

Implementation of a Data Logging System for a Small Scale Hydrokinetic Turbine

Diana Anak Ringgau

Master of Engineering 2020

Implementation of a Data Logging System for a Small Scale Hydrokinetic Turbine

Diana Anak Ringgau

A thesis submitted

In fulfillment of the requirements for the degree of Master of Engineering

(Electronics Engineering)

Faculty of Engineering

UNIVERSITI MALAYSIA SARAWAK

2020

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

Name:

Diana Anak Ringgau

Matric No.:

17020110

Faculty of Engineering

Universiti Malaysia Sarawak

Date: 2nd March, 2021

ACKNOWLEDGEMENT

Throughout my studies, it teaches me to be independent, embrace to myself, discipline and have a good time management. Thanks to God for the courage, wisdom and a good health that has been given to me and my family. A huge appreciation to Kementerian Pendidikan Malaysia for giving me opportunity by sponsoring my studies. My supervisors, Ir. Dr. Martin Anyi, that became my guide a long my journey of studying. His thoughts and ideas have greatly inspired me. My co-supervisors, Assoc. Prof. Ir. Dr. Kismet Hong Ping who provided guidance, assistant engineers who assisted testing of data logger at laboratories as well as field site trips, Mr. Tan Kheng Wee and my best friend Mrs. Bong Siaw Wee for their encouragement and practical ideas. Last but not least, I would also like to thank my beloved parent, husband, and daughters that have encouraged me to further my studies up to this level and being supportive in whatever I chose to do.

ABSTRACT

A suitable data logger is needed for data collection to demonstrate the practicality of Hydrokinetic Turbine (HKT) in a rural area of Sarawak application. HKT is a technology that extracts kinetic energy from river currents of almost zero elevation. Currently, commercial data loggers are embedded with features that may not be usable for specific applications of the system. Additionally, they use excessive amounts of energy and are incompatible with certain transducers. Conventionally, Turbem software has been used for the HKT's numerical simulations. However, estimations of electrical power are usually higher than the experimental values obtained, which causes some difficulty in determining the right range of transducers. In this study, to cater to the problem, a prediction graph was produced by the combination of the BEM theory and laboratory experiments. The data logger was implemented with an automatic data-file creation capability, the energy consumption of which would be very low, and it would be easily customizable. Transducers such as a voltage divider showed 0.7% of error, and a current transducer performed at 5%. Whereas a propeller type current meter and rotational speed meter performed at 1% of inaccuracy. The data logger demonstrated an acceptable accuracy and behavior of the logging performance test. The real time operation of the data logger was also verified in a field test. The results showed that the terminal voltage suffered $\pm 2\%$ of error, while the output current, rotational speed of generator, river velocity and output power showed about $\pm 4\%$, $\pm 21\%$, $\pm 16\%$ and $\pm 5\%$ of error, respectively. Therefore, the ranges of the data logger's transducers are considered within the HKT system nominal and operational values, except the range of the current transducer. These readings demonstrated that the data logger could fulfill its function.

Keywords: Hydrokinetic turbine energy, data logger, power production

Membina Sistem Pengumpulan Data bagi Kegunaan Tenaga Hidrokinetik Berskala Kecil

ABSTRAK

Tenaga Hidrokinetik (HKT) merupakan satu teknologi tenaga hijau. HKT mengekstrak tenaga kinetik daripada aliran air sungai yang memiliki kecerunan menghampiri sifar. Bagi membuktikan bahawa HKT adalah penyelesaian praktik untuk kegunaan elektrik luar bandar, alat pencatat data yang bersesuaian diperlukan bagi membuat kutipan data. Masa kini, data logger komersial dimuatkan dengan ciri-ciri yang kurang bermanafaat untuk kegunaan sistem HKT, mengeksploitasi banyak tenaga dan kurang sesuai dengan sesetengah transduser. Kebiasaannya, perisian Turbem digunakan untuk simulasi bagi mengenalpasti kuasa keluaran pada sistem agar julat pada transduser dapat dikenalpasti. Namun, perisisan tersebut selalunya menghasilkan nilai kuasa keluaran yang jauh lebih besar daripada kaedah eksperimen. Maka penganggaran kuasa keluaran dibuat dengan menggabungkan teori BEM dan eksperimentasi. Alat pencatat data yang dihasilkan memiliki kebolehan membentuk fail data secara otomatik dan kurang penggunaan tenaga. Ia juga melalui kalibrasi dan diuji, di mana transduser seperti pembahagian voltan mengalami 0.7% kesilapan, transduser arus 5%, meter pengukur arus sungai dan meter pengukur kelajuan putaran masing-masing 1% ketidaktepatan. Keadaan ini menunjukkan bahawa alat pencatat data memiliki ketepatan yang berpatutan. Alat pencatat data juga diuji di lapangan sebenar dan didapati julat bagi voltan terminal adalah $\pm 2\%$ ketidaktepatan, manakala arus keluaran, laju putaran generator, arus sungai dan kuasa keluaran adalah $\pm 4\%$, $\pm 21\%$, $\pm 16\%$ dan $\pm 5\%$ ketidaktepatan. Ini menunjukkan ia memenuhi fungsi dan kebolehpercayaan.

Kata kunci: Tenaga hidrokinetik, alat pencatat data, kuasa keluaran

TABLE OF CONTENTS

		C
DEC	CLARATION	i
ACF	KNOWLEDGEMENT	ii
ABS	STRACT	iii
ABS	STRAK	iv
TAB	BLE OF CONTENTS	v
LIST	T OF TABLES	ix
LIST	T OF FIGURES	Х
LIST	T OF ABBREVIATIONS	xvi
CHA	APTER 1: INTRODUCTION	1
1.1	Study Background	1
1.2	Problem Statement	4
1.3	Objectives	7
1.4	Scope of the Research Project	8
1.5	Hypothesis	9
1.6	Structure of the Thesis	10

v

CHAF	PTER 2: LITERATURE REVIEW	12
2.1	Overview	12
2.2	The concept of hydrokinetic turbine system	12
2.2.1	The relationship of turbine rotational speed and river velocity	17
2.2.2	The relationship of terminal voltage, rotational speed, output current and power	18
2.2.3	Potential hydrokinetic energy test site	23
2.3	Conceptual design of data logger in hydrokinetic turbine system	25
2.3.1	Concept of propeller type current meter	32
2.3.2	Concept of rotation speed meter	35
2.4	Hydrokinetic turbine's data logger requirement	37
2.4.1	Calibration procedures	38
2.4.2	Statistical analysis of error	41
2.4.3	Open source programming and software simulation tools	42
CHAF	PTER 3: METHODOLOGY	44
3.1	Overview	44
3.2	Prediction of HKT electrical power production	45
3.2.1	Estimation of the rotor and generator rotational speed as a function of river	
	velocity	48

3.2.2	No-load and load condition test	53
3.3	The design of hydrokinetic turbine data logger	57
3.3.1	Implementation of integrated sensors	60
3.3.2	Implementation of data acquisition system	72
3.3.3	Open source programming	80
3.3.4	Laboratory experimental setup	83
3.3.5	Field site measurement	86
CHAI	PTER 4: RESULTS AND DISCUSSION	90
4.1	Overview	90
4.2	The prediction graph of hydrokinetic turbine electrical power production	91
4.3	Laboratory test of hydrokinetic turbine data logger	96
4.3.1	Propeller type current meter signal analysis	101
4.3.2	Rotation speed meter signal analysis	104
4.4	Field site measurement	109
4.5	Comparison between the prediction graph of HKT electrical power	
	production and field site measurement	111
CHAI	PTER 5: CONCLUSION AND RECOMMENDATIONS	115
5.1	Conclusion	115

vii

5.2	Recommendations	119
REFE	ERENCES	121
APPE	ENDICES	130

LIST OF TABLES

Page

Table 2.1	Specific details of the HKT system	15
Table 3.1	The estimation of Cp- λ at Θ =13°	47
Table 3.2	Specific details of the proximity sensor	67
Table 3.3	Transducers range in HKT system	84
Table 4.1	Analysis details between standard and test meter of Propeller type	102
	current meter	
Table 4.2	Analysis details of Propeller type current meter with 1.0094 correction	103
	factor	
Table 4.3	Analysis details of Frequency to voltage converter circuit	105
Table 4.4	Relationship of v and Ng corresponding with TSR	112
Table 4.5	The analysis of data between the laboratory experiment and field site	114
	measurement	
Table 5.1	The HKT system new operating range	119

LIST OF FIGURES

Figure 1.1	Sarawak Major River, copyright of Department of Irrigation &	1
	Drainage Sarawak	
Figure 1.2	The concept of Hydrokinetic Turbine System	2
Figure 2.1	The designed HKT system, courtesy of Tan Kheng Wee	14
Figure 2.2	The characteristic of rotation speed as a function of river velocity	18
Figure 2.3	PMDC machine utilize as a generator	19
Figure 2.4	The PMDC motor MY1018	20
Figure 2.5	The characteristic of generated voltage versus rotational speed at no	20
	load test	
Figure 2.6	Rotational speed versus current characteristic at constant output	21
	voltage	
Figure 2.7	The characteristic of rotation speed versus power	22
Figure 2.8	(a) The map to Kampung Danu from Unimas and (b) the alternative	23
	entrance to Kampung Danu	
Figure 2.9	(a) The site location, (b) the site location view from the suspension	24
	bridge and (c) the width of the river	
Figure 2.10	The HKT deployment prospects	24
Figure 2.11	Commercial data loggers	25
Figure 2.12	Block diagram of a data logger	26
Figure 2.13	Component used to measure voltage	26
Figure 2.14	Modules used to measure current	27

Figure 2.15	Modules used to measure velocity of river	
Figure 2.16	Components used to measure rotation speed of generator	
Figure 2.17	Components used in signal conditioning (a), signal converting (b) and	30
	time stamping (c)	
Figure 2.18	Components used in programming	31
Figure 2.19	Components used in recording data	31
Figure 2.20	Modules used to present data	32
Figure 2.21	The 8m long flow channel	34
Figure 2.22	Direct comparison in meter calibration	38
Figure 2.23	Direct comparison in transducer calibration	
Figure 2.24	Indirect comparison in meter calibration	
Figure 2.25	Indirect comparison in transducer calibration	40
Figure 3.1	The flow of work	44
Figure 3.2	Method to plot the prediction of electrical power production	46
Figure 3.3	Cp- λ graph based on Equation 2.2 & Equation 2.3	48
Figure 3.4	Estimation of turbine rotational speed's range	49
Figure 3.5	Estimation of generator rotational speed as a function of river	50
	velocity	
Figure 3.6	Characteristic of P_m -N _t of the designed HKT system corresponding	52
	to the river velocity (Θ =13°)	
Figure 3.7	(a) No-load circuit (b) Experiment setup for no-load condition	54
Figure 3.8	Voltage-speed characteristic at no-load condition test	55
Figure 3.9	Load-condition setup with the 12 V system	56

Figure 3.10	The overall concept of a small scale HKT system and orange in color	59
	is the implemented data logger for the system	
Figure 3.11	The framework in the data logger design	60
Figure 3.12	Simulation of voltage divider by using Proteus	61
Figure 3.13	(a) Simulation of Hall Effect sensor (ASC712) with offset value and	62
	(b) at full scale	
Figure 3.14	(a) The process of shaping the spinner nose cone, (b) the spinner	64
	fitted over a propeller hub and (c) the copper attached on top of the	
	propeller shaft	
Figure 3.15	The propeller of current meter with mean velocity inclined at an angle	65
Figure 3.16	(a) The proximity sensor and (b) the conditioner circuit simulation of	66
	propeller type current meter	
Figure 3.17	Pulses produced by the proximity sensor	67
Figure 3.18	(a) The structure of 8 m long Flow Channel and (b) the standard	68
	propeller type current meter was calibrated at Flow Channel	
Figure 3.19	(a) The prototype was tested at Flow Channel and (b) the standard	69
	propeller type current meter from Nixon instrument	
Figure 3.20	The sensor used in rotational speed meter	69
Figure 3.21	(a) The experiment setup for conditioning signal in rotational speed	71
	meter and (b) the conditioner circuit	
Figure 3.22	(a) The magnetic pickup generated the frequencies of AC voltage and	72
	(b) test setup for signal conditioning circuit	
Figure 3.23	The connection of transducers, microcontroller, RTC, SD Card, and	73
	RF Transceiver	

xii

Figure 3.24	(a) The RF receiver module with USB-UART converter and (b)	
	modules in the data acquisition system	
Figure 3.25	The simulation of power supply and DC-DC converters by using	77
	Proteus 8.6	
Figure 3.26	The main schematic diagram	79
Figure 3.27	Flow chart of the data logger control algorithm	81
Figure 3.28	Flow chart of the data transmission/ communication by using	82
	Processing 3.0	
Figure 3.29	Data logger experimental setup	83
Figure 3.30	Transducers layout	83
Figure 3.31	Turbine hardware simulation	
Figure 3.32	(a) Created file and (b) file's content by using Processing 3.0	85
Figure 3.33	The weatherproof enclosure	86
Figure 3.34	The position of a (a) Propeller type current meter and (b) rotational	86
	speed meter	
Figure 3.35	The HKT system was deployed	87
Figure 3.36	(a) the front view and (b) the back view of the data logger	88
Figure 3.37	The field site measurement setup	89
Figure 3.38	(a) A down trail to the field-site and (b) RF receiver located 50 m	89
	apart from its transmitter	
Figure 4.1	The flow chart used to verify the prediction graph	90
Figure 4.2	a) The position of the gear during the rpm was measured by the digital	91
	tachometer and (b) the laboratory test setup for load condition	

Figure 4.3	The characteristic of output current (Iout) with the load resistance (R)	
	driven by 12 V electrical system	
Figure 4.4	The characteristic of power and output current lines as a function of	93
	rotational speed of generator at λ =5, η_t =88%	
Figure 4.5	Prediction graph of electrical power production at λ =5, η_t =88%	94
Figure 4.6	The main board of the data logger	97
Figure 4.7	The implemented data logger	97
Figure 4.8	Voltage divider calibration curve	98
Figure 4.9	The output of the voltage divider was proportional to its source	99
Figure 4.10	The output of the current transducer was proportional to its source	100
Figure 4.11	Current transducer calibration curve	100
Figure 4.12	Nixon Streamflo probe calibration chart	101
Figure 4.13	Test meter and standard meter reading	102
Figure 4.14	Propeller type current meter correction factor	103
Figure 4.15	The frequency to voltage converter	104
Figure 4.16	The frequency source is proportional with the output voltage of the	106
	conditioner circuit	
Figure 4.17	The measured value was proportional with the standard instrument	106
Figure 4.18	The calibration curve of rotational speed meter	107
Figure 4.19	The prototype data logger with integrated sensor (laboratory test) for	108
	rotational speed and river velocity	
Figure 4.20	The prototype data logger with integrated sensor (laboratory test) for	108
	voltage and current	

- Figure 4.21 The line voltage or V_t and line current or I_{out} in field site measurement 109 (Actual data)
- Figure 4.22 The rotational speed (N_g) and river velocity (v) in field site 110 measurement (Actual data)
- Figure 4.23 The power, functionality and meteorology data after filter 111

LIST OF ABBREVIATIONS

AC	Alternating Current
ADC	Analogue to Digital Converter
BEM	Blade Element Method
DC	Direct Current
ELC	Electronics Load Controller
HAHT	Horizontal Axis Hydrokinetic Turbine
НКТ	Hydrokinetic Turbine
IC	Integrated Circuit
I ² C	Inter-Integrated Circuit
LED	Light Emitting Diode
MPPT	Maximum Point Power Tracking
PMDC	Permanent Magnet Direct Current
QFD	Quality Function Deployment
RTC	Real Time Clock
SD	Secure Digital
SDHC	Secure Digital High Capacity
SPI	Serial Peripheral Interface
TSR	Tip-speed Ratio
TTL	Transistor to Transistor Logic

CHAPTER 1

INTRODUCTION

1.1 Study Background

Sarawak is in East Malaysia and has a large geographical area of about 124,450 km² and a population of almost 2.79 million people (Department of Statistics Malaysia Official Portal, 2019). More than 48% of Sarawak's people live in rural areas, involving 6,235 villages and 200,000 households. The electrification progress for Sarawak is at about 90.4% coverage, which still leaves around 1,919 villages or approximately 41,004 households in the off grid connected power supply. 74.6% of rural communities consist of less than 50 families. These households are separated by a 5-10 km distance, and are widely dispersed all over the region. (Shiun, 2016).

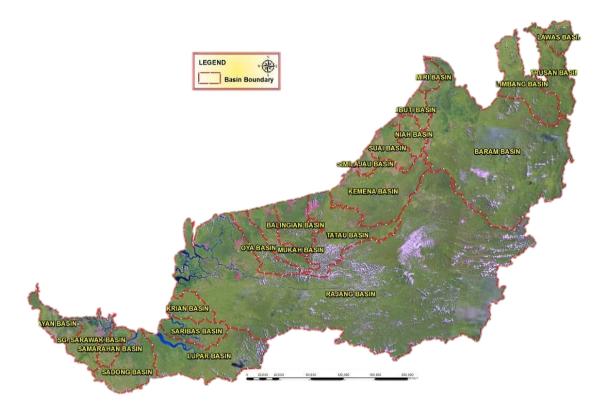


Figure 1.1: Sarawak Major River, copyright of Department of Irrigation & Drainage Sarawak

Sarawak is blessed with high rainfall, with an average of 3,300 mm and 4,600 mm annually, which brings regular streaming rivers that can be utilized to produce electricity. Figure 1.1 shows major rivers in Sarawak. It has more than 55 lowland rivers with a combined length of more than 3,300 km (Sarawak Goverment, 2018). Lowland rivers are categorized as having zero or little elevation or less than 3 m of static head. *Batang* Rajang for example, is the largest river in Malaysia, where the water depth is around 4.1 m and velocity, up to 1.1 m/s. This forms streams and its tributaries which are around 0.2 m – 1.3 m in depth, with a flow speed from 0.05 m/s – 1.35 m/s (Ling et al., 2017). Moreover, most of the rural communities live in *rumah panjang* or long houses that are situated by a river for water supply, food, and transportation. Thus, by manipulating Sarawak's geography and meteorology advantages, hydrokinetic turbine (HKT) energy should be considered as a potential solution for the off-grid rural community's electric power supply applications.

HKT is a potential technology that can be used to extract kinetic energy from river currents of almost zero elevation, also known as lowland rivers (Izadyar, Ong, Chong, Mojumder, & Leong, 2016).

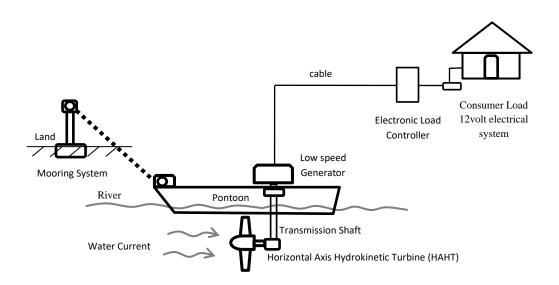


Figure 1.2: The concept of Hydrokinetic Turbine System

The flowing rivers which have insufficient elevation for conventional micro-hydropower energy, but have ample kinetic energy may offer many potential sites for HKT to produce electricity (Vermaak, Kusakana, & Koko, 2014). The concept of a hydrokinetic turbine system is shown in Figure 1.2. The system requires no civil work, nor any pipe work, and a small conducive area. This system is very simple with minimum equipment needed for installation and can be easily moved from one stream to another if required (Anyi, 2013). A small scale HKT has the capacity to produce electricity of around 15 W to 1,000 W of power (Shiun, 2016), and the operation can practically be fabricated (Riglin, 2016) according to the number of households, which can maintained and repaired by the rural community. Thus, such a simple-to-operate concept based on standardized or modularized designs of technology is needed for rural communities.

However, there are limited or no recorded studies to justify the potential of HKT for electrification in the rural areas of Sarawak. A large data collection of the system's electricity power production is compulsory for technical analysis. Besides, statistical data of the HKT system can be used to gain attention and trust from the stakeholders that might be interested in the development of the system. Based on statistics, intelligent judgments and decisions can be derived in the presence of uncertainty and variation. Therefore, to provide statistics or technical analyses, a suitable data logger plays an important role as a tool to perform proper and extensive data collection.

The degree of utilization, also known as the capacity factor (Lalander, 2010), is a study to estimate the competitiveness of different renewable energy sources that have been applied, in this case, in the rural electrification of Sarawak (Abdullah et al., 2010). The study is required to have at least a one-year-series of power production and optimal operating data. Relying on multi meters and current clampers to measure electric energy production is inconvenient when the data collection is carried out for a long period of time (Riglin & Schleicher, 2016). Besides, it is also a tedious job and requires manpower. Consequently, the length of the recorded series of data will be limited. Thus, an experimental investigation of the operation and performance study of HKT may not be comprehensive. All the recorded data will not be timely synchronized (Kjellin, 2012). Even though this research does not focus on estimating the competitiveness of different renewable energy sources, it shows that a data logger is an important tool to record a long series of data, perform measurement tasks accurately and achieve timely synchronization.

A data logger should be built based on Quality Function Deployment (QFD) and should be specific for an HKT system in rural areas. Thus, the proposed data logger should consider factors such as the crucial features in the HKT system for a small number of households, off-grid connections that use 12 V electrical systems, a harsh rainforest environment and the condition of lowland rivers. Therefore, modifying a commercial data logger to suit these needs will prove more difficult than fabricating a new one. A fabricated data logger could be easily customized according to the requirements, would be cost effective, be more practical and perform reliable data collection.

1.2 Problem Statement

Horizontal Axis Hydrokinetic Turbine (HAHT) is likely to become a technically practical solution in off-grid small applications (Anyi & Kirke, 2010). In many research studies from around the world relating to hydrokinetic energy, the focus has been mainly on the development of HAHT blades (Azrulhisham, 2018; Chica, Torres, & Arbeláez, 2018; Tian et al., 2018), while only a few studies have looked into the operations and performance study of an overall system (Riglin & Schleicher, 2016). Majority of the researchers have focused on the potential of a studied site (Aling, Atan, Fahies, & Ismail, 2018; Saupi et al., 2018; Riglin, 2016; Döll, Fiedler, & Zhang, 2009) and one study about collecting resource data for a selected rural area in Sarawak (Saupi et al., 2018). However, there is limited literature that justifies the potential of HKT for electrification in rural areas of Sarawak. Thus, it can be said that an estimated power production and optimal operation study has not been conducted yet. Estimated power production and optimal operation study provides crucial information in determining the range of the data logger's transducers.

In conventional HKT systems, a software and simulation design tool such as Turbem and Computational Fluid Dynamics (CFD) are used for the numerical simulation of the system. The software utilizes the Blade Element Momentum (BEM) theory. However, the software estimation is usually higher than experimental power or output speed, and hence it tends to overestimate the operating point where the maximum power is extracted (Tian et al., 2018; Izadyar et al., 2016). The overestimation of the operating point occurs because mechanical friction and misalignment effects are not included in the BEM model used by the software. Besides the software and simulation tools, an HAHT is usually tested in the towing tank or by recirculating current flume facilities. The aim of this test is to identify the performance curves of the turbine and to obtain the rotational speed of the rotor in relation to flow velocity (Murray et al., 2018). However, these facilities are not yet available in local universities and industrial research centers. Therefore, an alternative experimental design is needed to cater the gap between numerical simulations and the limited facilities in order to perform such an experiment, so that the HKT estimated power production and optimal operation value could be determined.

Several commercial data loggers only cover general parameters (Onset Computer Corporation, 2015; Fuentes, Vivar, Burgos, Aguilera, & Vacas, 2014; Siew, Wong, Tan, Yoong, & Kin Teo, 2012). Sometimes, there are some parameters embedded together with the standard data logger which are not related with specific technology (Pattanaik, Leo, Narasimha Rao, & Jalihal, 2017; Filizola, Melo, Armijos, & McGlynn, 2015); like a builtin temperature sensor which may not be entirely usable for certain applications. In HKT systems, a tool is needed to measure the resource of kinetic energy of the flowing river. Most of the research works refer to an Acoustic Doppler Current Profiler (ADCP) (Ling et al., 2017; Yuen, Apelfröjd, & Leijon, 2013). However, the output signals of an ADCP or a wellestablished propeller type current meter are usually incompatible with the commercial data logger. They always come with manufacture protected layout-designs which are not authorize for commercial uses (Shen, 2013) and do not provide a standardized signal output. Moreover, a researcher (Saupi et al., 2018) claimed that, while ADCP is accurate, the price is very expensive and it needs to be handled by relevant expertise. A study had been conducted by the researcher to estimate the resource data at Batang Balleh; it found that the comparison between Surface Floating Method (SFM) and ADPC is not significant. Although the ADCP is based on Doppler technology that allows for faster sampling and measurement of discharge and downstream/upstream weir characterizations, these extra features are not compulsory (Schubauer & Mason, 1937) to determine the optimal operational value in a hydrokinetic turbine. Consequently these features may not be usable for specific needs or applications, and may result in unnecessarily expensive setups, and may thus increase the cost of research (Fuentes et al., 2014). A data logger device and its transducers usually account for about 10% to 40% of the system's overall cost.