

Faculty of Engineering

UNCONFINED COMPRESSIVE STRENGTH OF CEMENT STABILIZED PEAT WITH RUBBER CHIPS AND SAND FILLER MIXED AT VARIOUS WATER TO ADDITIVE RATIO

Venessa Anak Ajon

Bachelor of Engineering with Honours (Civil Engineering) 2020

UNIVERSITI MALAYSIA SARAWAK

Grade: _____

Please tick (√) Final Year Project Report Masters PhD

	٧
Ì	

DECLARATION OF ORIGINAL WORK

This declaration is made on the <u>28th</u> day of <u>August</u> 2020.

Student's Declaration:

I, <u>VENESSA ANAK AJON, 58219, FACULTY OF ENGINEERING</u> hereby declare that the work entitled <u>UNCONFINED COMPRESSIVE STRENGTH OF CEMENT STABILIZED PEAT WITH</u> <u>RUBBER CHIPS AND SAND FILLER MIXED AT VARIOUS WATER TO ADDITIVE RATIO</u> is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

28th August 2020

Date submitted

Venessa Anak Ajon (58219)

Supervisor's Declaration:

I, <u>ASSOC. PROF. IR DR. SITI NOOR LINDA BINTI TAIB</u> hereby certifies that the work entitled <u>UNCONFINED</u> <u>COMPRESSIVE</u> <u>STRENGTH</u> <u>OF</u> <u>CEMENT</u> <u>STABILIZED</u> <u>PEAT</u> <u>WITH</u> <u>RUBBER CHIPS AND SAND FILLER MIXED AT VARIOUS WATER TO ADDITIVE RATIO</u> was prepared by the above named student, and was submitted to the FACULTY OF ENGINEERING as a partial fulfilment for the conferment of <u>BACHELOR OF CIVIL ENGINEERING</u> (Hons.), and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: _____ Date: ____28th August 2020 (A.P. IR DR. SITI NOOR LINDA BINTI TAIB) I declare that Project/Thesis is classified as (Please tick $(\sqrt{})$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972) * **RESTRICTED** (Contains restricted information as specified by the organisation where research was done) *

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature ____

(28th August 2020)

Supervisor signature: _

(28th August 2020)

Current Address: NO. 105, TAMAN UNI- VISTA, LORONG UNI- VISTA 6, 94300 KOTA SAMARAHAN, SARAWAK.

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

APPROVAL SHEET

This project report which entitled "UNCONFINED COMPRESSIVE STRENGTH OF CEMENT STABILIZED PEAT WITH RUBBER CHIPS AND SAND FILLER MIXED AT VARIOUS WATER TO ADDITIVE RATIO" was prepared and submitted by VENESSA ANAK AJON (58219) as a partial fulfilment of the requirement for degree of Bachelor of Engineering with Honours in Civil Engineering is hereby read and approved by:

28th August 2020

Date

Assoc. Prof. Ir Dr. Siti Noor Linda Binti Taib

(Project Supervisor)

UNCONFINED COMPRESSIVE STRENGTH OF CEMENT STABILIZED PEAT WITH RUBBER CHIPS AND SAND FILLER MIXED AT VARIOUS WATER TO ADDITIVE RATIO

VENESSA ANAK AJON

A report submitted in partial fulfillment of the requirement

For the degree of Bachelor of Engineering with Honours

(Civil Engineering)

Faculty of Engineering

Universiti Malaysia Sarawak

2020

Specially dedicated for my beloved parents and loved ones.

ACKNOWLEDGEMENT

Praise and glory to Almighty God for giving me the strength to successfully complete this thesis. Without His grace, this thesis could not become a reality.

First and foremost, I would like to express my sincere gratitude and special appreciation to my supervisor, Assoc. Prof. Ir. Dr. Siti Noor Linda Binti Taib and Co-Supervisor, Mdm Nur Rasfina Binti Hj. Mahyan for their constant guidance, encouragement and support throughout the study. I would like to thanked them for giving me the oppurtunity in doing this research and their motivation have deeply inspired me.

Next, I would like to express my thanks to the geotechnical laboratory technician for Department of Civil Engineering, Hj. Affendi Othman for his guidance and assistance throughout my laboratory works in this study.

I am extremely grateful and wish to express my special thanks to my parents for their support, love and sacrifices that has been made for me throughout this study. Lastly, I am also thankful for the support that has been given by my friends who have been helping and encouraging me always. Without them, I could not have done the thesis in a short period of time.

ABSTRACT

Peat is known to be a very problematic soil as it has high natural moisture content, high compressibility and low shear strength, high degree of spatial variability and high permeability which requires special considerations for construction over them. In Malaysia, peat soils cover 2,457,730 ha (7.45%) of Malaysia's total land area which is 32,975,800 ha. Due to the geotechnical problems of peat soil, previous researchers have found several methods to improve the behaviour of peat soil by using chemical stabilization method. In this study, peat samples were collected from Kampung Meranek, Kota Samarahan, Sarawak and was classified under H8 (Sapric Peat) according to Von Post Humification scale. The samples were mixed at its natural moisture content with the addition of cement, constant percentage of rubber chips and constant percentage of siliceous sand. A suitable mixing water- additive ratio of 2.0, 2.5 and 3.0 had been chosen to determine the optimum strength of peat soil and the samples were cured at a curing period of 7, 14 and 28 days respectively. After those curing periods, the compressive strength of samples were obtained by conducting unconfined compressive strength (UCS) test in the laboratory. The results of strength gained that had been obtained from this study indicated that wateradditive ratio of 2.0 is the optimum ratio as it achieved the highest maximum strength at curing period of 28 days. This study had proven that the compressive strength of peat increases with the inclusion of cement, rubber chips and sand at a specific wateradditive ratio through curing period.

TABLE OF CONTENTS

Title	Page
Title	i
Dedication	ii
Acknowledgement	ii
Abstract	iv
Table of Contents	V
List of Tables	ix
List of Figures	Х
List of Symbols	xii
List of Abbreviations	XV

Chapter 1 INTRODUCTION

1.1 Background of study	1
1.2 Problem Statement	3
1.3 Objective of Study	4
1.4 Scope of Study	4
1.5 Significance of Study	4
1.6 Organization of Thesis	5

Chapter 2 LITERATURE REVIEW

2.1 Definition of Peat	6
2.2 Properties of Malaysian Peat Soil	7
2.3 Classification of Peat	10
2.4 Stabilizers for Peat Stabilization	
2.4.1 Cement	13
2.4.2 Rubber	15
2.5 Various Research Works on Stabilization of Peat	16

	2.5.1 Cement as Stabilizing Agent	17
	2.5.2 Rubber as Stabilizing Agent	19
	2.5.3 Combined chemical stabilizers for peat stabilization	20
	2.5.4 Water- Admixture Ratio (W/A)	21
	2.5.5 Water- Cement Ratio (W/C)	23
2.6	Summary of Literature Review	25

Chapter 3 MATERIALS AND METHODS

3.1 Introduction	30
3.2 Sampling	31
3.2.1 Sample Collection	31
3.2.2 Method of Sampling	32
3.2.3 Field Vane Shear Test	32
3.2.4 Design Mixture	33
3.3 Geotechnical Properties of Peat	36
3.3.1 Degree of Humification	36
3.3.2 Moisture Content	36
3.3.3 Loss on Ignition and Organic Content	38
3.3.4 Fiber Content	39
3.3.5 Specific Gravity	41
3.3.6 Liquid Limit	43
3.3.7 Linear Shrinkage	44
3.3.8 pH	45
3.4 Unconfined Compressive Strength (UCS) on Peat	45
3.4.1 Preparation of peat sample	46
3.4.2 Labelling of Peat Sample	48
3.4.3 Testing of Peat Sample	49
3.4.4 Summary of Methodology	50

Chapter 4 **RESULTS AND DISCUSSIONS**

4.1 Geotechnical Properties of Peat	51
4.2 Unconfined Compressive Strength (UCS) Test	54
4.2.1 Untreated Peat at 0 Day	54
4.2.2 Stabilized Peat for W/A 2.0 at 7 Days	55
4.2.3 Stabilized Peat for W/A 2.0 at 14 Days	57
4.2.4 Stabilized Peat for W/A 2.0 at 28 Days	59
4.2.5 Stabilized Peat for W/A 2.5 at 7 Days	61
4.2.6 Stabilized Peat for W/A 2.5 at 14 Days	63
4.2.7 Stabilized Peat for W/A 2.5 at 28 Days	65
4.2.8 Stabilized Peat for W/A 3.0 at 7 Days	67
4.2.9 Stabilized Peat for W/A 3.0 at 14 Days	69
4.2.10 Stabilized Peat for W/A 3.0 at 28 Days	71
4.3 Discussion on UCS vs Curing Period	74
4.4 Discussion on UCS vs W/A Ratio	74
4.5 Discussion on Effects of Rubber Chips as Binder in Peat	78
Stabilization	
4.6 Discussion on Effects of Siliceous Sand as Filler in Peat	78
Stabilization	
4.7 Summary of Results	79

Chapter 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	80
5.2 Recommendations	81
5.2.1 Recommendations for Laboratory Equipment	81
5.2.2 Recommendations for Future Research Work	82

REFERENCES	83
APPENDICES	88
Appendix A: Geotechnical Properties of Peat	88

Appendix B: Moisture Contents of All Peat Samples Before and After	91
Curing Period	
Appendix B1: W/A 2.0 at 7, 14 and 28 Days	91
Appendix B2: W/A 2.5 at 7 and 28 Days	92
Appendix B3: W/A 2.5 at 14 Days	93
Appendix B4: W/A 3.0 at 14 and 28 Days	94
Appendix B5: W/A 3.0 at 7 Days	95
Appendix B6: Control Sample at 0 Days	96
Appendix C: UCS Test Results for All Peat Samples	97
Appendix C1: UCS Test Results at W/A 2.0	97
Appendix C2: UCS Test Results at W/A 2.5	106
Appendix C3: UCS Test Results at W/A 3.0	117

LIST OF TABLES

Table

Page

1.1	The area (ha) of peat soil in the region of Peninsula Malaysia,	2
	Sarawak and Sabah	
1.2	Classification of peat soil based on degree of humification	3
2.1	Geotechnical Properties of some Malaysian Soils	9
2.2	Scale for Von Post Humification	11
2.3	Malaysian Soils Classification System for Organic Soils and Peat	12
2.4	Chemical Elements of Cement	14
2.5	Typical constitution of tyre materia	15
2.6	Engineering properties of tyre rubber	16
2.7	Summary of stabilization of peat from previous studies	26
3.1	Design mixing proportion for stabilization of peat soil for curing	35
	periods of 7, 14 and 28 days	
3.2	Labelling of Peat Samples	48
4.1	Geotechnical Properties of Kpg. Meranek Peat	51
4.2	Summary of unconfined compressive stress of peat for 7, 14 and 28	73
	days of curing	

LIST OF FIGURES

Figure

Page

2.1	UCS results on the OPC- treated peat soil at curing periods of	18
	3 days and 28 days	
2.2	Results for UCS testing for different types of soil specimens	20
2.3	Unconfined compressive strength of stabilized peat at various W/A	22
2.4	Average maximum compressive stress for comparison between	23
	cement mix only and cement with fly ash mix	
2.5	Curing days of stabilized peat samples using different percentages	24
	of cement for Unconfined Compression Strength tests	
3.1	Summarized flow chart of methodology	30
3.2	Location for collection of peat sample	31
3.3	Ground water table of peat	31
3.4	Vane shear test conducted on field	32
3.5	Von Post test in the field using hand	36
3.6	Samples of peat before being placed in the oven	37
3.7	Oven dried sample after being placed in muffle furnace	38
3.8	Muffle furnace for oven dried samples	39
3.9	Sample stirred using a laboratory stirrer	41
3.10	Oven dried peat fibers	41
3.11	Density bottles filled with peat and kerosene	42
3.12	Density bottles in a vacuum desiccator	43
3.13	Oven- dried sample	45
3.14	Compaction using a leveller	46
3.15	Peat sample after compaction	47
3.16	Samples ready for curing	47
3.17	Testing of sample using UCS machine	50
4.1	Liquid Limit of Peat Soil Sample	53
4.2	Untreated Peat Sample at 0 Days	54
4.3	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 2.0 at	55

7 Days

44	Failure Condition of Test Samples of Stabilized Peat for W/Δ	56
т.т	2.0 at 7 Days	50
4.5	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 2.0 at	57
	14 Days	
4.6	Failure Condition of Test Samples of Stabilized Peat for W/A	58
	2.0 at 14 Days	
4.7	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 2.0 at	59
	28 days	
4.8	Failure Condition of Test Samples of Stabilized Peat for W/A 2.0	60
	at 28 days	
4.9	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 2.5 at	61
	7 Days	
4.10	Failure Condition of Test Samples of Stabilized Peat for W/A 2.5	62
	at 7 Day	
4.11	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 2.5 at	63
	14 Days	
4.12	Failure Condition of Test Samples of Stabilized Peat for W/A 2.5	64
	at 14 Days	
4.13	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 2.5 at	65
	28 Days	
4.14	Failure Condition of Test Samples of Stabilized Peat for W/A 2.5	66
	at 28 Days	
4.15	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 3.0 at	67
	7 days	
4.16	Failure Condition of Test Samples of Stabilized Peat for W/A 3.0	68
	at 7 days	
4.17	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 3.0 at	69
	14 Days	
4.18	Failure Condition of Test Samples of Stabilized Peat for W/A 3.0	70
	at 14 Days	
4.19	Stress (kPa) vs Strain (%) of Stabilized Peat for W/A 3.0 at	71
	28 Days	
4.20	Failure Condition of Test Samples of Stabilized Peat for W/A 3.0	72

at 28 Days

- 4.21 Bar graph of Average Maximum Unconfined Compressive Stress
 (kPa) of Stabilized Peat with Cement, Sand nd Rubber Chips at W/A
 ratio 2.0, 2.5 and 3.0
- 4.22 UCS value for cement- treated peat and peat treated with 6% lime 77 and 10% fly ash at various W/A ratio for 28 and 56 days (Ismail, 2016)
- 4.23 UCS value vs W/A ratio for cement- stabilized peat at 28 and 56 days 77 (Rahmi, 2018

LIST OF SYMBOLS

CaO	calcium oxide
g	gram
ha	hectare
НСІ	hydrochloric acid
kPa	kilopascal
MgO	magnesium oxide
mL	mililiter
mm	milimeter
mm/min	milimeter per minute
O ₂	oxygen
r/min	rotation per minute
S	second
S	sulphur
kgm ⁻³	kilogram per cubic metre
°C	degree Celcius

m	miccrometer
$(CaSO_4)$	calcium sulphate
$(Ca(OH)^2)$	hydrated lime
(C^2S)	dicalcium silicate
(C^3A)	tricalcium
(C^3S)	tricalcium silicate
(C^4A)	tetra calcium alumino- ferrite
(C^2SH^x, C^4AH^x)	hydrated calcium silicate

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
BS	British Standard
FA	fly ash
FC	fiber content
LL	liquid limit
OC	organic content
OPC	ordinary Portland cement
PI	plasticity index
PL	plastic limit
QL	quick lime
UCS	Unconfined Compressive Strength
W/C	water to cement ratio
W/A	water additive rati

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Peat is represented as a disintegrated plant remains which have been build up and preserved under conditions that are lack of aeration and contains a high water content. It refers to highly organic soils that originates primarily from plant remains where it has a dark to brown black colour, a spongy consistency and an organic odour. In Malaysia, peat soils are usually dark reddish brown to black in colour and are comprised of loose, partially decomposed leaves, roots, twigs and low-mineral tree trunks. When drained, the peat is a compact soil layer, formed of partially large pieces of wood and tree trunks (Zainorabidin & Wijeyesekera, 2008). Peat has been known as a very problematic soil and there are a few characteristics of peat which have to be improved for construction to be built over them and the characteristics include high natural moisture content, low shear strength, high compressibility, high degree of spatial variability and high permeability as compared to clay (Huat et al.,2014).

The general problems facing the construction of peat and organic soils include limited accessibility and challenging traffic ability, expectations of very large settlements over an extended time and potential problems with stability. Construction of road on peat or organic soil, whether technically or contractually obligated, has often posed challenges to engineers, contractors and policymakers. The key limit requirements for engineers are stability and acceptable settlement, both as function of the time, in terms of serviceability limits (Huat et al.,2014). Geotechnical considerations are linked to many of the road embankments and culvert faults. A range of innovative approaches have been implemented by engineers such as the conventional displacement construction method for engineering construction over soft clays. However, this method of road construction is time consuming as the filling materials take time to sink down to the firm bearing stratum due to buoyancy force (high water table level). The long- term road embankment settling and paving deformations lead to dangerous, low riding condition and high cost of road maintenance. (Tang, 2016).

In Malaysia, peat soils cover 2,457,730 ha which is 7.45% of Malaysia's total land area (32,975,800 ha). Sarawak has the largest area of peat soils in Malaysia which is 1,697,847 ha and it has a percentage of 69.08 % of the total peatland area in Malaysia, followed by Peninsular Malaysia that has an area of 642,918 ha which is equal to 26.16%. Meanwhile, Sabah has a peat area of 116,965 ha which is equal to 4.76 % (Jon Davies, Usha Mathhew, Sarala Aikanathan & Chik and Gabriel Chong, 2010). In every location, the content of peat soil will be influenced by the origin of fiber, degree of humification and temperature (Kazemian, Huat, Prasad, & Barghchi, 2011). Additionally, drainage will also influence the degree of decomposition, shrinkage and consolidation behaviour of the soil.

Table 1.1: The area (ha) of peat soil in the region of Peninsula Malaysia, Sarawak andSabah (from Jon Davies, Usha Mathhew, Sarala Aikanathan & Chik and Gabriel

REGION	ha	%
SARAWAK	1,697,847	69.08
PENINSULAR MALAYSIA	642,918	26.16
SABAH	116,965	4.76
TOTAL	2,457,730	

Chong, 2010)

Von Post Humification scale is used in order to categorize peat soils based on their fibre content and also degree of humification or decomposition. Peat soil will be identified according to the degree of humification scale which is ranging from H1 to H10 and it is divided into three categories as given in Table 1.2. By referring to the parameters given, engineers would be able to understand the complex behaviour of peat soil. According to Huat (2014), loss of organic matter (gas or in solution), the disappearance of physical structure and change in chemical state is involved in decomposition or humification.

Table 1.2: Classification of peat soil based on degree of humification (from AlaskaDepartment of Transportation, 2007)

Name	Fiber Content	Degree of Humidification
Fibric Peat	>67%	$H_1 - H_3$
Hemic Peat	33% - 67%	$H_4 - H_6$
Sapric Peat	<33%	$H_{7} - H_{10}$

1.2 Problem Statement

Peat soils are known as geotechnically problematic because it has a high water content, low shear strength and also high in compressibility which make it not suitable for construction activities. It is very challenging for development projects to be built on peat soils because of its poor quality and settlement. The loads that are induced by the structures constructed on peat will result in slip failure and large deformation. Shear strength is one of the important variable in engineering design when it comes to dealing with soil during construction. As the water content of peat soil is high, it causes the shear strength to become lower. Based on previous studies, one of the option which can be applied to overcome the construction problem and to enhance the strength of peat soil is by doing chemical stabilization using binder materials such as lime and cement where it has been proven that mechanical properties of peat increases after the addition of chemical stabilizers. In this study, peat soil sample will undergo Unconfined Compressive Strength (UCS) test to determine the strength of stabilized peat soil after adding rubber chips, cement and sand as a filler.

1.3 Objective of the Study

The objectives of conducting this study are:

a) to investigate the strength development in peat by addition of different dosage of cement, maintained percentage of rubber chips and siliceous sand;

- b) to investigate suitable mixing water- additive ratio involving filler material; and
- c) to analyze the geotechnical properties of stabilized peat via UCS.

1.4 Scope of Study

This study is focused on the stabilization of peat soil by addition of different dosage of cement using suitable mixing water- additive ratio involving filler material and rubber chips. The peat sample will be taken from Kampung Meranek, Kota Samarahan, Sarawak in a laboratory condition where its moisture content will be retained from the original peat. Geotechnical properties of peat such as moisture content, organic content, fiber content, specific gravity, liquid limit and pH will be determined by carrying out several tests on peat and UCS test will also be performed to determine the strength of stabilized peat. The stabilized samples will be cured at 7, 14 and 28 days and the optimum water- additive mixing ratio of stabilized peat will be determined.

1.5 Significance of Study

The importance of performing this study is to establish an effective way to stabilize peat soil by addition of different dosage of cement using suitable mixing water- additive ratio involving filler and rubber chips for the purpose of obtaining the maximum strength of peat mixture after being stabilized.

1.6 Organization of Thesis

In this thesis, there will be five chapters altogether. Chapter 1 will be representing about background of study, problem statement, objectives of study, scope of study, significance of study and organization of thesis. In Chapter 2, literature review are discussed which outlines the definition of peat, properties of Malaysian peat soil, classification of peat and the most common stabilizers that are used for stabilization of peat soil in the previous studies.

Chapter 3 will touch on the research methodology of the thesis and will be discussing on the laboratory tests that will be conducted to determine the physical and geotechnical properties of peat soil sample and also to determine the strength of peat after it is being stabilized. The best mixing proportion that is proposed in this study will also be included inside this chapter.

Next, Chapter 4 will be discussing on the results that have been obtained from this study followed by the discussion. The results from the selected stabilizers that are used will be presented and the optimum mixing quantity will be obtained. Geotechnical properties of peat that are obtained from UCS test will also be discussed in this chapter.

Finally, Chapter 5 will be discussing on the conclusion of the findings from the study and also recommendations will be provided for future improvements of work.