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ABSTRACT

Impact behaviours of newly designed bio-inspired sandwich beam (BHSB) inspired by 

the woodpecker's head configuration were numerically examined under continuous low- 

velocity impact loadings. The newly designed beam contains four main layers, in which 

carbon fiber reinforced plastic top and bottom skins were employed in sandwiching dual- 

core consisting of solid hot melt adhesive (HMA) and aluminium honeycomb materials. 

Innovatively, the solid HMA core was designed in an arch shape. The impact behaviours 

of the BHSB have been numerically examined by using the finite element software, 
ABAQUS. Impact loadings were performed in a repeated manner with a hemisphere steel 
impactor for three impact energy levels of 7.28J, 9.74J, and 12.63J. In all cases, stresses 

were observed to be mainly concentrated on the impact region while some stresses were 
distributed to the supports. The new BHSB can resist up to 5 continual impacts at both 

impact energies of 7.28J and 9.74J but only up to 3 times repeated loads for 12.63J. 

Besides, impact resistance efficiency index, which assessed the overall impact 

performance of the sandwich structures, were compared between the newly designed 

BHSB and the previously designed BHSB. The impact resistance efficiency indices of 

the newly designed BHSB were found to be 1.31-5.33 times higher, exhibiting an 

improvement in performance.
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ABSTRAK

Tingkah laku impak "bio-inspired sandwich beam" (BHSB) yang baru direka yang 
diilhami oleh konfigurasi kepala pelatuk kayu diperiksa secara berangka di bawah beban 

hentaman berkelajuan rendah berterusan. Rasuk yang baru direka mengandungi empat 
lapisan utama, di mana kulit atas dan bawah "carbon fiber reinforced plastic" digunakan 

dalam sandwic dual-core yang terdiri daripada "solid hot melt adhesive" (HMA) dan 

"aluminium honeycomb". Secara inovatif, teras HMA padat direka bentuk dalam bentuk 

lengkungan. Tingkah laku impak BHSB telah diperiksa secara berangka dengan 

menggunakan ABAQUS. Beban hentaman dilakukan secara berulang dengan pemukul 
keluli hemisfera untuk tiga tahap tenaga hentaman 7.28J, 9.74J, dan 12.63J. Dalam semua 
kes, tekanan diperhatikan terutama tertumpu pada kawasan hentaman sementara beberapa 

tekanan disalurkan ke sokongan. BHSB baru direka dapat menahan hingga 5 hentaman 

berterusan pada kedua-dua tenaga hentaman 7.28J dan 9.74J tetapi hanya 3 kali beban 

berulang untuk 12.63J. Selain itu, indeks kecekapan ketahanan hentaman, yang menilai 
keseluruhan prestasi hentaman struktur sandwic, dibandingkan antara BHSB yang baru 

direka dan BHSB yang direka sebelumnya. Indeks kecekapan ketahanan hentaman BHSB 

yang barn dirancang didapati 1.31-5.33 kali lebih tinggi, menunjukkan peningkatan 

prestasi.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Chai and Zhu (2011) defined that composite sandwich panel is made up of two stiff 

and thin skins with a lightweight, thick and low modulus core. This composite sandwich 

structure has a high value of the strength/weight ratio. It is not only relatively lightweight 

however it can support transverse loads more efficiently. Usage of sandwich structures 

are commonly found in many engineering application such as marine and transport 

industries, aerospace and aircraft industries.

According to Chai and Zhu (2011), it has been widely examined the impact loads 

exerted on the composite sandwich panels by using of experimental techniques, 

mathematical modelling and also numerical methods. As composite sandwich structures 

are widely applied in engineering application and they are prone to failure due to impact 

load, there are some areas of research are still interesting being pursued such as contact 

analysis between the impactor and the composite surfaces, the response of structure after 
impact, the failure mechanism by impact, the residual property after impact, high-velocity 

impact analysis and impact analysis of soft body impactor.

Abo Sabah et al. (2019) stated some failure models of sandwich beams during the low- 

velocity impact test such as face wrinkle, face ' yield, indentation and core failure. 

According to Abrate (1998), core buckling, delamination in the impacted face sheet, core 

cracking, matrix cracking and fibre breakage in the facings have been identified as the 

failure modes of sandwich beams. In general, beam's geometry and properties of the 

materials for skin layer and core layer can affect the type of failures. Damages are usually 

existed on the top layer of structure only as low-velocity impact does not lead to

1



perforation to the structure whereas minor damage and core shearing are involved in the 

bottom layer of structure. Face yielding is meant by the surface of structure that undergoes 
fracture completely due to micro-tension. Besides that, face wrinkling is meant by the 

skin that undergoes some matrix cracking and fibre breakage as micro-compression 

without the occurrence of fracture.

E -> 
a

ý 
ý `1> < 

a>

(a) (X 
II I,

ýK > 
H

(b)

(ý) face wrinkle

(d)

(e)

/ core failure

indentation

I

/ r, ilurV /. /. Failure modes ol'sandwich hcams: (a) loading configuration, (b) face 

yielding, (c) face wrinkling, (d) core yielding and (e) indentation (McCormack et al.,

Figure 1.2 shows that failure of glass fibre reinforced polypropylene (GFPP) sandwich 

structures with 10 mm thick closed cell aluminium foam block subjected to impact 

energies. From the figure 1.2, it can be clearly found that it is very dangerous when 

continuous impact energies exerted on the sandwich structures. If such failure occurs on 

the structure built, human safety will being threatened for more severe consequences.



1o-
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ý

Figure 1.2. Sections of cross-ply GFPP-reinforced aluminium foam sandwich structures 

subjected to impact energies between 13 J and 73 J (Villanueva & Cantwell, 2004).

1.2 Problem statement

Concept of sandwich construction still remains interesting though composite sandwich 

structures have been used for non-strength part of structures in the last decade. Due to 

complexity nature of sandwich structures, the investigation of impact behaviour of 

composite sandwich beam under different continuous impact energies remains an active 

research topic. Different impact load conditions can bring a direct risk to the life span of 

the sandwich structures. More serious consequences can be expected in structurally and
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also in terms of human safety. The consequences can be more severe if the loading 

environment is in the presence of impact and blasting.

Past researches had shown that several factors which are stiffness, damping and mass 

of structure can influenced the impact response of a sandwich structure. A good sandwich 

structure is not only higher in value of the strength/weight ratio but it should be higher 

resistance to extreme continuous load magnitude.

From the research works done before, it can be clearly seen that composite sandwich 

structures are vulnerable to impact-induced damages. Impact behaviour and impact 

efficiency of sandwich beam with core layer in arch shape is an interesting topic and still 

not being studied. Impact resistance of sandwich structure is very important to ensure that 

the structure can last longer and sustain more loadings exerted on it. The inspiration of 

using core layer in arch shape comes from the cultural of Roman development which they 

believed arch structures can sustain more loads on it.

Hence, current research work is conducted to investigate the impact behaviour of 

sandwich beam with the solid hot melt adhesive (HMA) layer in arch shape due to varying 

continuous impact energies. The main purpose of forming an arch shape for solid HMA 

layer is inspired by the woodpecker's hyoid structure so that impacted load can be 

mitigated effectively. Solid HMA layer with an arch shape can transfer the compressive 

load to the support at two ends effectively because the force exerted are tangential to the 

end of arch.

1.3 Aim and objectives

The main objectives of the research work are:

i. To develop a composite sandwich beam finite element model under impact 

loading. 

ii. Numerically examine the impact behaviour of the sandwich beam due to varying 

impact energies. 
iii. Compute the impact efficiency of the sandwich beam due to different impact 

energies.
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1.4 Scope of study

i. The sandwich beam is a C-clamp supported at two ends. 
ii. There are two cores and one skin material used for the sandwich beam. 

iii. The skin material is made of carbon fibre reinforced plastic (CFRP) whereas core 

materials are made of solid hot melt adhesive (HMA) as core I and aluminium 

honeycomb as core 11. 

iv. Three levels of continuous impact energy: 7.28J, 9.74J and 12.63J are applied 

perpendicularly to centre of the sandwich beam. 

v. Dimension of the sandwich beam is 300 mm long, 25 mm wide and 25.4 mm thick. 

vi. The stacking sequence of skin is [O/T30]. 

vii. The model of bio-inspired aluminium honeycomb sandwich beam has the solid 

HMA core layer in arch shape with angle of 36°. 

viii. The finite element software, ABAQUS/CAE 6.13-1, is used for the impact 

modelling.

1.5 Significance of study

As usage of composite sandwich structures can be commonly found in many 

engineering application, extensive works have been carried out numerically. It is very 

complex and having unique behaviour in resisting the impact loading. Hence, the impact 

behaviour of composite sandwich structure under continuous impact loading was 

examined in order to improve their performance under services condition.

Solid HMA as the core I of the composite sandwich structure was designed in arch 

shape with 36° of arch leg which can absorb impact energy efficiently and transfer it to 

the support safely without damaging the skin layer of the sandwich beam.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter generally discussed on the previous research works on the composite 

sandwich structure. Important points such as problems considered, method used and main 

result of previous research work are extracted in details in this chapter.

2.2 Mechanical behaviour of sandwich structures

Mechanical test was carried out by Wang et al. (2010) as only few investigations on 

the mechanical properties of sandwich structures with carbon fiber-reinforced pyramidal 

lattice truss core have been carried out. Wang et al. (2010) carried out the compression 

and shear tests by using the Instron 5569 universal testing machine at the room 

temperature and displacement rate of 0.5 mm min"' which followed the standards from 

ASTM C365 and C273.

Four samples are tested in the compressive test. The representative compressive stress- 

strain is shown in Figure 2.1 a. Based on the stress-strain curve, initial linear response is 

occurred followed by the peak compressive stress. This point is occurred when the failure 

of the truss member is first to be observed. After that, value of stresses decreases 

subsequently when strain is increasing with the serrations in the compressive stress vs 

strain curves. Based on Figure 2.1b, failure mode of the sandwich structures were 

observed during the compressive test which are splitting and buckling of the truss 

members.
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