cm/s (0.10 in./min). The test will be made radially and tangentially means that, for each combination, 30 pieces samples used to give a failure under test along a radial surface and other 30 pieces used to give a failure under test along a tangential surface. After that, all result recorded and compared with cleavage properties of solid Acacia.

Besides that, the study will be focused on the timber physical properties, which include moisture content, specific gravity and density. Determining moisture content in

timber is important because it can affect some characteristics of timber, such as strength, weight, durability and workability. The relationship between stiffness or strength and density of timber are directly proportional. High density of timber will contribute to high strength and stiffness.

Another study will conduct in this research is microscopy and macroscopy. Microscopy is a technical field where very small objects and materials will be observed by using microscopes while, macroscopy is referred to as the substance that can be seen with naked eyes. In this project, microscopy conducted to observes the behaviour of cell inside Acacia hybrid before and after conducting the testing. The behaviour of cells of Acacia hybrid might be different after load applied to it during the testing process. The cellular, lignin, fibres and lumen of Acacia have undergone some deformations.

1.5 Significant of Study

The research will be giving a great overview for architects and engineers regarding the properties of laminated Acacia hybrid species of Sarawak that can be used for construction. They will have an advantage by identifying the best combination of laminated Acacia with different years. The best combination will have a good testing result. By using this case study, the architects and engineers able to determine the best quality of timber based on its physical properties, which are moisture content and density. Moisture content gives big impact on the strength of timber as the more water inside the timber, become softer the timber will be. Hence the strength of timber will be decreasedecreased too. Microscopy and microscopy study also important to determine the quality of good timber. Timber no defect can be selected for construction purpose.

1.6 Chapter Outline

Introduction for Chapter 1 in this chapter is an overview of the timber. It included the general and problem statement. Problem statement needs to clarify to write the aim and objectives of this study. Scope of work is the explanation about the work that will conduct in this research. The significant study is to give an overview of the reader about the importance of this research.

Next, Chapter 2 is literature review, where it outlines the ideas from other researchers around the world regarding the timber. This idea may be founded in book, e-book, journal, thesis, internet, magazine, newspaper and other sources. Start from the background of the timber until the material selected for this research was outlined in this chapter.

Chapter 3 is methodology, where in this chapter, the procedures to carry out the testing and the value during testing was recorded and expressed in the graph for interpreting. This chapter includes how the material is processed into small clear specimen for testing and the machine used.

Chapter 4 are the results, discussion, and analysis. In this chapter, it will discuss what will happens after conducting the result. The data during testing will be discussed and analysed here. Data then expressed in a graph for comparing.

Chapter 5 is the conclusion, where in this chapter, it concludes what was happens during research conduct. Some recommend was describes for better improvement for a future of the study.