

Integrated Natural Resources Management

Handbook of Environmental Engineering

Volume 20

Series Editors

Lawrence K. Wang
PhD., Rutgers University, New Brunswick, NJ, USA
MS, University of Rhode Island, Kingston, RI, USA
MSCE, University of Missouri, Rolla, MO, USA
BSCE, National Cheng Kung University, Tainan, Taiwan, ROC

Mu-Hao Sung Wang PhD., Rutgers University, New Brunswick, NJ, USA MS, University of Rhode Island, Kingston, RI, USA BSCE, National Cheng Kung University, Tainan, Taiwan, ROC The past 30 years have seen the emergence of a growing desire worldwide to take positive actions to restore and protect the environment from the degrading effects of all forms of pollution: air, noise, solid waste, and water. The principle intention of the Handbook of Environmental Engineering (HEE) series is to help readers formulate answers to the fundamental questions facing pollution in the modern era, mainly, how serious is pollution and is the technology needed to abate it not only available, but feasible. Cutting-edge and highly practical, HEE offers educators, students, and engineers a strong grounding in the principles of Environmental Engineering, as well as providing effective methods for developing optimal abatement technologies at costs that are fully justified by the degree of abatement achieved. With an emphasis on using the Best Available Technologies, the authors of these volumes present the necessary engineering protocols derived from the fundamental principles of chemistry, physics, and mathematics, making these volumes a must have for environmental pollution researchers.

More information about this series at http://www.springer.com/series/7645

Lawrence K. Wang • Mu-Hao Sung Wang Yung-Tse Hung • Nazih K. Shammas Editors

Integrated Natural Resources Management

Editors
Lawrence K. Wang
Lenox Institute of Water Technology
Lenox, MA and Newtonville, NY, USA

Yung-Tse Hung Department of Civil and Environmental Engineering, Cleveland State University Cleveland, OH, USA Mu-Hao Sung Wang Lenox Institute of Water Technology Lenox, MA and Newtonville, NY, USA

Nazih K. Shammas Lenox Institute of Water Technology and Krofta Engineering Corporation Lenox, MA and Newtonville, NY, USA

ISSN 2512-1359 ISSN 2512-1472 (electronic) Handbook of Environmental Engineering ISBN 978-3-030-55171-1 ISBN 978-3-030-55172-8 (eBook) https://doi.org/10.1007/978-3-030-55172-8

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The past seventy-five years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution – air, water, soil, thermal, radioactive, and noise. Since pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for "zero discharge" can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identified: (1) How serious are the environmental pollution and water resources crisis? (2) Is the technology to abate them available? and (3) Do the costs of abatement justify the degree of abatement achieved for environmental protection and natural resources conservation? This book is one of the volumes of the *Handbook of Environmental Engineering* series. The principal intention of this series is to help readers formulate answers to the above three questions.

The traditional approach of applying tried-and-true solutions to specific environmental and water resources problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a "methodology of pollution control." However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders pollution control imperative that intelligent planning of pollution abatement systems be undertaken. Prerequisite to such planning is an understanding of the performance, potential, and limitations of the various methods of environmental protection available for environmental scientists and engineers. In this series of handbooks, we will review at a tutorial level a broad spectrum of engineering systems (natural environment, processes, operations, and methods) currently being utilized, or of potential utility, for pollution abatement, environmental protection, and natural resources conservation. We believe that the unified interdisciplinary approach presented in these handbooks is a logical step in the evolution of environmental engineering.

x Preface

Treatment of the various engineering systems presented will show how an engineering formulation of the subject flows naturally from the fundamental principles and theories of chemistry, microbiology, physics, and mathematics. This emphasis on fundamental science recognizes that engineering practice has, in recent years, become more firmly based on scientific principles rather than on its earlier dependency on empirical accumulation of facts. It is not intended, though, to neglect empiricism where such data lead quickly to the most economic design; certain engineering systems are not readily amenable to fundamental scientific analysis, and in these instances, we have resorted to less science in favor of more art and empiricism.

Since an environmental natural resources engineer must understand science within the context of applications, we first present the development of the scientific basis of a particular subject, followed by exposition of the pertinent design concepts and operations, and detailed explanations of their applications to natural resources conservation or environmental protection. Throughout the series, methods of mathematical modeling, system analysis, practical design, and calculation are illustrated by numerical examples. These examples clearly demonstrate how organized, analytical reasoning leads to the most direct and clear solutions. Wherever possible, pertinent cost data or models have been provided.

Our treatment of environmental natural resources engineering is offered in the belief that the trained engineer should more firmly understand fundamental principles, should be more aware of the similarities and/or differences among many of the engineering systems, and should exhibit greater flexibility and originality in the definition and innovative solution of environmental system problems. In short, the environmental and natural resources engineers should by conviction and practice be more readily adaptable to change and progress.

Coverage of the unusually broad field of environmental natural resources engineering has demanded an expertise that could only be provided through multiple authorships. Each author (or group of authors) was permitted to employ, within reasonable limits, the customary personal style in organizing and presenting a particular subject area; consequently, it has been difficult to treat all subject materials in a homogeneous manner. Moreover, owing to limitations of space, some of the authors' favored topics could not be treated in great detail, and many less important topics had to be merely mentioned or commented on briefly. All authors have provided an excellent list of references at the end of each chapter for the benefit of the interested readers. As each chapter is meant to be self-contained, some mild repetition among the various texts was unavoidable. In each case, all omissions or repetitions are the responsibility of the editors and not the individual authors. With the current trend toward metrication, the question of using a consistent system of units has been a problem. Wherever possible, the authors have used the British system (fps) along with the metric equivalent (mks, cgs, or SIU) or vice versa. The editors sincerely hope that this redundancy of units' usage will prove to be useful rather than being disruptive to the readers.

The goals of the *Handbook of Environmental Engineering* series are (1) to cover entire environmental fields, including air and noise pollution control, solid waste

Preface xi

processing and resource recovery, physicochemical treatment processes, biological treatment processes, biotechnology, biosolids management, flotation technology, membrane technology, desalination technology, water resources, natural control processes, radioactive waste disposal, hazardous waste management, and thermal pollution control; and (2) to employ a multimedia approach to environmental conservation and protection since air, water, soil, and energy are all interrelated.

This book (Volume 20, Integrated Natural Resources Management) and its two current sister books (Volume 17, Natural Resources and Control Processes and Volume 19, Environmental and Natural Resources Engineering) of the *Handbook of Environmental Engineering* series have been designed to serve as natural resources engineering reference books as well as supplemental textbooks. We hope and expect they will prove of equal high value to advanced undergraduate and graduate students, to designers of natural resources systems, and to scientists and researchers. The editors welcome comments from readers in all of these categories. It is our hope that the three natural resources engineering books will not only provide information on natural resources engineering, but also serve as a basis for advanced study or specialized investigation of the theory and analysis of various natural resources systems. The third sister book, *Integrated Natural Resources Research*, is now in the planning stage.

This book *Integrated Natural Resources Management* (Volume 20) covers the topics on the effect of global warming and climate change on glaciers and salmons; village-driven latrines with "engineers without borders – USA"; analysis for surface water quality management; treatment of electrical and electronic components manufacturing wastes; water quality control of tidal rivers and estuaries; geographic information systems and remote sensing applications in environmental and resources engineering; investigation and management of water losses from wet infrastructure; lake restoration and acidic water control; biohydrogen production through mixed culture dark anaerobic fermentation of industrial waste; agricultural wastes—derived adsorbents for decontamination of heavy metals; removal of heavy metal ions using magnetic materials; and biohydrogen production from lignocellulosic biomass by extremely halotolerant bacterial communities from a salt pan and salt-damaged soil.

This book's first sister book, *Natural Resources and Control Processes* (Volume 17), covers the topics on the management of agricultural livestock wastes for water resources protection; application of natural processes for environmental protection; proper deep-well waste disposal, treating and managing industrial dye wastes; health effects and control of toxic lead in the environment; municipal and industrial wastewater treatment using plastic trickling filters for BOD and nutrient removal; chloride removal for recycling fly ash from municipal solid waste incinerator; recent evaluation of early radioactive disposal and management practice; recent trends in the evaluation of cementitious material in radioactive waste disposal; extensive monitoring system of sediment transport for reservoir sediment management; and land and energy resources engineering glossary.

This book's second sister book, *Environmental and Natural Resources Engineering* (Volume 19), covers the topics on understanding, conservation, and protection of precious natural resources – bees; waste reclamation for reuse, biological processes

xii Preface

for water resources protection and water reuse, and removal of endocrine disruptors for environmental protection; cooling and reuse of thermal discharges; basic hydrology, water resources, and DAF boat plant for lake restoration; cadmium detoxification by sintering with ceramic matrices; treatment of vegetable oil–refining wastes; environmental engineering education; environmental control of pests and vectors; new book reviews; and glossary of environmental and natural resources engineering.

The editors are pleased to acknowledge the encouragement and support received from Mr. Aaron Schiller, Executive Editor of the Springer Nature, Switzerland, and his colleagues, during the conceptual stages of this endeavor. We wish to thank the contributing authors for their time and effort, and for having patiently borne our reviews and numerous queries and comments. We are very grateful to our respective families for their patience and understanding during some rather trying times.

Newtonville, NY, USA Newtonville, NY, USA Cleveland, OH, USA Newtonville, NY, USA Lawrence K. Wang Mu-Hao Sung Wang Yung-Tse Hung Nazih K. Shammas

Contents

1	Effect of Global Warming and Climate Change on Glaciers and Salmons Lawrence K. Wang, Mu-Hao Sung Wang, Nai-Yi Wang, and Josephine O. Wong	1
2	Village-Driven Latrines with "Engineers Without Borders USA" Joshua Knight, Melissa Montgomery, Debbie Heuckeroth, Eugene Lendzemo, and David Sacco	37
3	Surface Water Quality and Analysis	63
4	Treatment of Electrical and Electronic Component Manufacturing Wastes Omotayo Sarafadeen Amuda, Yung-Tse Hung, and Lawrence K. Wang	115
5	Geographic Information Systems and Remote Sensing Applications in Environmental and Water Resources Samuel O. Darkwah, Michael D. Scoville, and Lawrence K. Wang	197
6	Investigation and Management of Water Losses from Wet Infrastructure Nazih K. Shammas, Lawrence K. Wang, Mohamed A. Khadam, and Yousef Al-Feraiheedi	237
7	Lake Restoration and Acidic Water Control Lawrence K. Wang, Mu-Hao Sung Wang, Nazih K. Shammas, R. Derrick I. Kittler, and Donald B. Aulenbach	257

xiv Contents

8	Biohydrogen Production Through Mixed Culture Dark Anaerobic Fermentation of Industrial Waste Abdollah Hajizadeh, Noori M. Cata Saady, Sohrab Zendehboudi, Rajinikanth Rajagopal, and Yung-Tse Hung	323
9	Agricultural Waste-Derived Adsorbents for Decontamination of Heavy Metals	371
10	Removal of Heavy Metal Ions Using Magnetic Materials Soh-Fong Lim, Agnes Yung-Weng Lee, S. N. David Chua, and Bee-Huah Lim	393
11	Biohydrogen Production from Lignocellulosic Biomass by Extremely Halotolerant Bacterial Communities from a Salt Pan and Salt-Damaged Soil	411
Ind	ex	429

A	human health, 283
Abiotic, 217	impacts, 281
Accuracy, 217	industrial, 279
Acetogenesis, 330, 331	measurement, 294, 295
Acid deposition, 217, 278-283, 289	monitoring, 292, 294
Acid Deposition Act, 284	nitrates, 282
Acid mine drainage, 306	nitric acid, 279
Acid precipitation, 281	nitrogen, 282
Acid rain, 307	nitrogen deposition, 282, 283
acid deposition, 278, 281, 283	nitrogen oxides, 279
acid mine drainage, 306	pH scale, 281
acid precipitation, 281	pollutants, 282
Acid Rain Permit Program, 291, 292	public awareness, 279
air pollutants, 279	reduce acid rain, 290, 291
allowances, 293, 294	regulations (see Acid rain regulations)
aluminum, 282	renewable energy sources, 298
atmospheric deposition, 279	soil nutrients, 282
atmospheric pollutants, 298	sulfate aerosol particles, 281
building materials, 279	sulfur dioxide, 279
calcium sulfate, 283	terrestrial ecosystems, 281
carbonic acid, 279	trends, 295–297
causes, 287, 289	unpolluted rain, 279
chronic acidification, 282	water droplets, 278
conservation programs, 298, 299	Acid Rain Permit Program, 291, 292
corrosion rate, metals, 283	Acid Rain Program (ARP), 286, 290–293, 295
environmental effect, 281	Acid rain regulations
environmental issues, 278	Acid Deposition Act, 284
environmental pollution, 297, 298	CAA, 285
environmental stress, 279, 282	CAIR, 286
episodic acidification, 282	CSAPR, 287
forests, 282	environment, 286
fuels, 298, 299	HAPs, 285
historical monuments, 279	NAPAP, 284
history, 283	NO _x budget program, 286

© Springer Nature Switzerland AG 2021

L. K. Wang, M. -H. S. Wang, Y. -T. Hung, N. K. Shammas (eds.), *Integrated Natural Resources Management*, Handbook of Environmental Engineering 20, https://doi.org/10.1007/978-3-030-55172-8

Agro-food industrial wastewater, 326 Agro-food waste, 326
Agra food wests 226
Agio-1000 waste, 520
Aid neutralization capacity (ANC), 297
Air pollutants, 3, 279
Air pollution, 3, 24
Air pollution control, 25
Air systems, 270
Albers map projection, 217
Aircraft, 200
Algae, 263, 264, 300, 305, 306
Algae removal, 301
Alum, 272
Alum addition, 269
Alum injection system, 269
Aluminum, 268, 278
Aluminum salts, 272
American Water Works Association (AWWA),
110, 241
Anaerobic and aerobic treatment processes, 348
Anaerobic digestion, 325, 357
acetogenesis, 330, 331
acidogensis, 330
fermentation, 330
homoacetogens, 331
hydrolysis, 329, 330
liquefaction, 329, 330
methanogenesis, 331
microorganisms, 328, 329
organic waste and producing methane, 328
symbiotic relationship, 328
Anaerobic mixed culture, 325
Anaerobic sludge, 347, 349
Ancillary data, 217
Anionic, 386
Annual statistical summary, 217
Anthropogenic, 25
Animal dung, 349
Antiferromagnetism, 399, 400
Anti-scaling technique, 396
Appropriate technology, 40
AquaDAF, 307
AquaDAF system
hydraulic flocculation, 301
lake water treatment, 306
Aquatic ecosystem, 386
Area frame, 217–218
Area sample, 218
Arid ecosystems, 218
Ar-Riyadh Development Authority (ADA), 250
Artificial light, 135, 138
Artificial magnets, 396
Assessment, 218
Assessment endpoint, 218
Association rule, 218

Atmosphere, 25	H. hydrogeniformans, 414
Atmospheric deposition, 279	halotolerant and halophilic bacteria, 414
Atmospheric Deposition to Great Lakes and	lignocellulosic biomass, 413, 414, 424
Coastal Waters (ADGLCW), 285	NaCl concentrations, 416, 422, 423
Atmospheric pollution, 278, 280	salt-damaged soil, 419
Atmospheric temperatures, 21	seed microorganisms and medium, 415
Attribute, 218	theoretical hydrogen production/yield,
Augmented sample, 218	416, 417
Automated hydraulic modeling, 216	Vibrio tritonius strain AM2, 414
Automated sampling networks, 79, 86, 88	Biological activity, lakes, 263–265
Automatic Meter Reading (AMR), 242	Biological indices, 81
Automotive ignition coils, 131	Biological treatment, 325
Auxiliary data, 218	Biological wastewater treatment systems, 268
AWWA/IWA water audit methodology, 241	Biomarker, 219
Azimuthal map projection, 218	Biomass, 219, 386
	Biomass wastes, 375
	Biome, 219
B	Biotic, 219
Bacterial water quality, 103	Biotic harvest, 305
Baking process, 122	Biotic separation, 305
Baseline grid, 218	Black carbon, 25
Benzene, 403	Black carbon aerosol, 25
Best applicable technology (BAT), 134, 141,	Brazos River, 299
151, 160, 163, 168, 171, 189	2-Bromoethanesulfonic acid sodium salt
Best conventional pollution control technology	(BESA), 351
(BCT), 187–190	Buffering, 202
	6,
Best practice control technology (BP1), 134,	
Best practice control technology (BPT), 134, 141, 151, 152, 158, 160, 163, 168,	
141, 151, 152, 158, 160, 163, 168, 171, 187–189	С
141, 151, 152, 158, 160, 163, 168,	
141, 151, 152, 158, 160, 163, 168, 171, 187–189	C Calcined carbon filler, 122 Calcium, 268
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219	Calcined carbon filler, 122
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218	Calcined carbon filler, 122 Calcium, 268
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160,
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion)	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater)	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula)	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356 Biohydrogen production, 357	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165 wastewater treatment processes, 161,
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165 wastewater treatment processes, 161, 163, 165
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356 Biohydrogen production, 357 analytical method, 416	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165 wastewater treatment processes, 161, 163, 165 water use, 161
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356 Biohydrogen production, 357 analytical method, 416 at 15–26% salinity, 419, 420	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165 wastewater treatment processes, 161, 163, 165 water use, 161 Carbohydrate-rich food processing wastes, 327
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356 Biohydrogen production, 357 analytical method, 416 at 15–26% salinity, 419, 420 at 3–10% salinity, 417, 418 Cl ⁻ ion requirement, 421, 423	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165 wastewater treatment processes, 161, 163, 165 water use, 161 Carbohydrate-rich food processing wastes, 327 Carbon adsorption, 134 Carbon-and-graphite products
141, 151, 152, 158, 160, 163, 168, 171, 187–189 Bias, 218 Bioaccumulants, 219 Bioassay, 219 Biochar, 386 Biochar adsorbent, 377 Biochemical oxygen demand (BOD), 96, 98 Biodiesel industrial waste, 344, 345 Biodiesel industrial waste, 344, 345 Biodiversity, 219 Biogeographic province, 219 BioH ₂ production anaerobic digestion (see Anaerobic digestion) characteristics, 326 industrial waste (see Industrial wastewater) industrial wastewater, 326 inocula (see Inocula) organic waste, 327, 328 research, 356 Biohydrogen production, 357 analytical method, 416 at 15–26% salinity, 419, 420 at 3–10% salinity, 417, 418	Calcined carbon filler, 122 Calcium, 268 Calcium salts, 272 Calcium sulfate, 283 Calibration, 219 Canadian Council of Ministers of the Environment (CCME), 79, 110 Capacitors application, uses and examples, 160 description and production process, 160, 161 fixed, 160, 161 industrial plant, 161–163 oil-filled, 161 treatment technology and cost, 163, 166 variable, 161 wastewater characterization, 161, 164, 165 wastewater treatment processes, 161, 163, 165 water use, 161 Carbohydrate-rich food processing wastes, 327 Carbon adsorption, 134

Carbon-and-graphite products (<i>cont.</i>)	Characteristics of lakes
machining setting data, 131, 132	air temperature, 262
oil separation performance, 130	biological activity, 261
SIC code, 121, 122	colder bottom water temperature, 261
structural, refractory, nuclear and	deep lakes, 260–262
non-electrical applications, 121	dimictic, 261
treatment technologies and cost, 131, 132	forested watershed, 260
wastewater characterization, 122-126, 129	human development, 260
wastewater streams, 122, 129	lakeside homeowners, 260
wastewater treatment process, 130-132	larger lakes, 260
Carbon capture and sequestration (CCS), 6, 25	layers, 261
Carbon capture and storage, 25	seasonal circulation patterns, deep
Carbon cycle, 25	temperate climate lake, 262, 263
Carbon dioxide (CO ₂), 26, 298	stratification period, 261
biomass, 5	summer stratification, 261, 262
carbon footprint, 6	surface, 262
carbon sequestration, 6	temperature succession, 261
dipole moment, 5	water temperature, 261
energy levels, 5	Characterization, 219
environment, 21, 22	Cheese whey, 344–346
equivalent, 5, 26	Chemical addition, 268
fertilization, 6, 26	Chemical detection, 242
fossil fuels, 5	Chemical/mechanical deflash process, 156
heat absorption, 5	Chemical oxygen demand (COD), 302, 349
infrared radiation, 5	352
molecule, 5	Chemical precipitation, 306, 386
Carbon footprint, 6, 26	Chemical stability, 404, 406
Carbonization, 386	Chemical status, 72
Carbon nanotubes, 404, 406	Chlorofluorocarbon (CFC), 26
Carbon sequestration, 6, 26	Chlorophyll, 210
Carbon tetrachloride (CCl ₄), 26	Chlorophyll-α, 265, 266
Carbonic acid, 279	Chlorophyll-bearing aquatic organisms, 96
Cathode ray manufacturing process, 147	Chronic acidification, 282
Cathode ray tube (CRT)	Clari-DAF, 307
manufacturing, 179	Classification, 219
manufacturing process, 146	Class I ozonedepleting substance, 26
NSPS, 187, 188	Class II ozonedepleting substance, 27
POTWs, 187	Clean Air Act (CAA), 285
pretreatment standards, 188	Clean Air Interstate Rule (CAIR), 286
PSES, 187	Clean Air Status and Trends Network
PSNS, 187	(CASTNet), 295
and PWBs, 171	Climate, 3, 27
subcategory, 141	Climate change, 27
and television picture tubes, 146	adaptation/mitigation, 24
transfers, 181	CO ₂ , 22
Cationic, 386	ecosystem, 18
Cationic heavy metals, 378	GHG (see Greenhouse gas (GHG))
CCME WQI	glaciers (see Glaciers)
advantages, 79, 89	measures, 3
description, 88	political issue, 24
disadvantages, 79, 89	salmon, 17–21
CDF (Cumulative distribution function), 219	weather conditions, 3
Cellulose, 386	Climate science, 24
Ceramic insulators, 133	Climatic elements, 3
Change, 219	Cluster analysis (CA), 65
Change, 219	Ciusici alialysis (CA), 03

Coagulants, 275, 277	Demonstration project, 222
Coagulation, 386	DensaDeg process, 268
Coal-fired Gavin Power Plant, 288	Desertification, 27
Coal-fired power plants, 298	Design-based, 222
Color tubes, 145	Design drawings, 45
Community, 219–220	Devils Lake, 273, 275, 277
Comparability, 220	Diamagnetism, 398, 399
Completeness, 220	Diatomaceous earth filtration, 134
Compost, 60	Die-attach pad, 155
Composting latrine, 49, 60	Dielectric materials
Conceptual model, 220	description and production process,
Condition, 220	131–133
Condition indicator, 220	electrical insulators, 131
Confidence coefficient, 220	industrial plant, 133
Confidence interval, 220	manufacture, 132
Conformal map projection, 220	mica paper, 131, 133, 134, 136, 137
Conical (or conic) map projection, 220	oil-filled capacitors, 131, 133
Consumer aerosol products, 9	small oil-filled capacitor, 133
Continuous, 220	transformer core, 133
Continuous emissions monitors (CEMs), 292	transformers, 131
Conventional activated sludge treatment, 268	treated effluent concentrations, 134, 137
Coprecipitation, 400, 402, 406	treatment technologies and cost, 134, 138
Crosscutting group, 220–221	waste characterization, 134-137
Cross-State Air Pollution Rule (CSAPR), 287	wastewater treatment processes, 134, 137
Crystal processing, 154	water uses, 133, 134
Cumulative distribution, 221	windings, 133
Curie temperature, 395, 399, 406	Diffusion, 90
Cylindrical (or cylindric) map projection, 221	Digital elevation model (DEM), 201, 214
	Digital line graph (DLG), 222
	Digital Signal Processing Solutions (DSPs),
D	190
DAF/filtration (DAFF), 278	Dimictic lake, 261
Dairy industry waste, 348	Diodes, 153, 156
Dairy wastewater, 344–346	Dipole moment, 5
Dark fermentation, 327, 425	Disability-Adjusted Life Years (DALYs), 374
cost, 355	Discrete resource, 222
dairy industry waste, 348	Dissolved air flotation (DAF), 307
industrial waste, 325	dredged materials, 271
livestock manure, 348	hypolimnetic phosphorus removal
metabolic pathways, 333, 334	(see Hypolimnetic phosphorus
mixed cultures (see Mixed cultures)	removal)
Dark fermentation process, 413, 414, 424	Dissolved gas flotation (DGF), 307
Data conversion routines, 204	Dissolved oxygen (DO)
Data input subsystem, 204	aquatic systems, 94
Data quality, 221	biochemical decay, organic waste materials,
Data quality indicators, 221	96–99
Data quality objective (DQO), 221	chemical compounds, 94
Data input subsystem, 204	nitrification, 101, 102
Data storage, 204	oxygen distribution, 94
Deconvolution, 221	oxygen percent saturation, 100
Deep lakes, 260, 261, 271	physical characteristics, water, 95-97
Deforestation, 27, 265	quantification, 100, 101
Demonstration field program, 221–222	reaeration, 99

Dissolved oxygen (DO) (cont.) temperature, 100 water quality, 94	dry products, 119, 121–123, 126, 129–132 electric lamp (<i>see</i> Electric lamp) electron tube (<i>see</i> Electron tube)
± •	· · · · · · · · · · · · · · · · · · ·
District Meter Area (DMA), 242 Domain, 222	geographic distribution, 118, 119
	ICs, 117 miscellaneous components, 117
Doorbell transformers, 131	
Doping materials, 154	personal computer and accessories, 117
DOsat, 110	point source discharge limitation (see Point
Double sample, 222	source discharge limitation)
Douglas Island Pink and Chum Inc. (DIPCI), 20	profile, 117, 118
Dredging, 271	PWB (see Printed wiring board (PWB))
Drinking water services, 39 Dry deposition, 280, 205	research and production, 117
Dry deposition, 289, 295	semiconductors (see Semiconductors)
Dry etching, 154	SIC, 119–121
Dry products	telecommunications equipment, 117
carbon and graphite, 121–123, 126, 129–132	vacuum tube, 117
	waste generation, 171–183
and metal finishing industries, 119	workforce, 118
Dubinin-Radushkevich isotherm, 383 Dubinin-Radushkevich isotherm equation, 384	worldwide companies, 117, 118
1	WW I, 117 Electrical energy, 298
Dynamic Factor Analysis, 66	Electrical insulators, 131
	Electromagnetic field detection, 242
E	Electromagnetic spectrum, 199, 200, 209
Ecological health, 222	Electromagnetic system, 145
Ecological risk assessment, 222	Electromagnets, 396
Ecological status classification, 72	Electron guns, 146
Ecology, 222	Electron tube
Ecology, 222 Ecoregion, 222	color tubes, 145
Ecosystem, 2, 18, 22, 222, 386	description and production process, 141,
Ecosystem functions, 223	145–147
Ecotone, 223	electron guns, 146
Electric discharge lamps, 135	influent and effluent data, 146, 148–151
Electric furnace, 121	low-voltage and low-power appliances, 143
Electric lamp	panel mask, 145
classical and toxic pollutants, 138, 142, 143	receiving-type electron tubes, 141
description and production process, 135,	shadow mask, 145
138, 139	SIC identified, 141
effluent data, fluorescent lamp manufacture,	television picture tubes, 141, 144
139, 144	transmitting-type electron tubes, 141, 145
industrial plant, 137	vacuum/ionized gas-filled tubes, 143
plant-specific data, 138, 140, 141	wastewater characterization, 146, 148–151
treatment technologies, 139, 144	wastewater treatment processes, 146,
treatment technology and cost, 141, 145	151–153
wastewater characterization, 138, 140–143	water use, 146
wastewater treatment processes, 138, 139,	Electronic crystals, 189
144	BAT, 189
water use, 138	BCT, 189, 190
Electric motor control, 131	BPT, 189
Electrochemical treatment, 386	NSPS, 189, 190
Electrical/electronic industry	PSES, 189, 190
capacitor (see Capacitors)	Electronic furnace, 121
dielectric materials (see Dielectric materials)	Electro-optical sensors, 200

Electroplating, 166	Equilibrium time, 380, 381
Emissions, 27	Escherichia coli, 66
Engineers Without Borders USA (EWB-USA),	Estuary, 223
60	Eutrophication, 265, 266, 282, 304
appropriate technology, 40	Eutrophic lake recovery
behavior change, 39	aeration, 270
communities, 40, 41	dredging, 271
community-driven projects, 40, 50	sediment fixation, 272
community needs, 40	weed harvest, 271
development, 41	Excreta, 60
education and training, 42	Exerted biochemical oxygen demand (mg/L
engineering needs, 41	of O_2) at time t (BOD_t) , 110
field offices, 41	Ex situ methods, 403
financing strategies, on-site household	Extensive resource, 223
systems, 42	Extremely halotolerant bacterial communities,
gender approach, 42	424
latrine project, 40	
lessons learned factors	
dashboard tool, 51-53	F
latrine projects, 51, 52	Fabricated metal industry, 178
quotes, 52, 54	Facility Registry Service (FRS), 216
reporting metrics, 52, 54	Farming, 269
locations, 41	Feature data elements, 199
methodology, 50	Fecal coliform bacteria, 107
mission, 49	Fecal material, 103
PMEL framework, 49, 50	Fecal pollution, 104
program scope, 42	Federal Highway Authority, 269
project indicators, 50	Federal Water Pollution Control Administration
project types, 41	(FWPCA), 302
rural communities, 39	Fermentation, 330
sanitation facilities, 41	Fermentative hydrogen production, 413
sanitation project categories, 50, 51	Ferrimagnetism, 400
self-identified needs, 41	Ferromagnetism, 399
success, 51	Filtration, 386
village-driven approach, 40	Fish population, 264
Enhanced greenhouse effect, 27	Fixed capacitors, 160, 161
Entire, 223	Flame ion detector (FID), 416
Environment, 28, 223	Floating microscopic organisms, 263
Environmental agencies, 178	Flocculation, 300
Environmental assessment, 223	Floodplain mapping, 207, 208
Environmental health, 48	Flow direction analysis, 214
Environmental Monitoring and Assessment	Fluorescent lamps, 131, 137, 141, 145
Program (EMAP), 223	Fluorinated gases, 7, 28
Environmental pollution, 297, 298	Fluorocarbons, 7, 28
Environmental Protection Agency, 297	F/M ratio, 425
Environmental satellites, 200	Food chain, 264
EPA Spatial Data Library System (ESDLS),	Food processing waste
223	biodiesel industrial waste, 344, 345
Epidemiologic ecology, 223	cellulose, 339
Episodic acidification, 282	characteristics, 339
Epitaxial growth/chemical vapor deposition	cheese whey, 344–346
techniques, 155	COD, 339
Equal-area (equivalent) projection, 223	dairy wastewater, 344–346

Food processing waste (cont.)	Germanium, 153
H ₂ production, 342	Germanium semiconductors, 156
H ₂ yield and production rate, 343	GIS application
hydrogen potential, 338, 340-342	mapping
lignocellulosic residues, 338	floodplain, 207, 208
manure, 346–348	land-water interface, 205, 207
molasses, 343, 344	modeling
POME, 344, 345	groundwater, 211
readily biodegradable organics, 339	hydrologic and hydraulic, 213–216
starch generates, 342	spatial, 212
Food waste, 335–337	monitoring
Forcing, 28	coastal environment, 208, 209
Forest, 223	water quality, 209-211
Fossil fuels, 28, 298, 413	Glacier Bay National Park and Preserve,
Fragmented, 224	14–17
Frame, 224	Glacier Bay water, 16
conceptual, 224	Glacier mass balance, 13
Freundlich isotherm equation, 384	Glaciers, 28
Fuels, 298	Glacier Bay National Park and Preserve
1 4015, 270	14–17
	Mendenhall, 12–14
G	protection, 11, 12
Gallium, 153	Global average temperature, 28
Gallium arsenide, 156	Global change, 28
Gallium phosphide wafers, 156	Global climate models (GCM), 28
Gas chromatography, 415, 416	Global warming, 28
Gas production, 416	CO_2 , 22
Gender sequestration, 55	ecosystem, 18
Geographic data, 204	GHG (see Greenhouse gas (GHG))
Geographic distribution, 118, 119	glaciers (see Glaciers)
Geographic information system (GIS), 224	salmon, 17–21
application (see GIS application)	temperature, 4
attribute data, 199	Global warming potential (GWP), 28
buffering, 202	CO_2 , 4
categories, 202, 205	CO ₂ equivalent, 5
data models, 204	definition, 10
feature data elements, 199	global warming, 4
input data, 202	measurement, 10
layers, 199, 202	$N_2O, 6$
network analysis, 203	relative index, 10
overlay function, 202, 203	substance, 4
overlaying process, 202	Glycerol, 344, 345
predictive modeling, 202	Grafting techniques, 377
remote sensing data vs. geographic data, 199	Great Lakes, 224
satellite, 199	Greenhouse effect, 4, 8, 29
simulation modeling, 202	Greenhouse gas (GHG), 29
spatial data analysis, 198	aerosol, 9
spatial data elements, 199	CH ₄ , 6
subsystems, 204	climate change, 3
USEPA programs, 216, 217	CO ₂ , 5, 6, 8
Geologic sequestration, 6	CO ₂ , atmosphere, 10, 11
Geological methods, 211	definitions, 8
Geosmin, 300	fluorinated gases, 7

global per capita carbon emission estimates	mercury, 374
vs. years, 10, 11	primary pollutants, 374
global warming, 4, 8	toxicity, 374
greenhouse effect, 4, 8	Hemicellulose, 386
human activity, 8, 10, 22, 23	Herbicides, 271
infrared radiation, 4	Heuristic method, 224
IPCC, 9, 10	40-hex, 223
Kyoto Protocol, 10	Hierarchical geometric decomposition, 224
land and ocean temperature, 10, 12	Hierarchical model, 225
land use, 8	High GWP gases, 7
$N_2O, 6$	Homoacetogens, 331
natural activities, 8, 23	Human activity, 8, 22, 23
ozone, 7, 8	Human health, 386
RF, 9	Human rights, 40
Grid, 224	H ₂ via the acetic acid (HAc), 416, 417
enhancement, 224	H ₂ via the butyric acid (HBu), 417
hierarchical, 224	Hydraulic parameters, 216
randomization, 224	Hydrobromofluorocarbon (HBFC), 29
triangular (EMAP), 224	Hydrocarbon (HC), 29
Ground truthing, 207	Hydrochlorofluorocarbon (HCFC), 29
Groundwater database, 211	Hydrofluoroolefin (HFO), 30
Groundwater modeling, 211	Hydrogen, 264
Groundwater potential zone, 211	Hydrogen (H ₂) production
Groundwater table, 250	Agricultural and agri-food industrial wastes,
5.50.00 mater 10.50, 200	326
	agro-food waste, 326
H	biological treatment, 325
Habitat, 29, 224	bioreactors types and configuration, 354
Haloadaptation, 423	CH ₄ , 325
Haloanaerobacter chitinovorans sp. nov., 414	characteristics, 325
Haloanaerobacter salinarius sp. nov., 414	hydrolytic and fermentative bacteria, 325
Halophilic archaea, 423	inocula (see Inocula)
Halophilic fermentative bacteria, 423	OFMSW, 338, 339
Halotolerant bacteria, 425	pollution control and economic gain, 325
Handwashing, 39	pretreatments, 327
Handwashing facility, 39	Hydrogen molar yield (HMY), 417, 423, 425
Hard magnetic materials, 395, 396	Hydrologic and hydraulic modeling, 213–216
Hatchery's salmon management, 20, 21	Hydrologic cycle, 30
Hazardous air pollutants (HAP), 285	Hydrologic parameters, 214
Heat shock treatment, 350, 351	Hydrolysis, 329, 330
Heavy metal ions, 406	Hydrolytic and fermentative bacteria, 325
magnetic materials, 395-397	Hydro-morphological indices, 81
magnetic particles (see Magnetic particles)	Hydromorphology, 72
magnetic separation, 403, 404	Hydrosphere, 30
magnetism (see Magnetism)	Hydrothermal, 400, 402, 403, 406
Heavy metals, 386	Hygiene facilities, 40
acidic rain, 374	Hyperspectral imagery, 200
adsorption process (see Adsorption process,	Hypolimnetic aeration system, 270
heavy metals)	Hypolimnetic phosphorus removal
aquatic ecosystem, 374	aluminum, 277
carcinogenicity, 374	coagulants, 275, 277
human health, 374, 375	DAF pilot plant, 275–278
industries, 374	DAFF, 278

Hypolimnetic phosphorus removal (cont.)	sustainable open sources, 347
depth profile, Devils Lake, 273, 274	In situ methods, 402, 403
eutrophic Laurel Lake, Massachusetts, 273	Instrument transformers, 131
flocculation/filtration system, 272	Integrated Atmospheric Deposition Network
pilot DAF system, sand filtration, 275	(IADN), 291
profile, Devils Lake, 275	Integrated circuits (ICs), 117, 153
temperature-depth profile, lake, 274	Integration, 225
USGS, 274 WDNR, 273, 276	Intergovernmental Panel on Climate Change (IPCC), 9, 10, 30
WB100, 273, 270	International Water Association (IWA), 241
	Interpenetrating subsamples, 226
I	Ion exchange, 386, 406
Ice core, 30	Ion exchange resin, 406
Ikonos spectral bands, 206	Iron salts, 272
•	
Implementation field program, 225	Irrigation, 259
Inclusion probability, 225	
Index, 225	T
Index period, 225	J
Index sample, 225	Judgment sample, 226
Indicator, 30, 225	
Indicator development, 225	
Indirect emissions, 30	K
Industrial acid rain, 279	KAMET, 307
Industrial plant, 133	KH, 110
Industrial revolution, 30	Khon Kaen salt-damaged soil, 418, 420
Industrial waste, 325, 327	Kikoo project toilets, 57, 58
Industrial wastewater	Kinetic models, 382, 383
anaerobic digestion, 335	Kinetics, 386
feedstock, CH ₄ and H ₂ production, 335	King Abdulaziz City for Science and
food processing (see Food processing	Technology (KACST), 250
waste)	Klystron tube, 145
food waste, 335-337	Kraft paper, 133
LCFAs, 335	Kriging, 212, 226
OFMSW, 338, 339	Kyoto Protocol, 10
toxic compounds, 335	
waste streams, 335	
wastes rich, 335	L
Industrial wastewater sludge, 349	Lake restoration, 307
Infrared radiation, 30	AquaDAF, 306
Inocula	biotic harvest, 305
animal dung, 349	DAF, 306
compost, 349	phosphate removal, 305
culture pretreatment	reduction/elimination, external pollutant
acid/base treatment, 351	sources, 304
anaerobic mixed, 350	technologies, 306
comparative studies, 352–354	thermal destratification, 305
H ₂ -consuming microorganisms, 350	Lake water neutralization, 306
heat shock treatment, 350, 351	Lakes, 226, 307
methanogen inhibitors, 351, 352	aeration, 305
industrial wastewater sludge, 349	aesthetic quality, 260
OLR, 352	aging, 259
sewage sludge, 347, 349	biological activity, 263–265
soil, 350	
SUII, JJU	biological growth, 259

characteristics, 260–262	problem definition, 43
eutrophication, 304	siting latrine locations, 43
irrigation, 259	soils analysis, 43
nutrient discharge treatment (see Nutrient	solution comparison, 43
discharge treatment)	water table, 43
reduction/elimination, external pollutant	Latrine technologies
sources, 304	composting latrine, 49
remediation, 265–267	designs, 42
reservoirs, 260	EWB-USA (see Engineers Without Borders
storms, 260	USA (EWB-USA))
water, 259, 260	Latrine Design Checklist (see Latrine
water treatment (see Water treatment)	Design Checklist)
wet organic material, 259	pour-flush latrine, 48
Lambert's azimuthal map projection, 226	types, 47
Landscape, 226	VIP, 47
Landscape characterization, 226	Leak detection, 245
Landscape ecology, 226	Leak detection equipment, 242
Land-water categorization, 205	Leakage, see Water losses
Land-water interface, 205	Leakage control program, 250, 253
Land-water mapping, 207	Leakage rates, 246, 250, 252
Langmuir isotherm, 384, 385	Lignin, 386
Lapping process, 156	Lignocellulosic biomass
Larger-sized capacitors, 131	availability, 413
Latrine, 60	extremely halotolerant bacteria, 414
Latrine Case Study: Kikoo, Cameroon	pretreatment, 413, 424
accumulation, water, 55	Lignocellulosic residues
children and women, 55	crystallinity, 326
EWB-USA Yale teams, 55	Liquefaction, 329, 330
gender sequestration, 55	Liquid crystal display (LCD), 157
implementation, 56	Livestock, 103
Kikoo project toilet, 57, 58	Livestock industry, 346, 347
lessons learned, VIP toilet technology	LIWT, 307
build close to home, 58	Long-chain fatty acids (LCFAs), 351, 352
floor sealing, 58	Loose coupling, 214
location and master planning, 58	Loss on ignition (LOI), 418
maintenance requirement, 58	Luminescent materials
•	
ventilated pipe, 58	NSPS, 186, 187
odor, open pit toilets, 55	pretreatment standard, 186
open toilets, 55	US Environmental Regulations, 186
pit toilets, 55	wastewater treatment, 186
traditional toilet, 55	
VIP toilets, 56, 59	
water project, 55	M
Latrine Design Checklist	Magnetic beads, 403
calculations, 43–45	Magnetic biochar, 377, 378
current system, 43	Magnetic biological adsorbents, 377
design drawings, 45, 46	Magnetic field, 395–399, 404, 405, 407
design standards and criteria, 43	Magnetic force, 395, 399, 405–407
education, 47	Magnetic ion exchange resins (MIEX), 403
intended use, 43	Magnetic materials, 395–397
land ownership, 43	categorization, 395
material and cost list, 46	characteristics, 396, 397
operation and maintenance, 46	classification, 396, 398

Magnetic materials (cont.)	Mendenhall Glacier, 12–14
developments, 396	Mercury, 374
properties, 395	Meridian, 226
Magnetic nano-adsorbents, 403	Meridional zones, 227
Magnetic particles	Mesosphere, 31
applications, 400	Metabolic pathways, dark H ₂ fermentation,
environmental applications, 406	333, 334
ex situ methods, 403	Metal contacts, 155
heavy metal removal, 404	Methane (CH ₄), 6–8, 10, 22, 23, 31
in situ methods, 402, 403	Methanogen inhibitors, 351, 352
inorganic coatings, 400, 402	Methanogenesis, 331
iron oxide nanoparticles, 400	Mica paper, 131, 133, 134, 136, 137
materials fabrication, 400	Microbial water quality
prerequisites, 400	agricultural inputs, 103
recovery, 405	categories, 103
synthesis methods, 400, 401	classification, 108
synthesizing, 400	definitions, indicators, 104
Magnetic separation, water purification	evaluation, 102
adsorbent materials, 403	fecal coliform bacterial die-off, 107, 109,
adsorption technology, 403	110
characteristics, 403	feces, warm-blooded animals, 108
ferromagnetic NiFe ₂ O ₄ , 404	index organism concentration, 107
MIEX, 403	indicators, 103–105
recyclable materials, 403	livestock, 103
reusable cycles, 404	monitor, 102, 104
spinel ferrite magnetic materials, 404	organisms, 103
Magnetic sorption technology, 395, 407	pathogens, 107
Magnetism	point sources, 103
antiferromagnetism, 399, 400	recreational water quality, 109
classification of magnetic material, 398	watershed, 102
definition, 397	MicroCorr leak detection equipment, 245
diamagnetism, 398, 399	Microemulsion, 407
ferrimagnetism, 400	Microorganisms, 334
ferromagnetism, 399	Mixed culture anaerobic fermentation (MCF),
paramagnetism, 399	333
physical property, 396	Mixed cultures, 357
types of magnetic behavior, 397	anaerobes, 332
water treatment, 396	anaerobic, 332
Manufacturing equipment, 154	fermentation, 332
Manure, 346–348	H ₂ -consuming microorganisms, 332
Mapping	H ₂ -producing microorganisms, 332
floodplain, 207, 208	vs. pure, 332, 333
land-water interface, 205, 207	strict anaerobes, 332
Map projection, 226	Modeling, 227
Map resolution, 226	Molasses, 343, 344
Map scale, 226	Molded plastic housing, 155
Marginal condition, 226	Monitoring, 227
Marine surface water bodies, 67	Monitoring coastal environment, 208, 209
Mass balance conservation, 88	Monod, 98
Mathematical operations, 208	Mount Carmel Water Treatment Plant, 300
Measurement, 226	Multimedia filtration, 134, 147
Measurement endpoint, 226	Multispectral imagery, 200
Mechanical stability, 407	Multi-temporal change detection approach, 208
•	

Multi-temporal imageries, 208	Northeast Pacific Ocean, 19
Multivariate statistical techniques, 65, 66	Northeast States for Coordinated Air Use
My Environment, 227	Management (NESCAUM), 295
	Northwest Fisheries Science Center
	(NWFSC), 19
N	NO _x budget program, 286
Na ⁺ and Cl ⁻ transport process, 423	NO _x emissions, 286, 296
Nano zerovalent iron (nZVI), 406	Nutrient discharge treatment
Nanomaterials	Actiflo process, 268
characteristics, 400	Alum addition, 269
Nanoparticle, 407	alum injection system, 269
Nanostructure, 377	aluminum, 268
National Academy of Sciences (NAS), 227	Bardenpho processes, 268
National Acid Precipitation Assessment	biological treatment systems, 268
Program (NAPAP), 284	calcium, 268
National Ambient Air Quality Standards	carbon source, 268
(NAAQS), 287	chemical addition, 268
National Atmospheric Deposition Program	chemicals, 268, 269
(NADP), 294	conventional activated sludge treatment
National Electric Signaling Company of the US	plant, 268, 269
General Electric Company, 117	DAF system, 269
Natural activities, 8, 23	DensaDeg process, 268
Natural gas, 6, 31	eutrophication, 266
Natural variability, 31	farming, 269
New source performance standards (NSPS)	Federal Highway Authority, 269
CRT, 187, 188	Lake George Village, NY, 269
electronic crystal subcategory, 189	nitrogenous materials, 266
electronic crystals, 190	phosphorus, 266–268
luminescent material, 186, 187	phosphorus removal, 268
semiconductor, 188	total phosphorus removal, 269
Next Generation Industrial Biotechnology	Nutrients, 260, 264, 265
(NGIB), 414	
Nicotinamide adenine dinucleotide (NAD)/	
NADH, 333	0
Nitrate deposition, 296	Ocean acidification, 31–32
Nitrates, 282	Odor-causing compounds MIB, 300
Nitric acid, 279	Office of Modeling, Monitoring Systems and
Nitrification, 101, 102	Quality Assurance (OMMSQA), 227
Nitrobacter, 101, 102	Oil-filled capacitors, 131, 133, 134, 161
Nitrogen, 264, 282, 287	Oil-filled (wet) transformers, 131, 132
Nitrogen cycle, 31	Oil skimming, 134
Nitrogen oxide and nitrogen dioxide (NO _x), 287	Olive mill waste (OMW), 328, 344
Nitrogen oxides, 31, 292, 297	One-dimensional (1D) model, 93
Nitrogenous materials, 266	On-frame data, 227
Nitrosomonas, 101, 102	Open defecation, 39
Nitrous oxide (N ₂ O), 6–8, 10, 31	Open toilets, 55
Nominal, 227	Operations and maintenance (O&M), 243
Nongovernmental organizations (NGOs), 41,	Organic fraction of municipal solid waste
59, 60	(OFMSW), 338, 339
Non-methane volatile organic compounds	Organic loading rate (OLR), 352, 357
(NMVOCs), 31	Organic waste
Non-oil-filled (dry) transformers, 131	bioH ₂ production, 327, 328
Non-topological data structure, 204	Oxygen (O ₃), 7, 94–96, 264, 270
Non-utilized raw material, 327	Oxygen percent saturation, 100
Normalized Sum of Excursions (nse), 110	Ozone, 7, 8, 32, 297

Ozone "Hole", 7, 32	Pollutants, 295
Ozone-depleting substances (ODS), 7, 9, 32	Pollution prevention, 178
Ozone layer depletion, 7, 32	electrical and electronic component
	industry, 184, 185
	in manufacturing industry, 194
P	Texas Instruments, 190–192
Palm oil mill effluent (POME), 327, 344, 345,	Tri-Star Technologies, Inc., 192–194
349	POME-extracted olive pulp, 344
Panchromatic imagery, 200	Population, 228
Panel mask, 145	Population estimation, 228
Parallel, 227	Population units, 228
Paramagnetism, 399	Potable water, 238, 252
	Pour-flush latrine, 48, 60
Parameter, 227	
Park, 14	Power factor correction (PFC), 131
Particulate matter (PM), 32	Power plants, 292
Passive sensors, 200	Power regulation, 131
Pathogen, 60	Power transformer, 132
Pattern, 227	Precession, 32
Peer review, 227–228	Precipitation, 32
Permanent magnets, 396, 405, 407	Precision, 228
Permeable magnets, 396	Predictive modeling, 202
Phenolic spacers, 133	Pretreatment standards for existing sources
Phosphate removal, 269	(PSES), 187, 189, 190
Phosphorus, 264, 266–268, 305	Pretreatment standards for new sources (PSNS),
Phosphorus removal, 268	186, 187
Photolithographic process, 166	Principal component analysis/factor analysis
Photolithography, 154, 171	(PCA/FA), 65, 110
Photoresist, 156, 166	Printed wiring board (PWB), 171, 176, 177
Photosynthesis, 32, 264	electrical and mechanical testing, 167
pH scale, 281	electroplating, 166
Physicochemical, 32	etch-back process, 166
Physico-chemical indices, 80	manufacturing facilities, 167, 169, 170
Physico-chemical quality elements, 75	patterns, 165
Phytoplankton, 32	photographic tools, 166
Phytoplankton photosynthesis, 100	photolithographic process, 166
Picture tube segment, 147	plating process, 166, 167
Piezoelectric devices, 117	pollution outputs, 167, 168
Piezoelectricity, 117	preparation, 165, 166
Pilot field program, 228	production, 165, 166
Pilot project, 228	SIC 3672, 163
Pit latrine (also simple pit latrine), 60	soldering coating, 166
Pixel, 201	subtractive process, 165
Pixel size, 201	tin-lead layer, 166
Plankton, 263	
	treatment technology and cost, 168, 171
Planning, monitoring, evaluation, and learning	wastewater characterization, 167–170
(PMEL), 49	wastewater treatment processes, 168
Point source discharge limitation	water use, 167
CRT, 187, 188	Probability sample, 228
electronic crystal, 189, 190	Process/equipment modification, 178
semiconductor, 187, 188	Projection, 228
and standards, 178	Protocol, 31
US Environmental Regulations, 186, 187	Pseudo-first-order model, 382
Point sources, 103, 288	Pseudo-second-order model, 382

Public water system (PWS)	Reference condition, 229
accurate meter, 242	Reference site, 229
AWWA/IWA water audit methodology,	Region, 229
241	Regional Haze Rule, 297
challenges, 238	Rehabilitation, 57
components, 241	Relation, 229
evaluation, 241	Remediation, 265
financial and personnel demands, 240	Remote sensing (RS)
intervention process, 241	active scanners, 200
maintaining system infrastructure, 240	aircraft, 200
operation/maintenance, developing	definition, 199
countries, 238	electromagnetic spectrum, 199, 200
performance indicators, 241	electro-optical sensors, 200
repair leaks, 240	environmental satellites, 200
safe drinking water, 240	GIS data source, 198
water audits, 241, 243	hyperspectral imagery, 200
water loss control program, 241	mapping
Publicly Owned Treatment Works (POTWs),	floodplain, 207, 208
186, 187	land-water interface, 205, 207
Pure vs. mixed culture, 332, 333	modeling
Pyrolysis, 407	groundwater, 211
	hydrologic and hydraulic, 213, 214, 216
	spatial, 212
Q	monitoring
QA/QC, 229	coastal environment, 208, 209
Quality assessment, 228	water quality, 209, 210
Quality assurance (QA), 228	multispectral imagery, 200
Quality control (QC), 229	panchromatic imagery, 200
Quality elements, 68	satellite data processing, 201
Quantile, 229	satellite data, water resources application,
Quartz mercury vapor lamps, 139	201
	satellites, 199, 200
	spatial and temporal domain, 198
R	spatial data management, 198
Radiation, 32	USEPA programs, 216, 217
Radiative forcing (RF), 9, 32	Removal
Rainfall-runoff models, 216	heavy metal (see Heavy metal ions)
Rainwater, 281	Renewable energy sources, 298, 299
Randomization, 229	Representativeness, 229
Raster data, 204	Research project, 229
Reactor, 354	Reservoirs, 260
Reaeration, 99, 100	Resource, 230
Receiving-type electron tubes, 141	Resource class, 230
Recovery, 229	Resource domain, 230
Rectifiers, 117	Resource group, 230
Reducing acid rain	Resource unit, 230
ARP, 290, 291	Restoration of Lake Apopka
IADN, 291	COD, 302
individuals, 291	external nutrient source, 302
NO _x emissions, 290	Florida Air and Water Pollution Control
SO_2 emissions, 290, 291	Commission, 302
sulfur emissions, 290 sulfur emissions, 290	FWPCA, 302
vehicles, 291	measures, 303
veincles, 291	measures, 505

Restoration of Lake Apopka (cont.)	Sediment fixation, 272
nutrient inputs, 303	Selectivity, 387
water management district, 303	Selenium, 71
water quality, 303, 304	Semiconductors
Retrieval subsystem, 204	assembly, 153
Reverse micelle, 407	crystal processing, 153
Risk, 230	crystalline materials, 153
Risk assessment, 230	design, 153
Risk characterization, 230	diodes, 153
Risk communication, 230	final layering and cleaning, 153
Risk management, 230	gallium arsenide, 156
Riyadh Region Water and Sanitary Drainage	gallium phosphide wafers, 156
Authority (RRWSDA), 250	ICs, 153
Running waters, 96	LCD, 157
Rural communities, 39	photolithography process, 154
	plastic package components, 155
	point source discharge limitation, 187, 188
S	production process, 153
Safe drinking water, 238	products, 153
Salinity, 95	silicon and germanium, 156
Salmon, 32–33	silicon-based ICs, 154-156
climate, 19	solid electrical devices, 153
climate effects, 20	treatment technology and cost, 158, 160
Hatchery's salmon management, 20, 21	wastewater characterization, 157, 158
life cycle models, 19	wastewater treatment processes, 158, 159
Macaulay Salmon Hatchery, 20, 21	water fabrication, 153
NWFSC, 19	water use, 157
physical environment, 19	Sensor data, 200, 201
protection, 17, 18	Separation, 395
warming climate, 19	Separation factor, 384
Salt-damaged soil, 415, 417, 418, 424,	Sequencing batch reactors (SBR)
see Khon Kaen salt-damaged soil	biofilm-configured, 352
Salt-in strategy, 423	Sewage sludge, 347, 349
Sample, 230	Shadow mask, 145
Sampling strategy, 230	Short-chain volatile fatty acids, 325
Sampling unit, 230–231	SIC code
Sandfloat, 307	carbon-and-graphite products, 121, 122
Sanitary drainage sewers, 247, 249	Silicon, 264
Sanitary drainage system, 251	Silicon-based ICs, 154–156
Sanitation, 60	Silicon semiconductors, 156
EWB-USA (see Engineers Without Borders	Siltation, 265
USA (EWB-USA))	Skimming and contract hauling of sludge, 130
handwashing, 39	Slicing operation, 205
latrines, 39	Small oil-filled capacitor, 133
open defecation, 39	Smaller-sized capacitors, 131
project categories, 50, 51	SO ₂ emissions, 296
and public health, 39	Soft magnetic materials, 395, 396
Satellite data processing, 201	Software packages, 201
Satellite imageries, 201, 209, 211	Soil, 33, 350
Satellites, 199, 200	Soil carbon, 33
Science Advisory Board (SAB), 231	Soil Conservation Service (SCS), 214
Science, technology, engineering, arts, and	Soil salinity, 416
mathematics (STEAM), 22	Soils analysis, 43

Solar energy, 33	Synthetic aperture radar (SAR), 200
Solar radiation, 33	Systematic sample, 232
Sol-gel, 407	
Sol-gel method, 404	
Solid electrical devices, 153	T
Solid waste, 61	Target population, 232
Solution pH, 378, 379	Technical coordinator (TC), 232
Sonochemical, 407	Technical director (TD), 232
Source, 33	Television picture tubes, 141, 144, 146
Spatial data, 204	Temperature, 95, 380, 381
Spatial data elements, 199	Temperature succession, 261
Spatial Data Library System (ESDLS), 216	Terminology services (TS), 232
Spatial interpolation, 212, 213	Terrestrial/biological carbon sequestration, 6
Spatial model, 231	Terrestrial ecosystems, 281
Spatial modeling, 212	Terrestrial radiation, 33
Spatial statistics, 231	Tessellation, 232
Spinel ferrite magnetic materials, 404	Testing water quality data, 65
Standard Gibbs energy, 417, 420	Texas Instruments, 190–192
Standard industrial classification (SIC),	Thermal conversion, 376
119–121, 141, 146, 161, 163, 174,	Thermal decomposition, 400, 407
176, 178, 179, 181	Thermal destratification, 305
Standard temperature and pressure (STP), 416	Thermal detection, 242
Status, 231	Thermal stability, 404, 407
Stöber method, 407	The US Geological Survey (USGS), 274
Storm drainage sewers, 249	Three-dimensional (3D) models, 93
Storm drainage system, 247, 249, 252	3D water quality models, 93
Stratosphere, 33	Tidewater glaciers, 16
Stratospheric ozone, 7	Tier 1 resource, 232
Stratum (strata), 231	Tier 1/Tier 2, 232
Streeter-Phelps equation, 96, 98	Tier 3/Tier 4, 232
Stressor, 231	Time, 204
Stressor indicator, 231	Tin-lead layer, 166
Strict anaerobes, 332	Topography, 214
Subnominal, 231	Total maximum daily loads (TMDLs), 209
Subopopulation, 231	Total phosphorus loading, 265
Subspecies senegalensis, 414	Total quality management (TQM), 232
Sulfate aerosol particles, 281	Toxic pollutants
Sulfur, 287	types and quantities, 158 Toxics Release Inventory (TRI), 171–175, 178,
Sulfur dioxide (SO ₂), 287 Sulfur dioxide pollution, 286	The state of the s
Sulfur emissions, 286	182, 183 Toxic substances, 407
Sulfur trioxide (SO ₃), 287	Transformer core, 133
Summer stratification, 261, 262	Transformers, 131
Superparamagnetic iron oxide nanoparticles,	Transistors, 156
403	Transmitting-type electron tubes, 141, 145
Supervised classification, 205, 207	Trends, 232
Supracell, 307	Tri-Star Technologies, Inc., 192–194
Surface aeration, 270	Trophic levels, 232
Surface fitting, 231	Troposphere, 33
Surface Water Quality Monitoring (SWQM)	Tropospheric ozone, 7
Program, 66, 110	Tungsten filament lamp, 141, 145
Surface waters, 65, 231–232	Tungsten filaments, 139
Sustainable Development Goals (SDGs) 39 50	Two dimensional (2D) model 93

U	Water framework directive (WFD), 68, 110
Ultimate BOD (mg/L of O ₂) (BOD _t), 111	Water loss control program, 240, 241, 243
Universal Transverse Mercator (UTM), 201	Water losses
UTM projection, 233	accurate meter, 242
Universe, 233	acoustic equipment detects, 242
Unsupervised classification, 205, 207	Ar-Riyadh, 243–245
Upflow anaerobic sludge blanket (UASB), 352	billing data discrepancies, 242
US Environmental Protection Agency	chemical detection, 242
(US EPA), 9, 178, 216, 217, 278	cities and countries, 239
US Environmental Regulations, 186, 187	classification, leakage levels, 250
US Geological Survey (USGS), 11	control program, 240, 241, 243
	demographic survey, study areas, 248
	electromagnetic field detection, 242
V	evaluation, 241
Vacuum tube, 117	field study and problems
Value, 233	sanitary drainage sewers, 247
Variable capacitors, 161	storm drainage system, 247, 249
Variance, 233	water distribution network, Ar-Riyadh,
Vector, 233	244, 247
Vector approach, 209	impacts, 252, 253
Vehicles, 291	intervention process, 241
Ventilated improved pit (VIP), 47, 55, 56,	leak detection equipment, 242
58, 59	leakage control program, 253
Ventilated improved pit latrine (VIP), 61	leakage rate variation, pressure, 246
VFA composition, 420, 421	location, 242
Village-driven approach, 40	maintaining system infrastructure, 240
Volatile fatty acids (VFAs), 330, 416	methodology, 241
Volatile organic compounds (VOC), 297	municipal wet infrastructures, 243, 244
Volatile suspended solid (VSS), 416	O&M, 243
Volcanoes, 288	percentage, 246
	pipe stretch, 245, 246
	potable water network, 252
\mathbf{W}	PWS, 241
Wafers, 154–156	quantification, leakage, 247
WASH, 61	repair techniques, 242
Waste generation	replacement, 242
ammonia, 171	routine inspection, sanitary/storm,
CRT, 171, 178, 179, 181	sewers,253
etching and cleaning processes, 171	sanitary drainage sewers, 249
on-site discharge, 171	sanitary drainage system, 251
pollution prevention, 178, 184, 185	storm drainage system, 252
PWBs, 171, 176, 177	thermal detection, 242
semiconductor manufacturing facilities,	tracer gas, 242
171–175	water audits, 241
TRI, 171–175, 178, 182, 183	water supply system, 249, 250
Wastes rich, 335	Water purification, 395, 396, 407
Wastewater, 247	magnetic separation, 403, 404
Wastewater characterization, 122–126, 129	Water quality, 110
Wastewater treatment	calcification, 68, 72, 75
flowchart, 186	chemical/microbiological quality, 66
luminescent material, 186	dissolved oxygen (see Dissolved oxygen)
Water audits, 241, 243	Dynamic Factor Analysis, 66
Water distribution network, 244, 247	environmental concern/activity, 65

EQS directive priority substances, 73	Law of Mass Conservation, 90
Escherichia coli, 66	mass conservation, 89
microbial (see Microbial water quality)	subdivisions, 92–94
module, 89–93	water quality models, 91
multivariate statistical techniques, 65, 66	Water quality monitoring, 209-211
organic and inorganic parameters, 65	Water quality parameters, 209
Standard values, 66–69	Water resources
WQIs (see Water quality indices (WQIs))	decision-making, 198
WSN, 66	GIS (see Geographic information systems
Water quality indices (WQIs), 110	(GIS))
automated sampling networks, 79, 86, 88	RS technology (see Remote sensing (RS))
biological quality elements, 74	Water supply system, 249–251
categories, 72	Water temperature, 261
characteristics, 79, 82	Water treatment
classification, 80	Lake Brazos, Waco, TX, 299, 300
comparative purposes, 76	Lake DeForest in Clarkstown, NY, USA,
concept, 72	304
criteria, 86	Lake Roine, Tampere, Finland, 301, 302
definition, 72	Water, sanitation, and hygiene (WASH)
description, 76, 77	39, 47
development, 75, 87	Water-algae separation, 305
environment, 76	Watershed, 233
factors, 88	Watershed models, 213, 214
NSF, 76	Weather, 3, 34
parameters, 76	Weed Harvest, 271
parameters/indicators, 76, 78	Weights, 233
quality of water, 72	Wetlands, 233
Water Quality Models, 91	Wireless sensor network (WSN), 66
Water quality module formation	Wisconsin Department of Natural Resources
classification, 92, 93	(WDNR), 273, 276
conceptual model, diffusion, 89, 90	World Health Organization (WHO), 379
diffusing material, 92	World Meteorological Organization (WMO), 3
diffusion, 90, 92	
diffusive flux, 91	
Fick's diffusion principle, 89	X
Fick's equation, 92	Xenobiotic, 233

Chapter 9 Agricultural Waste-Derived Adsorbents for Decontamination of Heavy Metals

Soh-Fong Lim, Siti Kartina Abdul Karim, S. N. David Chua, and Bee-Huah Lim

Contents

1	Heavy Metals in the Environment	374
	Agricultural Waste Biomass	
	Parameters Affecting the Adsorption of Heavy Metals	
	3.1 Effect of Solution pH	378
	3.2 Effect of Initial Concentration	379
	3.3 Effect of Adsorbent Dosage	379
	3.4 Effect of Contact Time	
	3.5 Effect of Temperature	380
4	Kinetic Models	382
5	Adsorption Isotherms	383
	ossary	
	ferences	

Abstract The growing concerns on the environment in recent years have influenced the usage of renewable sources as alternative materials to create a platform for the development of new technology with possible economic potential. Adsorbents derived from agricultural wastes have hidden economic values which could be benefited by transforming the agricultural wastes into valuable and useful products. Numerous agricultural wastes such as skins/peels, cores, pits, leaves, brunches, and pericarp are being produced in plantation and processing industries. The agricultural

S.-F. Lim (⋈) · S. N. D. Chua

Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia e-mail: sflim@unimas.my; csndavid@unimas.my

S. K. A. Karim

Faculty of Applied Sciences, Universiti Teknologi MARA, Kota Samarahan, Sarawak, Malavsia

e-mail: sitik094@uitm.edu.my

B.-H. Lim

Fuel Cell Institute, Universiti Kebangsuan, Malaysia, Bangl, Selangor Darul Ehsan, Malaysia e-mail: beehuah@ukm.edu.my

© Springer Nature Switzerland AG 2021

L. K. Wang, M.-H. S. Wang, Y.-T. Hung, N. K. Shammas (eds.), *Integrated Natural Resources Management*, Handbook of Environmental Engineering 20, https://doi.org/10.1007/978-3-030-55172-8_9

372 S.-F. Lim et al.

wastes have exhibited the potential usage as an adsorbent to remove contaminants from water environment which conserve the natural environment and resources mainly in the ecology system sustainably, for the reason that this utilization converts the agricultural wastes into value-added product and at the same time decontaminate polluted water source. This application on the utilization of agricultural wastes is not only good for a sustainable environment but is also suitable for rural economic development, meaning possible increases in profit for farmers and the agricultural industry. This chapter provides insight on some findings on heavy metal removal by adsorbents produced from agricultural wastes. The chapter also discusses the situation of the heavy metals in the environment, parameters affecting the adsorption process of the heavy metals, kinetic models, and adsorption isotherms that are associated with the agricultural waste-derived adsorbents. The development of the adsorbents from agricultural waste biomass and the prospect of developing hybrid adsorbent and magnetic adsorbent have attracted many researchers worldwide in performing research work on the application to water and wastewater treatment.

Keywords Agriculture · Agricultural wastes · Adsorbents · Heavy metals · Kinetics · Adsorption isotherm · Equilibrium time · Adsorbent dosage · Solution pH · Kinetic model

Nomenclature

 α Initial adsorption rate in mg/g·min unit β Desorption constant in g/mg unit

 ε Polanyi potential Al Aluminium As Arsenic As(III) Arsenite As(V) Arsenate

B(II) Boron(II) cation Cd Cadmium

Cd(II), Cd²⁺ Cadmium(II) cation

 $Cd(OH)^+$ Cadmium hydroxide ion in its +1 oxidation state C_0 Initial concentration of the solution in mg/L unit

 C_c Equilibrium concentration in mg/L unit C_i Initial concentration in mg/L unit

Co Cobalt

Co(II) Cobalt (II) ion

Co-Fe-MBC Cobalt-iron-magnetic biochar

Co(NO₃)₂ Cobaltous nitrate

Cu Copper

Cu(II) Copper (II) cation
Cr Chromium
Cr(III) Chromium (III)