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1. Introduction 

In the era of globalization, life has become convenient when people are using modern technologies such as smart 
phones, computers and others to do various activities. Online financial transactions, cashless payment and smart home 
systems are some of the applications resulted from the technology advancement [1-6]. These technologies continuously 
produce large data stream [7]. Traditional approaches are not able to deal with this condition effectively in terms of 
performance and accuracy. Therefore, it is very important to have a method that can handle the data whenever data are 
available. This kind of learning is called “Online” or “Incremental Learning” [8-9]. Incremental learning is very 
important in many applications considering that the data are not always available at the early stage [10-14]. One of the 
important applications is person identification because the faces could be changed due to aging, lighting, make up and 
etc. 

Person identification can be easily hacked if the security is not strong enough. Thus, security become a top 
concern. Most of the conventional person identification are using password-based security where forces user to 
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remember username and password combinations [15]. Nevertheless, password authentication may fail when it is not 
addressed seriously. Username and password are also easily shared, misused and it also can be stolen [16]. Hence, a 
more secure form of authentication is needed. Consequently, biometric security is becoming increasingly popular to 
protect the data from the intruder. Biometric system is a technological system that identify the person by recognizing 
their characters such as their face, fingerprint, iris, voice, and so forth. Most of the person identification system 
consider only single characteristic for the recognition purposes. This learning is called single task learning. It may not 
be sufficiently robust due to some limitation such as noisy data and spoof attack [16]. 

In order to solve the above-mentioned problems, incremental learning method is applied to person identification 
based on multitask learning. Multitask learning uses more than one characteristic for the recognition [17] [18]. For 
person identification, feature extraction is crucial in image recognition. There are two popular feature extraction 
techniques namely, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). In this paper, LDA 
is chosen because it is a supervised technique and it provide a good separation of the classes. LDA is then updated 
incrementally using ILDA. To improve the performance, face and fingerprint biometric characteristics is chosen for the 
multitask learning. Face feature is chosen because the face recognition is the most exciting biometric features and more 
accurate way for the person identification system. Apart from that, fingerprint is chosen to be one of the features 
because of their uniqueness and consistency over- time. The fingerprint is the form of the tiny ridges and the 
arrangement of the structure of the ridges. The performance of the person identification is evaluated based on KNN 
approach. 

The remainder of this paper is organized as follows: Section 2 provides a quick review of LDA and ILDA. Section 
3 introduces the methodology. Section 4 shows the experimental results. Finally, Section 5 offers the conclusions and 
future works. 
 
2. Illustrations 
2.1 Batch Linear Discriminant Analysis (LDA) 

LDA is a well-known technique for dimensionality reduction and classification [9]. LDA is widely used in 
statistics, machine learning and pattern recognition to find a linear combination of features which characterizes or 
separates two or more objects. Thus, LDA is a very practical tool for classification and dimensionality reduction [18]. 
The optimal projection or transformation in classical LDA is obtained by minimizing the within-class distance wS  and 

maximizing the between-class distance simultaneously bS  thus achieving maximum class discrimination ( )wJ  [9] 
[18-21]. In this way, vectors that maximally separates the classes in the feature space is obtained. Between-class and 
within-class distance are shown in (1) and (2) [9] [18] [21-22].            
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while maximum class discrimination J(w) is defined in (3) 
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Here, cμ  is a mean of the class and μ  is a mean of overall data. In this way, we can get the vectors that maximally 
separates the classes in the feature space. 
 
2.2 Incremental Linear Discriminant Analysis (ILDA) 

In the real situations, data are not always available at the beginning. Thus, LDA may not perform well when the 
new data is received. In ILDA, discriminant space model is updated incrementally when new data is given, which mean 
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that the within-class distance and between-class distance are updated incrementally with new data by (4) and 
(5)[9][18][20-22]. 
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where ccc knn +='  and 
'

cμ  is a new mean for the particular class while 
'

μ is a new mean for all data. 
 
3. Incremental Linear Discriminant Analysis (ILDA) 

Person identification consists of three main stages. The first stage is face recognition while the second stage is 
fingerprint recognition and the two characteristics are combined into the same domain in the final stage to perform the 
decision making. Image enhancement, feature extraction and decision making is applied to both face and fingerprint 
recognition as shown in figure 1. 
 

 
 

Fig. 1 - Multitask biometric system block diagram 
 
The datasets of 50 persons for both male and female are obtained manually. Ten pictures of each person are taken 

with difference angle, background and lighting conditions. Ten fingerprints for each one of them are also obtained 
using printer's scanner. In the pre-processing part, face and fingerprint images are converted from Red Green Blue 
(RGB) to grayscale image as shown in Figure 2 and Figure 3. 
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Fig. 2 - Conversion from RGB to grayscale image for face 

 
 

                                   
Fig. 3 - Conversion from RGB to grayscale image for fingerprint 

 
 

It is important to convert the image to grayscale image for better image processing. These datasets then divided 
into 60% training set and 40% testing data. At the beginning, LDA is applied to the initial data and initial feature space 
is constructed. The remaining data are given one by one to update the feature space by ILDA. The recognition accuracy 
is done by using KNN classifier. This algorithm is used to classify the object based on their templates in the database 
[23]. KNN is fast and simpler compare to the other methods. The Euclidean distance matrix is used to calculate the 
distance between two data points. The equation for the Euclidean distance is shown in (6) [24]. 

 
                          ( ) ( ) ( )nn yxyxyxd −−= ......, 11                                             (6) 

 
where x  and y is different two different data points.  
 

The whole program is developed using Matlab R2018b while the technical specifications of the device are shown 
as follow: 

 
1. ASUS A450C Notebook. 
2. Processor of Intel Core i5-3337U 1.80 Ghz core X2.  
3. 6GB DDR3 (RAM). 
4. Intel Graphic 4000 + Nvidia Geforce GT 720M 2GB memory.  
5. 750GB (hardisk). 

 
The general process of the person identification is shown in Fig. 4. 

 
4. Results and Discussion  

In this section, the performance of person identification is carried out with LDA and ILDA. The learning time and 
recognition accuracy is carried out with face and fingerprint datasets. As seen in Fig. 5 and Fig. 6, the learning time for 
ILDA is much faster compared to LDA. Both algorithms are executed in the MATLAB program. This is because LDA 
is a batch mode learning where the whole data need to be retrained when the new data is given. On the contrary, ILDA 
only update the feature space when the new data is given.  The data is discarded after the training for ILDA. 

To further evaluate the performance of LDA and ILDA, the learning time are obtained by varying the number of 
dataset for both biometric datasets. Table 1 shows that the learning time for ILDA is faster compared to LDA even 
though the datasets are increasing. The learning time is increased as the number of data are increasing for both LDA 
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and ILDA. This is a normal condition where the system needs more time to update the feature space for LDA and 
ILDA when the data are increased.  

Next, the recognition accuracies for both LDA and ILDA are shown in Table 2. The results are obtained by using 
50 datasets for both biometric characteristics. As seen in Table 2, the results obtained shows that ILDA achieves higher 
recognition accuracies compared to LDA. 
 

 
Fig. 4 - Overall person identification system 

 
 

 
Fig. 5 - Learning time for face 
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Fig. 6 - Learning time for fingerprint 

 
Table 1 - Learning time for LDA and ILDA 

N, Samples 
Face, 

Time(seconds) 
Fingerprint, 

Time(seconds) 
LDA ILDA LDA ILDA 

5 0.0737 0.0305 0.0625 0.0203 

10 0.0812 0.0368 0.0712 0.0214 

15 0.125 0.0398 0.0889 0.0338 

20 0.142 0.0413 0.092 0.0392 

25 0.171 0.051 0.103 0.0432 

30 0.198 0.059 0.112 0.0498 

35 0.215 0.0632 0.118 0.0501 

40 0.225 0.069 0.126 0.0535 

45 0.257 0.074 0.137 0.0591 

50 0.298 0.076 0.143 0.0621 

 
The main reason is that memory storage is required for LDA. The new data need to be stored together with 

previous data in the memory. When the system contained a lot of the information, this will cause the degradation of 
performance. The learning time is increased when the memory storage is increased [12]. Therefore, it is concluding that 
ILDA perform faster compare to LDA without affect the recognition accuracies. 
 

Table 2 - Recognition accuracies for LDA and ILDA 
 Face Accuracy (%) Fingerprint Accuracy (%) 

N, data LDA ILDA LDA ILDA 

50 83.4 86.1 88.2 89.5 
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5. Conclusions and Future Works 
 As a conclusion, ILDA is adopted in the feature extraction part for incremental person identification. From the 

experimental results, the performance of ILDA is better than traditional LDA. In addition, the recognition accuracies of 
ILDA are superior to LDA even though the datasets are increasing. Besides, multitask learning based on face and 
fingerprint is adopted for person identification. The reason why multitask learning is adopted because the performance 
of the system based on single task might not optimistic. In the future, other biometrics characteristics such as iris and 
voice will be considered to be included in the system. Apart from that, Convolution Neural Network (CNN) will be also 
considered to be adopted as a classifier in order to improve the accuracies [25] [26].  ILDA is suggested to be improved 
to deal with other online learning problems. Besides, person identification based on biometric characteristics can be 
included to replace QR code for the attendance record.  
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