Advertisement

Hybrid Nanocomposites Based on Graphene and Its Derivatives: From Preparation to Applications

Chapter
  • 36 Downloads
Part of the Composites Science and Technology book series (CST)

Abstract

Graphene has obtained an excessive amount of interest and popularity from worldwide owing to its atypical physiochemical, chemical, thermal and mechanical stability-based properties. Graphene, a one atom thick plain sheet with sp2 bonding and the carbon atoms are compactly packed in structure to form crystal lattice. Many approaches are known to synthesize the graphene derivatives and therefore, it is essential to discuss a list of distinguished approaches like exfoliation and cleavage, thermal chemical vapor deposition etc. The most commonly used hybrid graphene nanocomposite synthesis approaches and their significant applications are also summarized in this chapter.

Keywords

Graphene Graphene derivatives Graphene synthesis Hybrid nanocomposites Applications 

References

  1. 1.
    Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206 (Apr)CrossRefGoogle Scholar
  2. 2.
    Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298(4):90–97 (Apr 1)CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. science 0306(5696):666–669 (Oct 22)Google Scholar
  4. 4.
    Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10(1–2):20–27 (Jan 1)CrossRefGoogle Scholar
  5. 5.
    Geim AK, Novoselov KS (2010) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals 2010, pp 11–19Google Scholar
  6. 6.
    Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361 (Feb 28)Google Scholar
  7. 7.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098CrossRefGoogle Scholar
  8. 8.
    Zbořil R, Karlický F, Bourlinos AB, Steriotis TA, Stubos AK, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. small 6(24):2885–2891 (Dec 20)Google Scholar
  9. 9.
    Schäfer RA, Englert JM, Wehrfritz P, Bauer W, Hauke F, Seyller T, Hirsch A (2013) On the way to graphane—pronounced fluorescence of polyhydrogenated graphene. Angew Chem Int Ed 52(2):754–757 (Jan 7)CrossRefGoogle Scholar
  10. 10.
    Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol (May 2)Google Scholar
  11. 11.
    Yaqoob AA, Parveen T, Umar K, Ibrahim M, Nasir M (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495CrossRefGoogle Scholar
  12. 12.
    Yaqoob AA, Khan RM, Saddique A (2019) Review article on applications and classification of gold nanoparticles. Int J Res 6(3):762–768Google Scholar
  13. 13.
    Yaqoob AA, Umar K, Ibrahim MN (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications—a review. Appl Nanosci 13:1 (Mar)Google Scholar
  14. 14.
    Shams SS, Zhang R, Zhu J (2015) Graphene synthesis: a review. Mater Sci Poland 33(3):566–578 (Sept 1)CrossRefGoogle Scholar
  15. 15.
    Wang Y, Guo L, Qi P, Liu X, Wei G (2019) Synthesis of three-dimensional graphene-based hybrid materials for water purification: a review. Nanomaterials 9(8):1123 (Aug)CrossRefGoogle Scholar
  16. 16.
    Odegard GM, Frankland SJ, Gates TS (2005) Effect of nanotube functionalization on the elastic properties of polyethylene nanotube composites. Aiaa J 43(8):1828–1835 (Aug)CrossRefGoogle Scholar
  17. 17.
    Saito R, Dresselhaus G, Dresselhaus MS (2005) Physical properties of carbon nanotubes. ImperialGoogle Scholar
  18. 18.
    Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66(9):1182–1189 (Jul 1)CrossRefGoogle Scholar
  19. 19.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B: Polym Phys 47(9):888–897 (May 1)CrossRefGoogle Scholar
  20. 20.
    Lang B (1975) A LEED study of the deposition of carbon on platinum crystal surfaces. Surf Sci 53(1):317–329 (Dec 1)CrossRefGoogle Scholar
  21. 21.
    Rokuta E, Hasegawa Y, Itoh A, Yamashita K, Tanaka T, Otani S, Oshima C (1999) Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni (755). Surf Sci 1(427):97–101 (June 1)CrossRefGoogle Scholar
  22. 22.
    Shioyama H (2001) Cleavage of graphite to graphene. J Mater Sci Lett 20(6):499–500CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453 (Jul 26)CrossRefGoogle Scholar
  24. 24.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669 (Oct 22)Google Scholar
  25. 25.
    Yang Y, Han C, Jiang B, Iocozzia J, He C, Shi D, Jiang T, Lin Z (2016) Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater Sci Eng: R Rep 1(102):1–72 (Apr)Google Scholar
  26. 26.
    Tour JM (2014) Top-down versus bottom-up fabrication of graphene-based electronics. Chem Mater 26(1):63–71 (Jan 14)CrossRefGoogle Scholar
  27. 27.
    Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Katsnelson MI, Eaves L, Morozov SV, Mayorov AS, Peres NM, Castro Neto AH (2012) Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett 12(3):1707–1710 (Mar 14)CrossRefGoogle Scholar
  28. 28.
    Huc V, Bendiab N, Rosman N, Ebbesen T, Delacour C, Bouchiat V (2008) Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology 19(45):455601 (Oct 9)CrossRefGoogle Scholar
  29. 29.
    Shukla A, Kumar R, Mazher J, Balan A (2009) Graphene made easy: high quality, large-area samples. Solid State Commun 149(17–18):718–721 (May 1)CrossRefGoogle Scholar
  30. 30.
    Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71 (Feb 11)CrossRefGoogle Scholar
  31. 31.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563 (Sept)CrossRefGoogle Scholar
  32. 32.
    Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620 (Mar 18)CrossRefGoogle Scholar
  33. 33.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46(14):1994–1998 (Nov 1)CrossRefGoogle Scholar
  34. 34.
    Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25 (Jan)CrossRefGoogle Scholar
  35. 35.
    Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene—carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9(5):1949–1955 (May 13)CrossRefGoogle Scholar
  36. 36.
    Elif Ö, Belma Ö, İlkay Ş (2017) Production of biologically safe and mechanically improved reduced graphene oxide/hydroxyapatite composites. Mater Res Express 4(1):015601 (Jan 16)CrossRefGoogle Scholar
  37. 37.
    Dasgupta A, Sarkar J, Ghosh M, Bhattacharya A, Mukherjee A, Chattopadhyay D, Acharya K (2017) Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PloS One 12(2)Google Scholar
  38. 38.
    Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1–3):56–59 (Oct 19)CrossRefGoogle Scholar
  39. 39.
    Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA (2007) Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45(10):2017–2021 (Sept 1)CrossRefGoogle Scholar
  40. 40.
    Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103 (Sept 15)CrossRefGoogle Scholar
  41. 41.
    De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138 (Jan 20)CrossRefGoogle Scholar
  42. 42.
    Fauzi FB, Ismail E, Ani MH, Bakar SN, Mohamed MA, Majlis BY, Din MF, Abid MA (2018) A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition. J Mater Res 33(9):1088–1108 (May)CrossRefGoogle Scholar
  43. 43.
    Liu B, Xuan N, Ba K, Miao X, Ji M, Sun Z (2017) Towards the standardization of graphene growth through carbon depletion, refilling and nucleation. Carbon 1(119):350–354 (Aug)CrossRefGoogle Scholar
  44. 44.
    Moreno-Bárcenas A, Perez-Robles JF, Vorobiev YV, Ornelas-Soto N, Mexicano A, Garcia AG (2018) Graphene synthesis using a CVD reactor and a discontinuous feed of gas precursor at atmospheric pressure. J Nanomater 2018Google Scholar
  45. 45.
    Yin S, Zhang X, Xu C, Wang Y, Wang Y, Li P, Sun H, Wang M, Xia Y, Lin CT, Zhao P (2018) Chemical vapor deposition growth of scalable monolayer polycrystalline graphene films with millimeter-sized domains. Mater Lett 15(215):259–262 (May)CrossRefGoogle Scholar
  46. 46.
    Pogacean F, Biris AR, Socaci C, Coros M, Magerusan L, Rosu MC, Lazar MD, Borodi G, Pruneanu S (2016) Graphene–bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A. Nanotechnology 27(48):484001 (Nov 2)CrossRefGoogle Scholar
  47. 47.
    Lavin-Lopez MP, Sanchez-Silva L, Valverde JL, Romero A (2017) CVD-graphene growth on different polycrystalline transition metals. AIMS Mater Sci 19(4):194–208 (Jan)CrossRefGoogle Scholar
  48. 48.
    Pekdemir S, Onses MS, Hancer M (2017) Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition. Surf Coat Technol 15(309):814–819 (Jan)CrossRefGoogle Scholar
  49. 49.
    Vlassiouk IV, Stehle Y, Pudasaini PR, Unocic RR, Rack PD, Baddorf AP, Ivanov IN, Lavrik NV, List F, Gupta N, Bets KV (2018) Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat Mater 17(4):318–322 (Apr)CrossRefGoogle Scholar
  50. 50.
    Park BJ, Choi JS, Eom JH, Ha H, Kim HY, Lee S, Shin H, Yoon SG (2018) Defect-free graphene synthesized directly at 150 C via chemical vapor deposition with no transfer. ACS Nano 12(2):2008–2016 (Feb 27)CrossRefGoogle Scholar
  51. 51.
    Kasikov A, Kahro T, Matisen L, Kodu M, Tarre A, Seemen H, Alles H (2018) The optical properties of transferred graphene and the dielectrics grown on it obtained by ellipsometry. Appl Surf Sci 15(437):410–417 (Apr)CrossRefGoogle Scholar
  52. 52.
    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S (2017) Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull 62(15):1074–1080 (Aug 15)CrossRefGoogle Scholar
  53. 53.
    Chin HT, Lee JJ, Hofmann M, Hsieh YP (2018) Impact of growth rate on graphene lattice-defect formation within a single crystalline domain. Sci Rep 8(1):1–6 (Mar 6)Google Scholar
  54. 54.
    Rollings E, Gweon GH, Zhou SY, Mun BS, McChesney JL, Hussain BS, Fedorov AV, First PN, De Heer WA, Lanzara A (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67(9–10):2172–2177 (Sept 1)CrossRefGoogle Scholar
  55. 55.
    Hass J, De Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys: Condens Matter 20(32):323202 (Jul 18)Google Scholar
  56. 56.
    Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207 (Mar)CrossRefGoogle Scholar
  57. 57.
    Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4(1):30 (Jan)CrossRefGoogle Scholar
  58. 58.
    De Silva KK, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 1(119):190–199 (Aug)CrossRefGoogle Scholar
  59. 59.
    Choi YJ, Kim E, Han J, Kim JH, Gurunathan S (2016) A novel biomolecule-mediated reduction of graphene oxide: a multifunctional anti-cancer agent. Molecules 21(3):375 (Mar)CrossRefGoogle Scholar
  60. 60.
    Marlinda AR, Huang NM, Muhamad MR, An’Amt MN, Chang BY, Yusoff N, Harrison I, Lim HN, Chia CH, Kumar SV (2012) Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater Lett 1(80):9–12 (Aug)CrossRefGoogle Scholar
  61. 61.
    Ahmad M, Ahmed E, Hong ZL, Khalid NR, Ahmed W, Elhissi A (2013) Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J Alloy Compd 15(577):717–727 (Nov)CrossRefGoogle Scholar
  62. 62.
    Gong Y, Zhao J, Wang H, Xu J (2018) CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries. Electrochim Acta 1(292):895–902 (Dec)CrossRefGoogle Scholar
  63. 63.
    Azarang M, Shuhaimi A, Yousefi R, Sookhakian M (2014) Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. J Appl Phys 116(8):084307 (Aug 28)CrossRefGoogle Scholar
  64. 64.
    Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. In: Nanostructures for novel therapy, pp 1–36. Elsevier (Jan 1)Google Scholar
  65. 65.
    Chang H, Sun Z, Ho KY, Tao X, Yan F, Kwok WM, Zheng Z (2011) A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3(1):258–264CrossRefGoogle Scholar
  66. 66.
    Sahatiya P, Badhulika S (2015) One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing. RSC Adv 5(100):82481–82487CrossRefGoogle Scholar
  67. 67.
    Cui S, Mao S, Lu G, Chen J (2013) Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J Phys Chem Lett 4(15):2441–2454 (Aug 1)CrossRefGoogle Scholar
  68. 68.
    Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10(10):1555–1558 (Oct 1)CrossRefGoogle Scholar
  69. 69.
    Yan J, Ye Q, Wang X, Yu B, Zhou F (2012) CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale 4(6):2109–2116CrossRefGoogle Scholar
  70. 70.
    Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9(6):2255–2259 (June 10)CrossRefGoogle Scholar
  71. 71.
    Zhang XY, Li HP, Cui XL, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801–2806CrossRefGoogle Scholar
  72. 72.
    Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598CrossRefGoogle Scholar
  73. 73.
    Zhang H, Lv X, Li Y, Wang Y, Li J, Li M (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386Google Scholar
  74. 74.
    Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476 (Dec 10)CrossRefGoogle Scholar
  75. 75.
    Wan Y, Wang Y, Wu J, Zhang D (2011) Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal Chem 83(3):648–653 (Feb 1)CrossRefGoogle Scholar
  76. 76.
    Wan Y, Lin Z, Zhang D, Wang Y, Hou B (2011) Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens Bioelectron 26(5):1959–1964 (Jan 15)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Department of ChemistryMirpur University of Science and TechnologyMirpurPakistan
  2. 2.School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia
  3. 3.Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations