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Preface

Crude oil, coal, and natural gas are the key resources for electricity generation, heat-
ing, and transportation. Rapid depletion of these resources coupled with increasing
energy demands and transition toward low carbon emissions increased the utilization
of renewables in the energy mix. Biofuel is one of the renewables resources that sup-
port the sustainable energy agenda by reducing greenhouse gas emission.

The book entitled Value-Chain of Biofuel—Fundamental, Technology, and
Standardization contains 24 chapters and comprises 3 main sections. The first section
highlights the overview of biomass conversion technologies to biofuel and pretreat-
ment methods including lignin extraction and delignification. Further, the second sec-
tion (Chapters 7�15) covers various pathways of biofuel synthesis to produce
biohydrogen/biogas, bio-oil, biojet, bioethanol, biobutanol, as well as value-added
products. The third section covers topics related to environmental sustainability and
implication of biofuels’ use (Chapter 16, Experimental investigation of the characteri-
zation of emissions from waste cooking oil biodiesel), techno-economic assessment of
biofuels production (Chapters 17�18), followed by a discussion on the supply chain
analysis of biofuel production (Chapters 19�22). Policies related to biofuels’ imple-
mentation in Malaysia and neighboring countries such as the Philippines are described
in Chapter 23, Renewable Energy Transformation in Malaysia Through Bioenergy
Production: Policy Insights From Spatially-explicit Modeling, and Chapter 24,
Production, Regulation, and Standardization of Biofuels: A Philippine Perspective.

This book supports readership among students, researchers, scientists, practitioners,
and others in the field of biomass conversion to biofuels in particular. It is expected
that this book can enrich the knowledge on current and future trends of biofuel and
toward future research and energy transition endeavor.

We thank contributing authors for their valuable contributions and cooperation
throughout various stages of the publications. Finally, we extend our heartfelt appre-
ciation to Dr. Peter W. Adamson, Acquisitions Editor for Renewable Energy; Leticia
Lima, the Project Manager; and the entire team at Elsevier for their support and
timely effort in publishing this book.

Suzana Yusup and Nor Adilla Rashidi
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12.1 Introduction
Renewable energy is one of the important forms of energy in reducing environmental impacts such as air pollution, land
pollution, water pollution, climate change, and greenhouse effect, and received great attention around the world. Air pol

Value-Chain of Biofuels. https://doi.org/10.1016/B978-0-12-824388-6.00025-7
Copyright © 2022. 1
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2 Value-Chain of Biofuels

lution has contributed to the dominant part of the environmental impact. The combustion process of fossil fuels attributed
to greenhouse gas (GHG) emissions to the environment. It was previously reported by the United States Energy Informa-
tion Administration (EIA) in 2016 stating that activities conducted by human in the United States leads to a consumption of
301 million British thermal units of energy per person (per capita) and incremental of worldwide energy demand of 2.1%
in the year of 2017 [1]. EIA had tabulated the total per capita energy consumption were based from four different major
sectors namely industrial, residential, commercial and transportation with respect to the total population of the country.
Hence, the highest energy consumption reported comes from the industrial sector (32%) and transportation sector (29%)
from the total United States energy consumption in 2016 [1].

Among the different types of renewable energy resources, biomass energy is selected in this research as it is abundantly
available, does not rely on climate change, and the topography of the country as compared to wind, solar, and hydroelectric
energy. Besides that, biomass does not release carbon dioxide (CO2) into the surroundings as it absorbed the CO2 during
the process of electricity generation. And also, biomass is considered as a clean energy and heating source. The production
rate of biomass is high and can be easily obtained to form as one of the energy resources compared to other renewable
energy resources.

In this research, palm oil wastes such as oil palm frond (OPF) and oil palm trunk (OPT) are selected as the biomass for
the pyrolysis process because Malaysia and Indonesia have become the two largest contributors to the palm oil industry
around the world. The increment of the palm oil development had increased rapidly in these two countries for both plan-
tation and industry areas. The increment trend in the palm oil production in Indonesia has increased gradually and reached
34.5 million tons approximately in 2016 [2,3]. In Malaysia, the palm oil industry contributed 19.16 million tons of palm
oil production with the increment of palm oil development. The production of palm oil has reached 90 million tons, where
43%–45% are the waste generated from the palm oil production [6].

Palm oil wastes are one of the potential biomasses used for biofuel production to replace fossil fuel production. Based
on Kurnia et al. [7], palm oil is selected as the highest yield oil production with the most economical source compared
to other vegetable oil. There are many industries built that use palm oil wastes as the sources for biofuel production and
electricity generation [8]. In this present study, OPF and OPT are selected as the oil palm wastes for biomass pyrolysis.
Pyrolysis process is a thermochemical conversion process which converts lignocellulosic biomass into solid residues, liq-
uid fuels, and noncondensable gases [9,10]. Based on Soon et al. [11] and Khan et al. [12], it is reported that palm oil
wastes such as OPF and OPT are able to achieve the preexponential factor (A) in the range of 1.2×1013–1.1×1017 min−1

and activation energy (EA) in the range of 160 to 199 kJ mol−1 for pyrolysis process. The chemical composition for OPF
in terms of hemicellulose, cellulose, and lignin content are reported to be 31.93%, 42.12%, and 26.05% respectively [13].
Meanwhile, the hemicellulose, cellulose, and lignin in OPT are 30.36%, 50.78%, and 17.87% respectively [13].

There are many studies found in the literature using palm oil wastes in the pyrolysis process in the presence of a
commercial catalyst. Cheah et al. [15] had investigated the catalytic pyrolysis for OPF in the presence of commercial
HZSM-5 zeolite and graphite nanofiber. Lim and Andrésen [16] had studied the catalytic effect of boric oxide on empty
fruit bunches and OPF in a fixed pyrolysis bed reactor.

To our knowledge, no studies are found focusing on the kinetic (EA and A parameters) and thermodynamic (enthalpy
change (ΔH), Gibb’s free energy (ΔG), and entropy change (ΔS) parameters) analyses for catalytic of OPF and OPT py-
rolysis utilizing its ashes as a natural catalyst. Hence, in this work, a comparison study on the kinetic and thermodynamic
analyses for pyrolysis of OPF and OPT are investigated with the absence and presence of OPF ash, OPT ash, and OPF/
OPT ash using thermogravimetric approach (TGA). OPF ash, OPT ash, and OPF/OPT ash are used as natural catalysts in
the pyrolysis process of palm oil wastes for further conversion of biomass to bioenergy. The experiments are conducted at
various heating rates of 10–100K min−1 from temperature of 323K to 1173K. Coats-Redfern, Vyazovkin, and Miura-Maki
model are the selected iso-conversional kinetic models to determine the kinetic parameters.

12.2 Experiment materials and methods

12.2.1 Biomass preparation

Both OPF and OPT were obtained from a local palm oil mill in Woodman, Miri Sarawak. These biomasses were dried
until the moisture content are less than 10 wt.% and ground into powder form in a particle size of less than 500 µm. The
ultimate analysis for OPF are 40.5 wt.% carbon, 6.8 wt.% hydrogen, 3.5 wt.% nitrogen, 0.3 wt.% sulfur, and 48.9 wt.%
oxygen. The ultimate analysis for OPT are 42.4 wt.% carbon, 7.3 wt.% hydrogen, 0.3 wt.% nitrogen, 0.7 wt.% sulfur, and
49.3 wt.% oxygen.
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12.2.2 Catalyst preparation

The catalysts used for the pyrolysis process are from the ashes produced from the combustion process of OPT and OPF
through a continuous heating process with a temperature of 973K for 4 h using the Laboratory Muffle Furnace, Carbolite
ELF 11/14B. The ashes of OPT and OPF were ground until the particle sizes were less than 500 µm. Thereafter, the ashes
were then sent to the oven for 12 h at 373K for drying purpose and left to cool down to room temperature before sending
to the TGA equipment for experiments.

12.2.3 Thermogravimetric analysis

Pyrolysis experiments were conducted using a thermogravimetric analyzer (TGA-DSC 1, Mettler Toledo). An approxi-
mate of 10 mg of samples were placed in the ceramic crucible under nonisothermal condition. The samples were pyrolyzed
from room temperature to 1,173K at different five heating rates of 10K.min−1, 20K.min−1, 30K.min−1, 50K.min−1, and
100K.min−1. Thereafter, the temperature of 1,173K was maintained for 10 min when it reached 1173K. The biomass was
mixed with the ashes in the weight ratio of 1:1, meanwhile the biomass/OPF ash/OPT ash samples were blended in the
weight ratio of 1:0.05:0.05. The experiments were repeated 2–3 times to ensure the results are reproducible.

12.2.4 Kinetic theory

The kinetic principles used in pyrolysis process were based on iso-conversion principle. This principle indicates the rate of
reaction can be affected by the temperature only with a basis of constant conversion rate [17]. Thus, thermal degradation
of the lignocellulose component in biomass occurred simultaneously within a conversion rate of the time, with proposed
reaction mechanism of the pyrolysis process as shown as below in Eq. (12.1).

(12.1)

where k refers to pyrolysis conversion rate constant, volatiles are in gas, and tar form and char is in solid form. According
to Sadhukhan et al. [18], the conversion rate of the pyrolysis process is assumed as a single step process which follows the
Arrhenius, and is as shown in Eq. (12.2) below.

(12.2)

where A represents preexponential factor (s−1), EA represents activation energy (kJ mol−1), R represents the universal gas
constant of 8.314 J K−1.mol, and T represents the absolute temperature in Kelvin (K). The degradation rate of the reaction
can be further expressed in Eq. (12.3) by showing the conversion rate of the biomass from solid to volatile state.

(12.3)

The rate of degradation or conversion, represents the conversion rate that is temperature-dependent and α is the con-
version fraction degree of the sample with respect to time. The degree of conversion fraction is defined as the decomposi-
tion rate of the biomass sample at any range of the temperature in TG analysis which is expressed in Eq. (12.4) as shown
below.

(12.4)

where mi represents the starting mass of biomass sample, mt represents the sample mass at the given time, t, and mf repre-
sents the final mass of sample. By substituting Eq. (12.2) into Eq. (12.3) hence, Eq. (12.5) is obtained as depicted below.

(12.5)

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
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Nonisothermal method is normally applied in a solid-state kinetics where the heating rate is remained constant and de-
fined in Eq. (12.6).

(12.6)

By combining both Eq. (12.5) and Eq. (12.6), which gives Eq. (12.7) as follows:

(12.7)

By integrating Eq. (12.7) above with the function of , simplifies the equation for numerical approxima-

tion and gives Eq. (12.8).

(12.8)

In iso-conversional kinetics, the pyrolysis kinetic order is specified under the first order reaction, which gives Eq.
(12.9) as shown below.

(12.9)

12.2.5 Kinetic models

Coats-Redfern model, Miura Maki model, and Vyazovkin model were the selected kinetic iso-conversional models to eval-
uate the kinetic parameters of the biomass pyrolysis in this study.

12.2.5.1 Coats-Redfern
Coats-Redfern model is the method that was used to analyze the kinetic parameters of the reaction. Eq. (12.10) to Eq.
(12.14) show the temperature integral from the Arrhenius equation [Eq. (12.2)] [5].

(12.10)

By rearranging,

(12.11)

Integrating Eq. (12.11) [5];

(12.12)

Neglecting the higher order terms, the equation is further expressed in Eq. (12.13) [5],

(12.13)

By assuming first order reaction (n=1) and the term of is less than 1, the equation can be further simplified as in
Eq. (12.14) [5].

(12.14)

where n represents the order of the reaction, T represents the absolute temperature (K), represents the heating rate
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(K.min−1.), R represents the gas constant (J.mol−1. K−1), A represents the preexponential factor (min.−1), and represents
the activation energy (kJ.mol−1).

12.2.5.2 Vyazovkin
The Vyazovkin (V) method is a model-free method that is used to analyze the iso-conversional kinetic analysis. Linear
approximation of Vyazovkin (V) that was selected for this research is based on the Coats-Redfern basis concepts of ap-
proximation, which generates an integral of temperature equation in Eq. (12.15) [14] below.

(12.15)

By rearranging and introducing ln to both sides of the equation, the finalized expression of the equation is presented in
Eq. (12.16) [14] below.

(12.16)

Besides, it also provides an alternative method to obtain the results of apparent activation energy. From Eqs. (12.17)
to (12.19) [14] below shows a nonlinear approximation of p(x), which is also known as Senum–Yang approximation for
obtaining the minimization of apparent activation energy (EA).

(12.17)

(12.18)

where and

(12.19)

where n represents the number of heating rates, I [EA, Ti] represents the results of p(x) exponential integral approximation
from respective heating rate, and I [EA ( ), Ti] represents exponential integral of the respective heating rate, .

12.2.5.3 Miura-Maki
In Miura-Maki model, the approximation of the temperature integral is developed by combining Eq. (12.9) and Eq.
(12.16) and become Eq. (12.20) [19].

(12.20)

where E=Es as a step function of activation energy at respective temperature, and the equation is simplified to Eq.
(12.21) [19] below.

(12.21)

Since =0.58, the finalized equation is expressed as Eq. (12.22) [19] as below.

(12.22)

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
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12.2.5.4 Kinetic analysis
The equations of the models were linearized and plotted in a linear graph to verify the values of preexponential and the
activation energy of the reaction. Fig. 12.1 shows the linear expression of each models with the respective x-axis, y-axis,
y-intercept, and slope. By plotting y-axis vs x-axis of each model, the activation energy can be obtained from the slope of
the graph while the preexponential can be obtained from the y-intercept of the graph. Hence, there were three sets of acti-
vation energies and preexponential values obtained from three different models and the best model that fits the pyrolysis
process in this research was evaluated.

12.2.6 Thermodynamic analysis

The thermodynamic parameters [Enthalpy , Gibbs free energies , and Entropies ] were determined by Eqs.
(12.23) to (12.25) [4].

(12.23)

(12.24)

(12.25)

where kB is the Boltzmann constant (1.38×10−23 J K−1), h is the Planck’s constant (6.626×10−34 Js), and Tm is the average
DTG peak temperature in Kelvin (K).

12.3 Results and discussions

12.3.1 Thermal degradation behavior of oil palm frond and oil palm trunk in pyrolysis process

In the present study, the thermal degradation effect of the OPF and OPT with or without the presence of catalyst was an-
alyzed via TGA equipment. Fig. 12.2 shows the curves of the thermogravimetric (TG) and derivative thermogravimetric
(DTG) of OPF and OPT in noncatalytic and catalytic pyrolysis reaction, with five different types of heating rates 10 to
100K.min−1. The TG curve is used to determine the weight loss of the sample in weight percentage with the increased of
temperature, meanwhile the DTG curve is used to analyze the initial, maximum, and final biomass degradation tempera-
ture. Based on this figure, the trend of the curves can be categorized into three main stages of thermal degradation. The
Stage I, Stage II, and Stage III are known as dehydration stage, main devolatilization stage, and decomposition of carbona-
ceous components stage, respectively.

Stage I of thermal degradation for OPF and OPT pyrolysis started from room temperature to 495K and 500K respec-
tively with a slight reduction of weight fraction of OPF and OPT. This is where the dehydration process takes place to
reduce the moisture content and light volatiles of the component [11]. The surface tension tends to cause evaporation to
both moisture content and the water bounded of the OPF and OPT biomass surface. When the temperature reached the
end of Stage I decomposition, the internal forces such as intermolecular and intramolecular forces start to break the hy-
drogen bond in lignocellulose component and form water molecules to generate the char. When most of the moisture con-
tent in the OPF and OPT have been evaporated, the weight of the OPF and OPT decreases dramatically in all five differ

FIGURE 12.1 Linear expression of three different models.
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FIGURE 12.2 TG and DTG graphs of (A) noncatalytic pyrolysis of OPF, (B) noncatalytic pyrolysis of OPT, (C) pyrolysis of OPF using OPF ash
catalyst, (D) pyrolysis of OPT using OPT ash catalyst, (E) pyrolysis of OPF using OPF/OPT ash catalysts (F) pyrolysis of OPT using OPF/OPT ash
catalysts.

ent heating rates. This indicated that the biomass had experienced Stage II decomposition in temperature range from
495K–750K and 500K–710K for OPF and OPT, respectively. This is the phase where the organic compound of OPF and
OPT is undergoing main devolatilization process for carbon and volatile component extraction. In this stage, transglu-
cosidation process happened, where the intermediate cellulose component starts to degrade to levoglucosan and oligosac-
charides [20]. In stage III, a slight weight loss of OPF and OPT with the temperature range from 750K–1173K and
500K–1173K, respectively due to occurrence of passive devolatilization process. Passive devolatilization process is where
the carbonaceous component started to decompose and both carbon monoxide and CO2 started to form by vaporization of
nonvolatile carbon compounds that contained in the solid residue of the biomass [21]. Besides, aromatization and bond
cracking happen to convert the cellulose and carbonaceous material to char and volatile matter.

Fig. 12.2 shows that there are two exothermic peaks in between the temperature range from 500K to 820K for both
OPF and OPT with and without ash catalyst occurred in this curve for the five different heating rates. The first peak oc-
curred due to the thermal decomposition of protein and carbohydrates component while the decomposition of lignin hap-
pened in the second peak. The second peak for both OPF and OPT are relatively higher than the first peak due to high
content of lignin content in oil palm wastes. It is where the main decomposition stage happened in the second decomposi-
tion stage as mentioned in the description for the TG curve. At the last stage (stage III), a small endothermic peak indicated
that the remaining residue undergoes final decomposition stage after the temperature reached 820K. Based on Fig. 12.2,
the optimum mass loss was observed to be at stage II where the temperature ranged from 495K to 750K. The mass loss was
observed in the average range of the residues weight (%) from the initial temperature, Tinitial until the final temperature of
stage II, Tfinal for the main pyrolysis stage (stage II). The results of different sets of samples based on heating rates of 10 to
100K min−1 were tabulated in Table 12.1.

The mass loss for pure OPF in stage II was estimated in the range of 64.55% to 69.02%. With the presence of OPF and
OPF/ OPT ash catalyst, the mass loss was observed in the range of 74.55% to 82.93% and 77.43% and 82.99%. While for
pure OPT pyrolysis, the mass loss was observed from the range of 57.38% to 67.75%. With the presence of OPT and OPF/
OPT ash catalyst in OPT pyrolysis, the mass loss was estimated from 69.70% to 76.77% and 73.63% to 78.87%. Similar
observation found in TG and DTG curves for both OPF and OPT pyrolysis process from literature [11,12].

12.3.2 Effect of heating rates on oil palm frond and oil palm trunk thermal decomposition

Devolatilization is the process where the feedstock started to decompose. In this stage, the degradation of the biomass is
highly depended on the heating rate of the samples. The relationship of time and temperature can be known as heating
rate. High heating rate of the process favors the depolymerization of hemicellulose and cellulose and volatile cracking in

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
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TABLE 12.1 Mass loss of thermal decomposition of pyrolysis for oil palm frond (OPF) and oil palm trunk (OPT) with the
presence of OPF ash, OPT ash, and OPF/OPT ash catalyst in stage II.

Stage II Heating rate Tinitial Tfinal Tm Mass loss (%) DTG max

(β, K min−1) (K) (K) (K) (% min−1)

OPF 10 445.97 670.57 613.28 65.32 0.73

20 446.98 685.7 624.78 65.51 1.38

30 454.61 713.64 630.67 64.55 2.04

50 463.78 715.8 636.48 65.08 3.27

100 479.04 723.53 640.86 69.02 5.74

OPF—OPF ash 10 468.53 739.33 611.57 74.55 4.51×10−3

20 471.71 741.87 613.76 82.93 1.00×10−2

30 479.39 743.91 618.66 76.84 1.41×10−2

50 484.67 744.64 628.74 77.07 2.52×10−2

100 495.68 750.05 636.38 80.29 4.43×10−2

OPF—OPF/OPT ash catalyst 10 469.46 747.54 602.54 77.43 3.87×10−3

20 473 759 613.1 80.57 6.76×10−3

30 483.63 761.25 622.44 79.37 1.19×10−2

50 487.47 761.93 624.73 80.32 1.77×10−1

100 495.8 771.5 636.88 82.99 3.30×10−1

OPT 10 450.26 687.42 626.58 57.38 1.47

20 455.73 693.58 638.24 59.89 2.76

30 467.08 706.22 649.67 60.43 3.8

50 468.91 716.56 656.52 67.75 6.42

100 469.36 722.11 664.93 61.68 11.49

OPT—OPT ash 10 464.3 781.08 599.78 71.53 8.85×10−3

20 469.87 787.39 613.53 74.80 1.36×10−2

30 477.29 793.58 616.82 76.77 1.80×10−2

50 480.91 797.41 624.54 69.70 4.69×10−2

100 487.81 794.69 633.27 73.37 7.90×10−2

OPT—OPT/OPFash catalyst 10 499.68 773.44 599.78 77.35 6.94×10−3

20 506 782.44 613.53 76.72 1.45×10−2

30 507.37 791.96 616.82 73.63 2.53×10−2

50 509.28 793.82 624.54 78.87 3.30×10−2

100 515.34 797.16 633.27 77.27 7.48×10−2

the secondary reactions. Besides that, the composition of the volatile compound in biomass decreased, as the compounds
such as aldehydes, alcohols, acetone, and paraffin reduced due to generation of polyhydroxy aromatics component in-
creased [22]. Fast pyrolysis usually uses high temperature for the process in order to generate high yield of bio-char, oil,
and noncondensable gases. From Fig. 12.2, it is observed that both TG and DTG curves increased with heating rates. The
trend is in similar behavior as reported by Soon et al. [11], Khan et al. [12], and Fong et al. [14].
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Besides that, it is important for the reaction to take account the residence time of the volatile component. The effect of
the residence time is corresponding to the carrier gas flow such as nitrogen gas, as high flow of carrier gas enhances the
solid entrainment and reduces the efficiency of the biomass conversion inside the reactor. From Table 12.1, the maximum
degradation rate, DTGmax for pure OPF pyrolysis can be found to increase from 0.73 to 5.74% min−1 with the increment of
heating rate from 10 to 100K.min−1 as for reference. This is because the residence time of the degradation decreased as the
heating rate increased. The efficiency of the heat transfer can be increased at the same time as the heating rate increased
and produced higher yield production [23].

12.3.3 Effect of catalyst on oil palm frond and oil palm trunk thermal decomposition

The addition of the catalyst to the process is to lower down the EA pathway and improve the secondary devolatilization
reaction of the pyrolysis of oil palm wastes samples. In this study, the catalyst plays an important role in upgrading the
bio-fuel by increasing the efficiency of the devolatilization reaction. Commercial catalyst such as zeolites are widely used
in catalytic pyrolysis process, with an overview of different zeolites catalyst such as HZSM-5, USY, and zeolite-β. Apart
from that, this study promotes the importance of catalytic pyrolysis process using renewable resources such as OPF and
OPT ash catalyst. Chen et al. [20] reported that the EA of the palm oil pyrolysis decreased significantly using rice husk ash
as the natural catalyst in representing CaO catalyst. The main purpose of the study is to enhance the reusability of the oil
palm wastes and improved the bio-fuel production [7].

In this present study, the EA of OPF was reduced from 28.49 kJ mol−1 to 23.66 kJ mol−1 with the addition of OPF/OPT
ash. Furthermore, the DTGmax reduced significantly from 5.74 to 4.43×10−2% min−1 at heating rate of 100K.min−1. A simi-
lar behavior is observed for OPT pyrolysis when comparing with literature findings by Chen et al. [20] and Liu et al. [21].

12.3.4 Kinetic analysis and thermodynamic study

Three iso-conversional kinetic models such as Coats-Redfern, Vyazovkin, and Miura-Maki were selected to identify the
kinetic mechanism of the OPF and OPT pyrolysis with the presence of OPF ash and OPT ash in this study. Fig. 12.3 shows
the kinetic plots of OPF pyrolysis using three models where Coats-Redfern is identified by the effect of the heating rate,
and Vyazovkin and Miura-Maki are identified based on the biomass weight fraction. Based on the TG curve, the main de-
volatilization stage (Stage II) was selected as the main pyrolysis stage for both OPF and OPT at five different heating rates
respectively. These three kinetic models were applied to determine the kinetic parameters such as EA and A for the pyroly-
sis of OPF and OPT in the absence and presence of catalyst. The role of EA determines the amount of energy that reactants
need to overcome the pathway before the chemical reaction, meanwhile A represents the frequency of the collisions of the
chemical reactants molecules during the pyrolysis reaction [24].The values of EA and A were calculated based on the slope
and intercept point of the kinetic plot. It was found that the average of EA and A for pure OPF were 28.49 kJ mol−1 and
1.12×106 min−1. With the presence of OPF ash, the values of EA and A are slightly reduced to 28.02 kJ mol−1 and 1.15×106

min−1. With the presence of OPF/OPT ash catalyst, the values of EA and A are reduced even more significantly to 23.66
kJ mol−1 and 1.11×106 min−1 respectively when compared without catalyst. On the other hand, the average of EA and A

for pure OPT were 44 kJ mol−1 and 5.78×106 min−1 respectively. With the presence of OPT and OPF/OPT ash, the values
of EA and A reduced to the range of 36.86–38.86 kJ mol−1 and 1.14×106–1.16×106 min−1. Based on Xu et al. [25], a good
catalytic effect reduces the EA with the increment of rate of reaction for providing an efficient bio-fuel production rate in
catalytic pyrolysis process.

Table 12.2 shows the average correlation coefficients (R2) values for Coats-Redfern model are in the range from
0.9579 to 0.9951 for catalytic and noncatalytic of OPF and OPT for the five different heating rates. This indicated that a
good linear curve was plotted between and at different heating rates from 10 to 100K.min−1 as shown in
Fig. 12.3. It was observed that the regression coefficient values were above 95% for all heating rates, and showed that this
model was suitable for kinetic analysis with high accuracy of the results. The observation of the results found in this study
is in agreement with the literature as reported by Gan et al. [26], where the A were range from 1.1×106 min−1 to 189.4×109

min−1 using the Coats-Redfern model. It was observed that the pyrolysis of OPF with OPF/OPT ash catalyst gave the low-
est EA and A forall samples using the Coats-Redfern model.

For Vyazovkin and Miura-Maki models, the kinetic parameters were determined by using a linear plot between
and at various weight fraction of the residues, ranging from 0.2 to 0.6. The kinetic mechanism of main devolatiliza-
tion (Stage II) can be observed from α= 0.2–0.6 based on the temperature range from 500 to 690K. From Table

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
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FIGURE 12.3 Kinetic plots of pyrolysis of OPF using (A) Coats-Redfern, (B) Vyazovkin, and (C) Miura-Maki method.

12.3, the average values of the EA for noncatalytic and catalytic pyrolysis of OPF can be observed from 133.26 to
211.69 kJ mol−1 respectively while A were observed to be 2.08×1019–2.14×1021 min−1. Besides that, the average values
of the EA for noncatalytic and catalytic of OPT were 168.06–269.67 kJ mol−1 respectively while A were observed to be
1.65×1016–1.04×1026 min−1. The average values of the EA and A that were determined by Miura-Maki method can be ob-
served from Table 12.4. The values of A were observed to be 1.22×1016–2.21×1021 min−1. On the other hand, the average
values of the EA for noncatalytic and catalytic of OPT pyrolysis were within the range of 168.06–269.67 kJ mol−1 mean-
while A were in the range of 1.19×1016–1.04×1026 min−1.

In addition, thermodynamic behavior of the OPF and OPT were studied by calculating the thermodynamic parameters
such as the enthalpy change , Gibb’s free energy change , and entropy change . The calculated thermody-
namic parameters were tabulated in Tables 12.2, 12.3 and 12.4, according to the respective kinetic models. The positive
values of indicates that the pyrolysis reaction undergoes endothermic reaction, where the heat is absorbed from the
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TABLE 12.2 Kinetic and thermodynamic parameters of catalytic and noncatalytic pyrolysis of oil palm frond and oil palm
trunk using Coats-Redfern model.

Sample Kinetic analysis Thermodynamic analysis

β EA A R2 ΔH ΔG ΔS

(ᵒC.min−1) (kJ.mol−1) (min−1) (J mol−1) (J mol−1) (J mol−1.K)

OPF 10 24.27 2.43×105 0.9881 1.81×104 1.03×105 −158.17

20 26.79 5.09×105 0.9955 2.06×104 1.02×105 −152.12

30 28.81 7.85×105 0.9976 2.25×104 1.02×105 −148.61

50 30.22 1.34×106 0.998 2.39×104 1.01×105 −144.34

100 32.36 2.74×106 0.9961 2.57×104 1.00×105 −138.65

Average 28.49 1.12×106 0.9951 2.22×104 – –

OPF—OPF ash 10 24.27 2.24×105 0.995 1.81×104 1.16×105 −158.5

20 28.14 5.26×105 0.9936 2.09×104 1.16×105 −151.53

30 26.77 7.84×105 0.9901 2.05×104 1.12×105 −148.28

50 31.06 1.38×106 0.992 2.47×104 1.14×105 −143.75

100 29.89 2.82×106 0.9792 2.33×104 1.09×105 −138.08

Average 28.02 1.15×106 0.97 2.17×104 – –

OPF—OPF/OPT ash 10 18.66 2.19×105 0.9672 1.25×104 1.11×105 −158.71

20 22.13 4.87×105 0.9871 1.59×104 1.11×105 −152.18

30 26.05 7.88×105 0.9911 1.98×104 1.12×105 −148.27

50 24.44 1.29×106 0.9906 1.81×104 1.08×105 −144.3

100 27.02 2.75×106 0.9887 2.05×104 1.07×105 −138.31

Average 23.66 1.11×106 0.9849 1.73×104 – –

OPT 10 41.42 2.44×105 0.9878 3.52×104 1.37×105 −157.76

20 46.10 4.57×105 0.9871 3.99×104 1.39×105 −152.63

30 43.97 7.48×105 0.9762 3.77×104 1.34×105 −148.56

50 44.48 1.26×106 0.9636 3.82×104 1.32×105 −144.32

100 44 2.67×106 0.9504 3.75×104 1.27×105 −138.34

Average 44 5.78×106 0.973 3.77×104 – –

OPT—OPT ash 10 38.89 2.68×105 0.9795 3.27×104 1.31×105 −157.03

20 34.6 5.42×105 0.9715 2.84×104 1.23×105 −151.28

30 33.61 8.64×105 0.9612 2.73×104 1.19×105 −147.66

50 43.45 1.29×106 0.9614 3.71×104 1.27×105 −144.27

100 33.73 2.87×106 0.916 2.72×104 1.13×105 −137.83

Average 36.86 1.16×106 0.9579 3.05×104 – –

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
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Sample Kinetic analysis Thermodynamic analysis

β EA A R2 ΔH ΔG ΔS

(ᵒC.min−1) (kJ.mol−1) (min−1) (J mol−1) (J mol−1) (J mol−1.K)

OPT—OPT/OPF ash 10 31.77 2.72×105 0.943 2.56×104 1.23×105 −156.93

20 39.71 5.34×105 0.9664 3.35×104 1.27×105 −151.42

30 40.77 7.89×105 0.9976 3.45×104 1.26×105 −148.22

50 40.13 1.37×106 0.959 3.38×104 1.23×105 −143.8

100 41.92 2.76×106 0.9417 3.54×104 1.24×105 −138.21

Average 38.86 1.14×106 0.9615 3.26×104 – –

surrounding to the system and formed chemical bonding. In the Coats-Redfern model, the calculated average for noncat-
alytic and catalytic of OPF pyrolysis were 2.22×104 J mol−1, 2.17×104 J mol−1, and 1.73×104 J mol−1, while the calcu-
lated average for noncatalytic and catalytic of OPT pyrolysis were observed to be 3.77×104 J mol−1, 3.05×104 J mol−1, and
3.26×104 J mol−1 respectively. The calculated average using Vyazovkin and Miura-Maki were 2.07×105 J mol−1, 1.68×105

J mol−1, 1.78×105 J mol−1, 1.63×105 J mol−1, 2.64×105 J mol−1, and 2.02×105 J mol−1 accordingly, for noncatalytic and
catalytic pyrolysis of both OPF and OPT. The represents the change of the energy within the thermodynamic system
via and based temperature changed during product-reactant approach in activated complex. Meanwhile, the indicates
the disorder of the closed system. The results for both and observed from Table 12.2 showed the best prediction for OPF
and OPT system disorder as majority values were in the negative values which can be categorized as in high degree of
arrangement, resulting high reactivity of reactant and high product formation in a short residence time. Based on studies by
Fong et al. [14], Gan et al. [26], and Wu et al. [27], the calculated was reported in a similar trend for different types of
biomass pyrolysis process when compared to the present study.

Among the three iso-conversional kinetic models, Coats-Redfern gave the best prediction for both kinetic and thermo-
dynamics analysis of OPF and OPT pyrolysis with the presence of OPF and OPT ash catalysts. The catalytic pyrolysis also
shows good catalytic effect by reducing the EA values for both OPF and OPT samples. For OPF pyrolysis, theEA and ΔH
reduced from 28.49 kJ mol−1 to 23.66 kJ mol−1 and 2.22×104 J mol−1 to 1.73×104 J mol−1with the presence of OPF/OPT
ash catalyst. While for OPT pyrolysis, theEA and ΔH were observed to be reduced from 44 kJ mol−1 to 36.86 kJ mol−1

and 3.77×104 J mol−1 to 3.05×104 J mol−1 respectively. In overall, the EA of noncatalytic and catalytic pyrolysis of OPF
give lower values compared to noncatalytic and catalytic pyrolysis of OPF which shows that the pyrolysis of OPF requires
lower energy for thermochemical reaction for pyrolysis reaction.

12.4 Conclusions
The kinetic and thermodynamic analysis for the pyrolysis of OPF and OPT were successfully investigated with the ab-
sence and presence of OPF ash, OPT ash, and OPF/OPT ash using TGA. It is found that the Coats-Redfern model gave
the best prediction (regression coefficient >95%) for the noncatalytic and catalytic pyrolysis process using OPT and OPF,
compared to Vyazovkin and Miura-Maki models. Based on EA calculated, the degradation results were found with the fol-
lowing conclusion: OPF-OPF/OPT ash > OPF-OPF ash > OPF > OPT-OPT ash > OPT-OPF/OPT ash > OPT. It is proven
that OPF/OPT ash was suitable for OPF pyrolysis and OPT ash was suitable for OPT pyrolysis process for an effective
energy-efficient bioenergy production.
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TABLE 12.3 Kinetic and thermodynamic parameters of oil palm frond pyrolysis and oil palm trunk pyrolysis with and
without different catalysts using Vyazovkin model

Sample α Kinetic analysis Thermodynamic analysis

EA A R2 ΔH ΔG ΔS

(kJ.mol−1) (s−1) (J mol−1) (J mol−1) (J mol−1.K)

OPF 0.2 142.34 5.21×1013 0.9974 1.38×105 1.39×105 −2.34

0.3 173.29 4.73×1015 0.9968 1.68×105 1.44×105 45.47

0.4 226.64 3.24×1013 0.994 2.22×105 2.20×105 2.13

0.5 256.59 2.57×1022 0.998 2.51×105 1.64×105 162.12

0.6 259.57 9.45×1021 0.9975 2.54×105 1.71×105 154.59

Average 211.69 2.14×1021 0.9967 2.07×105 – –

OPF—OPF ash 0.2 109.79 7.49×109 0.9829 1.05×105 1.25×105 −69.62

0.3 148.15 1.45×1013 0.9938 1.43×105 1.48×105 −7.08

0.4 177.75 2.28×1015 0.9965 1.73×105 1.48×105 34.66

0.5 185.95 4.48×1015 0.9934 1.81×105 1.51×105 39.97

0.6 245.48 1.04×1020 0.9459 2.40×105 1.56×105 123.23

Average 133.26 2.08×1019 0.9825 1.68×105 – –

OPF—OPF/OPT ash 0.2 123.22 1.44×1011 0.9618 1.18×105 1.47×105 −45.02

0.3 169.96 9.76×1014 0.973 1.65×105 1.48×105 27.83

0.4 201.04 1.32×1017 0.9671 1.53×105 1.53×105 68.28

0.5 246.36 1.99×1020 0.8944 1.96×105 1.61×105 128.77

0.6 173.94 4.27×1012 0.9203 2.41×105 1.48×105 −18.71

Average 182.91 3.98×1019 0.9919 1.78×105 – –

OPT 0.2 127.45 1.41×1011 0.9948 1.23×105 1.52×105 −45.48

0.3 147.69 8.31×1012 0.9939 1.43×105 1.50×105 −11.83

0.4 169.17 3.90×1014 0.9945 1.64×105 1.51×105 19.97

0.5 197.76 5.31×10116 0.9901 1.92×105 1.53×105 60.6

0.6 198.25 2.90×1016 0.9864 1.93×105 1.57×105 55.38

Average 168.06 1.65×1016 0.9919 1.63×105 – –

OPT—OPT ash 0.2 293.62 5.00×1026 0.9759 2.89×105 1.31×105 252.33

0.3 283.36 7.50×1024 0.9501 2.78×105 1.43×105 217.04

0.4 268.67 8.67×1022 0.9625 2.63×105 1.52×105 179.72

0.5 297.98 1.04×1025 0.9535 2.93×105 1.56×105 219.36

0.6 204.71 1.65×1016 0.9765 2.00×105 1.68×105 50.7

Average 269.67 1.04×1026 0.9637 2.64×105 – –

Iso-conversional kinetic and thermodynamic analysis of catalytic pyrolysis for palm oil wastes
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Sample α Kinetic analysis Thermodynamic analysis

EA A R2 ΔH ΔG ΔS

(kJ.mol−1) (s−1) (J mol−1) (J mol−1) (J mol−1.K)

OPT—OPF/OPTash 0.2 157.72 8.88×1013 0.9794 1.53×105 1.48×105 8.13

0.3 193.77 8.38×1016 0.9842 1.89×105 1.49×105 64.78

0.4 217.4 4.47×1018 0.9854 2.12×105 1.52×105 97.63

0.5 235.01 8.46×1019 0.998 2.30×105 1.54×105 121.91

0.6 233.88 3.13×1019 0.9468 2.28×105 1.58×105 113.46

Average 207.56 2.41×1019 0.9788 2.02×105 – –
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TABLE 12.4 Kinetic and thermodynamic parameters of OPF pyrolysis and OPT pyrolysis with and without different cata-
lysts using Miura-Maki method.

Sample α Kinetic analysis Thermodynamic analysis

EA A R2 ΔH ΔG ΔS

(kJ.mol−1) (s−1) (J mol−1) (J mol−1) (J mol−1.K)

OPF 0.2 142.34 7.96×1013 0.9974 1.38×105 1.34×105 7.72

0.3 173.29 1.20×1016 0.9968 1.68×105 1.42×105 48.99

0.4 226.64 4.75×1013 0.994 2.22×105 2.20×105 2.66

0.5 256.59 8.36×1021 0.998 2.51×105 1.65×105 160.11

0.6 259.57 2.66×1021 0.9975 2.54×105 1.74×105 150.27

Average 211.69 2.21×1021 0.9967 2.07×105 – –

OPF—OPF ash 0.2 109.79 4.07×1011 0.9829 1.05×105 1.28×105 −36.4

0.3 148.15 1.27×1013 0.9938 1.43×105 1.48×105 −8.18

0.4 177.75 4.37×1014 0.9965 1.73×105 1.60×105 20.92

0.5 185.95 3.92×1016 0.9934 1.81×105 1.45×105 58.01

0.6 245.48 2.14×1016 0.9459 2.40×105 2.07×105 52.64

Average 173.42 1.22×1016 0.9825 1.68×105 – –

OPF—OPF/OPT ash 0.2 123.22 4.84×1011 0.9618 1.18×105 1.40×105 −34.97

0.3 169.96 1.49×1015 0.973 1.65×105 1.45×105 31.35

0.4 201.04 1.41×1017 0.9671 1.53×105 1.53×105 68.81

0.5 246.36 1.56×1020 0.8944 1.96×105 1.62×105 126.77

0.6 173.94 2.54×1012 0.9203 2.41×105 1.82×105 −23.05

Average 182.91 3.13×1019 0.9919 1.78×105 – –

OPT 0.2 127.45 4.73×1011 0.9948 1.23×105 1.46×105 −35.42

0.3 147.69 1.26×1013 0.9939 1.43×105 1.48×105 −8.36

0.4 169.17 4.16×1014 0.9945 1.64×105 1.51×105 20.5

0.5 197.76 4.17×1016 0.9901 1.92×105 1.54×105 58.6

0.6 198.25 1.73×1016 0.9864 1.93×105 1.60×105 51.05

Average 168.06 1.19×1016 0.9919 1.63×105 – –

OPT—OPT ash 0.2 293.62 1.67×1027 0.9759 2.89×105 1.25×105 262.38

0.3 283.36 1.14×1025 0.9501 2.78×105 1.41×105 220.56

0.4 268.67 9.24×1022 0.9625 2.63×105 1.51×105 180.25

0.5 297.98 8.19×1024 0.9535 2.93×105 1.57×105 217.36

0.6 204.71 9.81×1015 0.9765 2.00×105 1.70×105 46.37

Average 269.67 1.04×1026 0.9637 2.64×105 – –
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Sample α Kinetic analysis Thermodynamic analysis

EA A R2 ΔH ΔG ΔS

(kJ.mol−1) (s−1) (J mol−1) (J mol−1) (J mol−1.K)

OPT—OPF/OPT ash 0.2 157.72 2.98×1014 0.9794 1.53×105 1.42×105 18.19

0.3 193.77 1.28×1017 0.9842 1.89×105 1.46×105 68.3

0.4 217.4 4.76×1018 0.9854 2.12×105 1.52×105 98.17

0.5 235.01 6.64×1019 0.998 2.30×105 1.56×105 119.91

0.6 233.88 1.86×1019 0.9468 2.28×105 1.61×105 109.13

Average 207.56 1.80×1019 0.9788 2.02×105 – –
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