

Faculty of Engineering

DESIGN STUDY OF MICROBIAL FUEL CELL USING PALM OIL MILL EFFLUENT AS A SUBSTRATE

Norimah Binti Amat Sailan

Bachelor of Engineering with Honours (Chemical Engineering) 2015

UNIVERSITI MALAYSIA SARAWAK

Grade: ____ Please tick (v) Final Year Project Masters PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the <u>31</u> day of July 2015.

. •

Student's Declaration:

1. NORIMAH BINTLAMAT SAILAN (31913), DEPT. OF CHEMICAL ENGINEERING AND ENERGY SUSTAINABILITY, FACULTY OF ENGINEERING hereby declare that the work entitled, DESIGN STUDY OF MICROBIAL FUEL CELL USING PALM OIL MILL EFFLUENT AS A SUBSTRATE is my original work. I have not copied from any other students work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

<u>31s July 2015</u> Date submitted NORIMAH BINTI AMAT SAILAN (31913) Name of the student (Matric No.)

Supervisor's Declaration:

I NORAZIAH ABDUL WAHAB hereby certifies that the work entitled. DESIGN STUDY OF MICROBIAL FUEL CELL USING PALM OIL MIL EFFLUENT AS A SUBSTRATE was prepared by the above named student, and was submitted to the "FACULTY" as a * partial fulfillment for the conferment of <u>BACHELOR OF ENGINEERING WITH HONOURS</u> (CHEMICAL ENGINEERING), and the aforementioned work, to the best of my knowledge, is the said student's work

Received for examination by: <u>NORAZIAH ABDUL WAHAB</u> Date: <u>31[±] July 2015</u> (Name of the supervior) I declare this Report is classified as (Please tick (ψ)):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project//thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitise the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies
 of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature	first.	Supervisor's signature:	anahilecha	by.
	(31ª July 2015)		(31ª July 201	(5)

Current Address: NO 58 BATU 9 JALAN MATANG 93050 KUCHING, SARAWAK

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

(The instrument was duly prepared by The Centre for Academic Information Services)

UNIVERSITI MALAYSIA SARAWAK

Grade:
Please tick ($$)
Final Year Project
Masters
PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the <u>31</u> day of <u>July 2015</u>.

Student's Declaration:

I, NORIMAH BINTI AMAT SAILAN (31913), DEPT. OF CHEMICAL ENGINEERING AND ENERGY SUSTAINABILITY, FACULTY OF ENGINEERING hereby declare that the work entitled, DESIGN STUDY OF MICROBIAL FUEL CELL USING PALM OIL MILL EFFLUENT AS A SUBSTRATE is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

<u>31st July 2015</u> Date submitted NORIMAH BINTI AMAT SAILAN (31913) Name of the student (Matric No.)

Supervisor's Declaration:

I NORAZIAH ABDUL WAHAB hereby certifies that the work entitled, DESIGN STUDY OF MICROBIAL FUEL CELL USING PALM OIL MIL EFFLUENT AS A SUBSTRATE was prepared by the above named student, and was submitted to the "FACULTY" as a * partial fulfillment for the conferment of BACHELOR OF ENGINEERING WITH HONOURS (CHEMICAL ENGINEERING), and the aforementioned work, to the best of my knowledge, is the said student's work

Received for examination by: <u>NORAZIAH ABDUL WAHAB</u> Date: <u>31st July 2015</u> (Name of the supervior) I declare this Report is classified as (Please tick $(\sqrt{})$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

U OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project//thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitise the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature

(31st July 2015)

Supervisor's signature: _____

 $(31^{\rm st}$ July 2015)

Current Address: <u>NO 58 BATU 9 JALAN MATANG 93050 KUCHING, SARAWAK</u>

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

(The instrument was duly prepared by The Centre for Academic Information Services)

APPROVAL SHEET

This project which entitled **"Design Study of Microbial Fuel Cell Using Palm Oil Mill Effluent As A Substrate"** was prepared by Norimah Binti Amat Sailan (31913) is hereby read and approved by:

31st July 2015

MDM. NORAZIAH ABDUL WAHAB (Project Supervisor) Date

DESIGN STUDY OF MICROBIAL FUEL CELL USING PALM OIL MILL EFFLUENT AS A SUBSTRATE

NORIMAH BINTI AMAT SAILAN

A dissertation submitted in partial fulfillment of the requirement for the degree of Bachelor of Engineering with Honours (Chemical Engineering and Energy Sustainability)

Faculty of Engineering

Universiti Malaysia Sarawak

2015

Dedicated to my beloved parents, who always bestow me sustainable motivations and encouragements

ACKNOWLEDGEMENT

First and foremost, the author would like to express her profound gratitude to her family especially her parents for their endless love, support and motivation throughout her study period. They are always by her side, riding along with her on her ups and downs as well as giving encouragement to pursue her dreams and supported her emotionally and financially.

Deepest appreciation goes to the dedicated project supervisor, Mdm. Noraziah Abdul Wahab for her patience guidance, motivation, care, suggestion and constructive comments throughout the project. The author owes a debt of gratitude for her time, her careful attention to the details and also her untiring support and guidance throughout the project. Without her precious support and help, this project could not have been accomplished.

The author special thanks to Mr. Wilfred from Bau Palm Oil Mill Sdn. Bhd. (BAPOM) for helping the author in getting the sample of wastewater from the palm oil mill. My appreciation also goes to Mr. Sopian Bujang, the technician from Department of Civil Engineering, Faculty of Engineering, UNIMAS for his assistance in getting the reading of Chemical Oxygen Demand (COD).

Last but not least, the author would like to express her sincere gratitude to all the lecturers, technicians and staffs for the kind cooperation and helping hands. The author would also like to express her appreciation to all the people who have helped directly or indirectly throughout her study period.

Thank you.

ABSTRACT

Research on the use of wastewater as a source of energy had been done to investigate the potential to produce electricity. The objectives of this project are to conduct electrochemical performance assessment of microbial fuel cell by different types of membranes. The research can be divided into two experiments. Experiment 1 was dealing with the design and fabrication of a MFC system that use Nafion 117 membrane. Meanwhile for experiment 2 was dealing with the design and fabrication of a MFC system that use SPEEK membrane. The characteristics of voltage and current generation as well as other wastewater parameters were also determined. The source of wastewater used was anaerobic sludge palm oil mill effluent (POME) from Bau Palm Oilm Mill Sdn. Bhd. (BAPOM). The maximum voltage attained was 14.6 mV with the current in the value of about 7.7 µA by using Nafion 117 membrane. In addition, the maximum voltage attained by using SPEEK membrane was 7.9 mV with the current in the value of about 2.8 μ A. The samples of the POME effluent, for both before and after the mentioned processes, were tested on COD parameters. The test results show relatively high reduction in both parameters of COD which are 70.2% reduction for Nafion 117 membrane and 52.6% reduction for SPEEK membrane.

ABSTRAK

Penyelidikan mengenai penggunaan air sisa sebagai sumber tenaga telah dilakukan untuk mengenalpasti potensi air sisa tersebut dalam menghasilkan elektrik. Objektif projek ini adalah untuk menjalankan penilaian prestasi elektrokimia sel bahan api mikrob oleh dua jenis membran. Kajian ini boleh dibahagikan kepada dua eksperimen. Eksperimen 1 ialah berkaitan dengan reka bentuk dan fabrikasi sistem MFC yang menggunakan Nafion 117 membran. Sementara itu, bagi eksperimen 2 ialah berkaitan dengan reka bentuk dan fabrikasi sistem MFC yang menggunakan membran SPEEK. Ciri-ciri voltan dan generasi semasa serta parameter air sisa lain juga telah ditentukan. Sumber air sisa yang digunakan adalah anaerobik efluen kilang minyak sawit lumpur dari Kilang Kelapa Sawit Bau Sdn. Bhd. Voltan maksimum yang dicapai adalah 14.6 mV dan nilai elekrik yang dihasilkan ialah 7.7 µA dengan menggunakan Nafion 117 membran. Di samping itu, voltan maksimum vang dicapai dengan menggunakan membran SPEEK adalah 7.9 mV dan nilai elektik ialah 2.8 µA. Sampel efluen kelapa sawit, untuk kedua-dua proses iaitu sebelum dan selepas telah diuji dengan menggunakan parameter COD. Keputusan ini menunjukkan pengurangan yang tinggi dalam kedua-dua parameter COD yang 70.2% pengurangan untuk Nafion 117 membran dan pengurangan 52.6% bagi membran SPEEK.

TABLE OF CONTENTS

	Pages
DECLARATION OF ORIGINAL WORK	i
APPROVAL SHEET	iii
TITLE PAGE	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
ABBREVIATIONS	xii
NOMENCLATURE	xiii

1.0 INTRODUCTION

1.1	Research Overview	1
1.2	Energy Needs	1
1.3	Fuel Cell	2
1.4	Palm Oil in Sarawak	6
1.5	Problem Statement	7
1.6	Research Objectives	8
1.7	Scope of Study	8

2.0 LITERATURE REVIEW

2.1	Introduction	9
2.2	Designs of Microbial Fuel Cell	9

	2.2.1	Two-Compartment MFC System	10
	2.2.2	Single- Compartment MFC System	11
	2.2.3	Up Flow Mode MFC System	12
	2.2.4	Stacked Microbial Fuel Cell	13
2.3	Proton E	Exchange Membrane	14
	2.3.1	Proton Transport Mechanism in PEM	16
	2.3.2	Nafion	18
	2.3.3	Sulfonated Poly Ether Ketone (SPEEK)	22
2.4	Type of	Substrate Used in Microbial Fuel Cell	24
2.5	Limiting	Factors Affecting MFC Performance	25
	2.5.1	Electrode Material	25
	2.5.2	pH Buffer and Electrolyte	25
	2.5.3	Operating Conditions in the Anodic Chamber	26
	2.5.4	Operating Conditions in the Cathodic Chamber	26
2.6	Palm Oi	l Mill Effluent (POME)	27
	2.6.1	Characteristics of Palm Oil Mill Effluent (POME)	27
	2.6.2	Anaerobic Digestion	29
2.7	Microbia	al Fuel Cell Electrode	31
	2.7.1	Anode Material	31
	2.7.2	Cathode Material	34

3.0 METHODOLOGY

3.1	Introduction	duction		
3,2	Selection of Materials	tion of Materials		
3.3	Materials and Method		36	
	3.3.1 Sampling and Wastewater Ch	aracterization	36	
	3.3.2 MFC Construction		36	
	3.3.3 Double Chamber MFC		37	
3.4	MFC Start-up procedure		38	
3.5	Nafion 117 Pretreatment		38	
3.6	.6 Determination of Water Quality Parameter		39	
	3.6.1 Determination of pH		39	
	3.6.2 Determination of Chemi Demand (COD)	cal Oxygen	39	
3.7	Measurement of Electricity Parameter	ers	40	
	3.7.1 Voltage		40	
	3.7.2 Current		40	
	3.7.3 Current Density		40	
	3.7.4 Power		41	
	3.7.5 Power Density		41	

4.0 **RESULTS AND DISCUSSIONS**

4.1	Introduction	42
4,2	Sample Collection	42
4.3	Results	43
	4.3.1 Cell Potential of MFC	43
	4.3.2 Current of MFC	43

	4.3.3	Power Density of MFC	47
	4.3.4	Membrane	48
	4.3.5	Chemical Oxygen Demand (COD)	49
4.4	Discu	ussions	50

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	53
5.2	Recommendations	54

REFERENCES	55
APPENDIX A	62
APPENDIX B	66
APPENDIX C	70
APPENDIX D	71

LIST OF TABLES

Table		Page
1.1	Different Type of Fuel Cell	3
2.0	Excellent PEM Characteristics	16
2.1	Coefficients of Different Perfluoro-Sulfonic-Ethylene Polymer	21
2.2	List of substrates in MFC studies	24
2.3	Characteristic of Raw Palm Oil Mill Effluent (POME)	28
2.4	Effluent Discharge Standards for Crude Palm Oil Mills	29
	(Environment Quality Act 1974, 2005)	
2.5	Advantages and Disadvantages between Anaerobic and	30
	Alternative Treatment Methods	
2.6	Comparison of the Characteristics of Commonly Used	31
	Anodic Base Materials in MFCs	
2.6	Non-Pt Catalysts Used in the Cathode of MFCs	34
3.0	List of Selection Material Used in MFC	36
4.0	Results of Chemical Oxygen Demand (COD)	49

LIST OF FIGURES

Figure

Page

1.1	Schematic diagram of a typical two-chamber microbial fuel cell	6
2.1	Graphical Representation of Two-Compartment MFC	10
2.2	Schematic Design of Single-Compartment MFC	11
2.3	Schematic Design of Up-Flow Mode MFC	12
2.4	Schematic Design of Stacked Type MFC	13
2.5	Proton Transport Mechanism – Zundel and Eigen Ion Complex	17
2.6	Microstructures of SPEEK	18
2.7	Perfluoro-Sulfonic-Ethylene Polymer Chain	19
2.8	Perfluoro-Sulfonic-Ethylene Polymer Monomer	20
2.9	Molecular Structure of Teflon Polymer	20
3.0	Sulfonation of PEEK into SPEEK	23
3.1	Photograph of electrode materials used for MFC	33
3.2	MFC Construction	37
4.0	Anaerobic Sludge POME Pond	42
4.1	Cell Potential Obtained from Dual Chamber MFC using	44

Nafion 117 Membrane for Different Days

4.2	Cell Potential Obtained from Dual Chamber MFC using SPEEK Membrane for Different Days	45
4.3	Current Obtained from Dual Chamber MFC using Nafion 117 Membrane for Different Days	46
4.4	Current Obtained from Dual Chamber MFC using SPEEK Membrane for Different Days	46
4.5	Power Density Obtained from Dual Chamber MFC using Nafion 117 Membrane for Different Days	47
4.6	Power Density Obtained from Dual Chamber MFC using SPEEK Membrane for Different Days	47
4.7	Nafion 117 Membrane Before and After Experiment	48
4.8	SPEEK Membrane Before and After Experiment	48
4.9	COD Before and After Experiment for Different Types of Membrane	50

ABBREVIATIONS

AFC	Alkaline Fuel Cell
BAPOM	Bau Palm Oil Mill Sdn.Bhd.
BOD	Biochemical Oxygen Demand
CE	Coulumbic Efficiency
COD	Chemical Oxygen Demand
СРО	Crude Palm Oil
CS	Chitosan
DMFC	Direct Methanol Fuel Cell
DO	Dissolved Oxygen
EFB	Empty Fruit Bunch
FFB	Fresh Fruit Bunch
GE	General Electric
GWP	Global Warming Potential
MFC	Microbial Fuel Cell
MOFC	Molten Carbonate Fuel Cell
PAFC	Phosphoric Acid Fuel Cell
PBI	Polybenzimidazole
PEEK	Poly Ether-Ether Ketone
PEM	Proton Exchange Membrane
PEMFC	Polymer Electrolyte Fuel Cell
POME	Palm Oil Mill Effluent
POMS	Palm Oil Mill Sludge
PSF	Polysulfone

pTSA	Para-Toluene Sulfonic Acid
PVA	Polyvinvyl Alcohol
SE	Sarawak Energy
SOFC	Solid Oxide Fuel Cell
SPEEK	Sulfonated Poly Ether-Ether Ketone

NOMENCLATURE

GWh	Giga Watt hour
CO ₂	Carbon dioxide
H ₂	Hydrogen gas
O ₂	Oxygen gas
H ₂ O	Water
mA	Milli ampere
g/L	Gram per liter
mM	Millimolar
mg/L	Milli gram per liter
mV	milivolt
mV mW	milivolt mili Watt
mW	mili Watt
mW Pt	mili Watt Platinum
mW Pt NaCl	mili Watt Platinum Sodium Chloride
mW Pt NaCl ml	mili Watt Platinum Sodium Chloride Milli liter
mW Pt NaCl ml cm	mili Watt Platinum Sodium Chloride Milli liter Centimeter

CHAPTER 1

INTRODUCTION

1.1 Research Overview

This chapter presents an overview of the research background. The scope covers the current scenario palm oil mill effluent disposal in Malaysia. A more economical and friendly method to solve the palm oil mill effluent using microbial fuel cell to generate electricity and as well as for waste effluent treatment is explained. The problem statement and objectives of this research are presented.

1.2 Energy Needs

There are more that six billion people with estimated population of 9.4 billion in 2050 (Logan, 2008). Fossil fuels have supported the industrialization and economic growth of countries during the past century, but it is clear that fossil fuels cannot sustain a global economy in the future (Logan, 2008). In Malaysia, electricity consumption increased by approximately 200 percent from 20867 gigawatt hours (GWh) in 1990 to 63 16 GWh in 2000 (Sulaiman *et al.*, 2014).

It is expected that the electricity demand will increase by 4.7 percent per annum by the year 2030 (Ali *et al.*, 2012). Like many other developing countries in the region, electricity in Malaysia is still generated using fossil fuels such as coal, oil and gas. Fossil fuels are one of the non renewable energy but are unfortunately also a source of pollution, including CO_2 emission and global warming. Currently, with continuous economic growth and rapid industrialization, more energy is needed including electricity. However, the main raw sources of energy which are fossil fuels are not suitable and give negative impact on the environment (Sulaiman *et al.*, 2014).

Renewable energy sources are plentiful; many still not fully exploited and are environmentally friendly. They have high potential to contribute to the energy needs for both developed and developing countries (Oh *et al.*, 2010). Some sources of renewable energy that act as alternative fuel include hydropower, wind, biomass, wind and geothermal energy. Many policies and financial support schemes have been implemented to increase the consumption of renewable energy sources. One of the major significant policies was diversification of fuel mix used in electricity generation.

Renewable energy was introduced as the fifth fuel after oil, gas, coal and hydro in electricity generation through Fifth Fuel Policy in 2001 (Sulaiman *et al.*, 2014). The biomass sector in Malaysia has shown significant improvement, in relation to its positive carbon balance with regards to fossil fuels, and sustainability and economic growth due to consumption of locally renewable material (Osman *et al.*, 2014).

1.3 Fuel Cell

Fuel cells generate electricity and heat during electrochemical reaction which happens between the oxygen and hydrogen to form the water. Fuel cell technology is the promising way to provide energy for rural areas where there is no access to the public grid or where there is a huge cost of wiring and transferring electricity (Mekhlilef *et al.*, 2012). There are a number of different fuel cell technologies that can be used for a variety of large and small applications.

Table 1.1 shows different types of fuel cell includes Alkaline (AFC), Phosphoric Acid (PAFC), Solid Oxide (SOFC), Molten Carbonate (MCFC), Polymer Electrolyte (PEM) and Direct Methanol Fuel Cell (DMFC). Generally, the electrodes are permeable or contain channels that act to distribute hydrogen or other substances and oxygen. A fuel cell is an electrochemical device which is similar to a battery that usually combines with hydrogen from different sources and oxygen. The proton travels directly across a membrane and combines with an oxygen atom to form water. Meanwhile, the free electron is routed through an external circuit known as electricity (Roman, 2008).

Fuel Cell Type	Common Electrolyte	Operating Temperature (°C)	Electrical Efficiency (%)	Application
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100	60	 Military Space
Phosphoric Acid (PAFC)	Liquid phosphoric acid soaked in a matrix	150-200	>40	1. Distribution generation
Solid Oxide (SOFC)	Yttria stabilized zirconie	600-1000	35-43	 Auxiliary power Electric utility Large distributed generation
Molten Carbonate (MCFC)	Liquid solution of lithium, sodium, and/or potassium carbonates, soaked in a matrix	600-700	45-47	 Electric utility Large distributed generation
Polymer	Solid organic polymer poly-	50-100	53-58	1. Backup power

Table1.1: Different Type of Fuel	Cell (adapted from	Hajimolana <i>et al.</i> , 2011)