Faculty of Engineering

DESIGN AND IMPLEMENTATION OF SMART HOME CONTROL SYSTEM BASED ON INTERNET OF THINGS

Liu Wen Yee

Bachelor of Engineering (Hons)
Electrical and Electronics Engineering

UNIVERSITI MALAYSIA SARAWAK

Grade: \qquad
Please tick $(\sqrt{ })$
Final Year Project Report
Masters
PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the \qquad .2019.

Student's Declaration:

I
LIU WEN YEE, 54706 , FACUITY OF ENGINEERING \qquad
(PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled DESIGN AND IMPLEMENTATION OF SMART HOME CONTRUL SYSTEM BASED ON INTERNET of THINGS \qquad is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.
12.06 .2019

Date submitted

$$
\frac{\text { LIU WEN YEE }(54706)}{\text { Name of the student (Matric No.) }}
$$

Supervisor's Declaration:

Or YONIS M yONIS BUSWIG \qquad (SUPERVISOR'S NAME) hereby certifies that the work entitled DESIGN AND IMPIEMENTATIUN OF SMART HUME CONTROL SYSTEM BASED ON \qquad -(TITLE) was prepared by the above named student, and was submitted to the "FACULTY" as a * partial/fult fulfillment for the conferment of BACHELOROF ENGINEERING, (HONS) ELETRRIAL AND EEETRONICS ENGMEERNG (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by:

Date: \qquad $12 / 6 / 819$ \qquad

I declare that Project/Thesis is classified as (Please tick ($\sqrt{ }$)):
\square CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* \square RESTRICTED
(Contains restricted information as specified by the organisation where research was done)*

\square OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database. '
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature:

Supervisor signature:

Current Address:
DEPARTMENT OF ELECTRICAL AND ELELTRONICS ENGINEERING, FACLLTY OF ENGINEERING, UNIVERSITI MALAYSIA SARAWAK, 94300 KUTA SAMARAHAN, SARAWAK.

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.
[The instrument is duly prepared by The Centre for Academic Information Services]

UNIVERSITI MALAYSIA SARAWAK

Grade: \qquad
Please tick ($\sqrt{ }$)
Final Year Project Report
Masters
PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the \qquad day of. \qquad 2019.

Student's Declaration:

I .
(PLEASE INDICATE STUDENT'S NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled
is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Date submitted
Name of the student (Matric No.)

Supervisor's Declaration:

I-
(SUPERVISOR'S NAME) hereby certifies that
the work entitled -(TITLE)
was prepared by the above named student, and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of \qquad (PLEASE INDICATE THE DEGREE), and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: \qquad Date: \qquad
(Name of the supervisor)

I declare that Project/Thesis is classified as (Please tick $(\sqrt{ })$):CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature: \qquad
(Date)

Supervisor signature: \qquad
(Date)

Current Address:

Notes: * If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.
[The instrument is duly prepared by The Centre for Academic Information Services]

DESIGN AND IMPLEMENTATION OF SMART HOME CONTROL SYSTEM BASED ON INTERNET OF THINGS

LIU WEN YEE

A final year project report submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering (Hons) Electrical and Electronics Engineering

Faculty of Engineering
Universiti Malaysia Sarawak

To my beloved family and friends.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Yonis M. Yonis Buswig for offering this project title (Design and Implementation of Smart Home Control System Based on Internet of Things) to me. When carrying out my project, Dr Yonis is a great source of support and guidance where he taught me on how to handle a project effectively and how to deal with problems. This project could not be completed without his supervision and inspirations.

Besides, I would also like to express my gratitude towards my family members for their infinite love, support and encouragement in completing my undergraduate studies in UNIMAS. Last but not least, special thanks to my fellow coursemates who are willingly helped me out with their abilities. I could not express how much gratitude towards those who helped me but sincerely wish all of them best of everything now and then.

ABSTRACT

This project describes on the design and implementation of smart home control system which can helps to save energy and reduce power wastage. This control system is based on four different sensors which including the motion sensor, smoke sensor, ultrasonic sensor, and temperature and humidity sensor. Arduino MEGA2560 board acts as the main control unit and ESP8266 Wi-Fi module as a communication protocol. The users can control the home systems easily by using the sensors, such as controlling the lights, door and window. These systems are easily controlled and can be monitored via user-friendly interface for smartphones. IoT based home automation system is applicable in this project, whereby the home automation systems can be monitored through mobile phones with Internet connections. Besides, an addition feature that enhances the protection of house is added to the system. Mobile applications such as ThingView and Virtuino are installed in the mobile phones to allow the users to monitor the home appliances as well as the security and safety of the house. An alerting message is sent to the smartphone when fire accident or burglar incident happens. This message alerts the users and thus prevent the house from danger. The main advantage of this smart home control system is that it is a sensible, secure and easily configurable system that provides the users with a smart and neat home automation. Thus, all the objectives are achieved.

ABSTRAK

Projek ini menerangkan reka bentuk dan pelaksanaan sistem kawalan rumah pintar yang dapat membantu untuk menjimatkan tenaga dan mengurangkan pembaziran kuasa elektrik. Sistem kawalan adalah berdasarkan kepada empat sensor yang berbeza, iaitu sensor gerakan, sensor asap, sensor ultrasonik, dan juga suhu dan kelembapan sensor. Papan Arduino MEGA2560 bertindak sebagai unit kawalan utama dan modul ESP8266 Wi-Fi sebagai protokol komunikasi. Para pengguna boleh mengawal sistem rumah dengan mudah dengan menggunakan sensor, seperti mengawal lampu, pintu dan tingkap. Sistem ini mudah dikawal dan boleh dipantau melalui aplikasi dalam telefon pintar. Sistem automasi rumah berasaskan teknologi IoT dibentuk dalam projek ini, di mana sistem automasi rumah boleh dipantau melalui telefon mudah alih dengan sambungan Internet. Selain itu, ciri-ciri tambahan yang meningkatkan perlindungan rumah ditambah ke dalam system ini. Aplikasi mudah alih seperti ThingView dan Virtuino dipasang dalam telefon mudah alih untuk membolehkan pengguna memantau peralatan rumah serta keselamatan rumah. Mesej amaran dihantar kepada telefon pintar apabila kemalangan kebakaran atau kejadian pencurian berlaku. Mesej ini mengawasi pengguna dan mengelakkan rumah daripada bahaya. Kelebihan utama sistem kawalan rumah pintar ini adalah ia adalah satu sistem yang waras, selamat dan mudah dikonfigurasikan yang memberikan pengguna dengan automasi rumah pintar dan kemas. Oleh itu, semua objektif telah dicapai.

TABLE OF CONTENTS

Page
Acknowledgement i
Abstract ii
Abstrak iii
Table of Contents iv
List of Tables vii
List of Figures ix
List of Symbols xii
List of Abbreviations xiii
Chapter 1 INTRODUCTION
1.1 Project Background 1
1.2 Problem Statement 4
1.3 Project Objectives 4
1.4 Project Scopes 5
Chapter 2 LITERATURE REVIEW
2.1 Technology Development 6
2.2 Arduino Control Unit (Arduino MEGA) 8
2.3 Passive Infra-Red (PIR) Motion Sensor 10
2.4 HC-SR04 Ultrasonic Sensor 11
2.5 SG-90 Servo Motor 13
2.6 MQ-2 Smoke Detector Sensor 14
2.7 DHT11 Temperature and Humidity Sensor 16
2.8 1 Channel 5V Relay Module 18
2.9 ESP8266 Wi-Fi Module 19
2.10 Research Gap 21
2.11 Summary 23
Chapter 3 METHODOLOGY
3.1 Introduction 24
3.2 Project Plan 24
3.3 Block Diagram 28
3.4 Schematic Control Diagram 29
3.5 Software Used 35
3.6 Hardware Connections 38
3.7 Schematic Diagram of Smart Home Control System 46
3.8 Connection between ESP8266 Wi-Fi Module to ThingSpeak 47
3.9 Summary 49
Chapter 4 RESULT AND DISCUSSION
4.1 Smart Home Control System 50
4.1.1 Door System 51
4.1.2 Window System 53
4.1.3 Security System 54
4.1.4 Lighting System 56
4.1.5 Fire Alarm System 57
4.1.6 Fresh Air Automation System 59
4.2 ThingSpeak 61
4.3 ThingView 67
4.4 Virtuino 68
4.5 Measurement of Energy Consumption 70
4.6 Measurement of Electricity Billing 74
4.7 Simple Payback Period (SPP) 76
Chapter 5 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion 77
5.2 Recommendations 78
REFERENCES 79
APPENDIX A 84
APPENDIX B 90
APPENDIX C 92

LIST OF TABLES

Table Page
2.2 Specifications of Arduino MEGA 9
2.4 Specifications of HC-SR04 Ultrasonic Sensor 12
2.5 Specifications of SG-90 Servo Motor 13
2.6 Specifications of MQ-2 Smoke Detector Sensor 14
2.7 Specifications of DHT11 Temperature and Humidity Sensor 17
2.8 Specifications of 1 Channel 5V Relay Module 18
2.9 Specifications of ESP8266 Wi-Fi Module 19
2.10 Summarize for Researches 21
3.6.1 Pins Connection for Door Control System 38
3.6.2 Pins Connection for Controlling the Window 39
3.6.3 Pins Connection for Home Security System 40
3.6.4 Pins Connection for Lighting System 41
3.6.5 Pins Connection for Fire Alarm System 42
3.6.6 Pins Connection for Fresh Air Automation System 44
3.6.7 Pins Connection for ESP8266 Wi-Fi Module 45
3.8 Commands to be Programmed to ESP8266 48
4.1.1 Status of Door for Different Cases 52
4.1.2 Status of Window for Different Cases 54
4.1.3 Cases for Security System 55
4.1.4 Status of Light for Different Cases 57
4.1.5 Cases for Alarm System 59
4.1.6 Status of Fan for Different Cases 60
4.2.1
Sensor Data Stored in ThingSpeak for Security System at certain time 62
4.2.2
Sensor Data Stored in ThingSpeak for Fire Alarm System 64 at certain time
4.2.3
Sensor Data Stored in ThingSpeak for Fresh Air Automation 65
System at certain time
4.2.4
Sensor Data Stored in ThingSpeak for Lighting System at certain time
4.5.1 Total Electricity Consumption of a House without Sensors 72
4.5.2 Total Electricity Consumption of Smart House with Sensors 73
4.6 Pricing and Tariff for Domestic Category 74

LIST OF FIGURES

Figure

Page
1.1 Statistics for Electricity Consumption in Malaysia from the 2 year 2014 to 2016
2.2 Arduino MEGA 10
2.3 PIR Motion Sensor 11
2.4 HC-SR04 Ultrasonic Sensor 12
2.5 SG-90 Servo Motor 14
2.6.1 MQ-2 Smoke Detector Sensor 16
2.6.2 Graph of Resistivity Against Concentration of Gases 16
2.7 DHT11 Temperature and Humidity Sensor 17
2.8 1 Channel 5V Relay Module 19
2.9 ESP8266 Wi-Fi Module 20
3.2 Flow Chart for Smart Home Control System 24
3.3 Block Diagram for Smart Home Control System 28
3.4.1 Schematic Control Diagram for Smart Home Control System 29
3.4.2 Door Control System using Sensor 30
3.4.3 Lighting System using Sensor 31
3.4.4 Fresh Air Automation System 32
3.4.5 Windows Control System 32
3.4.6 Fire Alarm System 33
3.4.7 Security System 34
3.5.1 Icon for Fritzing 35
3.5.2 Icon for Proteus 8 Professional 35
3.5.3 Icon for Arduino IDE 36
3.5.4 Icon for ThingSpeak 36
3.5.5 Icon for ThingView Mobile App 37
3.5.6 Icon for Virtuino Mobile App 37
3.6.1 Connection Diagram for Door Control System 38
3.6.2 Connection Diagram for Window Control System 39
3.6.3 Connection Diagram for Home Security System 40
3.6.4 Connection Diagram for Lighting Control System 41
3.6.5 Connection Diagram for Fire Alarm System 42
3.6.6 Connection Diagram for Fresh Air Automation System 43
3.6.7 Connection Diagram for ESP8266 Wi-Fi Module to Arduino MegaSchematic Diagram of Smart Home Control System Using
3.7.1 Fritzing
3.7.2
Schematic Diagram of Smart Home Control System Using
Proteus 8 Professional
4.1a External View of Smart Home 50
4.1b Internal View of Smart Home 51
4.1.1.1 Door is Closed When No Movement is Sensed 51
4.1.1.2 Door Opened When There is a Movement 52
4.1.2.1 Closed Window 53
4.1.2.2 Window Opened When the Sensor Detected Movement 53
4.1.3 Buzzer Buzzed When Motion is Detected 55
4.1.4.1
Led Lighted Up When the Presence of Human or Movement is Detected
4.1.4.2 Led Automatically Turned Off When No Motion is Detected 56
4.1.5.1 The Kitchen is in Safe Condition 58
4.1.5.2 The kitchen is Unsafe Whereby Smoke is Detected 58
4.1.6.1 Dc Fan Turned On When Temperature is High 60
4.1.6.2 Status for Temperature and Fan in the Room 60
4.2.1 Graph for Security System in ThingSpeak Website 62
4.2.2 Graph for Fire Alarm System in ThingSpeak Website 63
4.2.3
Graph for Fresh Air Automation System in ThingSpeak4.2.4 Graph for Lighting System in ThingSpeak Website66
4.3.1
Monitor Screen of Smart Home Control System Using ThingViewMonitoring Screen of Smart Home Control System Using4.4.1Virtuino
4.4.2 Alarm Notification in Virtuino 69Total Electricity Consumption in a Month for Normal House4.5and Smart House
4.6 Cost of Monthly Electricity for Normal House and Smart House 75

LIST OF SYMBOLS

A	- Amperes
B	- Bytes
cm	- Centimeter
Hz	- Hertz
kg	- Kilograms
ktoe	- Kilotonne of Oil Equivalent
kWh	- Kilowatts Hour
ppm	- Parts Per Million
R	- Resistance
R_{o}	- Resistance at 100ppm in clean air
R_{s}	- Resistance of sensor
s	- Seconds
V	- Volts
W	- Watts
Ω	- Ohms
\circ	- Degree
${ }^{\circ} \mathrm{C}$	- Degree Celsius
$\%$	- Percent
+ve	- Positive
${ }^{2}$	- ve

LIST OF ABBREVIATIONS

A_{0}	- Analog Signal
AC	- Alternating Current
AT	- Attention
CAD	- Computer-Aided Design
CH_{4}	- Methane
CH_PD	- Chip Power-Down
CFL	- Compact Fluorescent Lamp
CO	- Carbon Monoxide
COM	- Common
DC	- Direct Current
D_{0}	- Digital Output
D0	- Data Pin 0
D1	- Data Pin 1
D2	- Data Pin 2
D3	- Data Pin 3
D4	- Data Pin 4
D5	- Data Pin 5
D6	- Data Pin 6
D7	- Data Pin 7
E	- Enable
GND	- Ground
GPIO	- General Purpose Input/Output
H_{2}	- Hydrogen
HTTP	- HyperText Transfer Protocol
I/O	- Input / Output
IC	- Integrated Circuit
ICSP	- In-Circuit Serial Programming
IDE	- Integrated Development Environment
IN	- Input Signal

IoT	- Internet of Things
IR	- Infra-Red
LabVIEW	- Laboratory Virtual Instrument Engineering Workbench
LCD	- Liquid Crystal Display
LDR	- Light Dependent Resistor
LED	- Light Emitted Diode
LED+	- LED Anode (Source +5V)
LED-	- LED Cathode (Ground)
LPG	- Liquefied Petroleum Gas
MATLAB	- Matrix Laboratory
MEIH	- Malaysia Energy Information Hub
MQTT	- Message Queuing Telemetry Transport
NC	- Normally Closed
NO	- Normally Open
Node MCU	- Node Micro-Controller Unit
NTC	- Negative Temperature Coefficient
PIR	- Passive Infra-Red
PWM	- Pulse Width Modulation
RH	- Relative Humidity
RPM	- Revolutions Per Minute
RS	- Register Select
RST	- Reset
RXD	- Receive Data
R/W	- Read/Write
SPDT	- Single Pole Double Throw
SPP	- Single Payback Period
SRAM	- Static Random-Access Memory
Trig Pin	- Trigger Pin
TXD	- Transmit Data
USART	- Universal Synchronous/ Asynchronous Receiver/ Transmitter
USB	- Universal Serial Bus

V_{cc}	-
V_{E}	-
Voltage Common Collector	
V_{ss}	-
Wi-Fi	$-\quad$ Wiregative Supply (Ground)

CHAPTER I

INTRODUCTION

1.1 Project Background

In recent years, Malaysia's power electricity consumption is increasing annually. Based on the statistics as shown in Figure 1.1 from Suruhanjaya Tenaga, Malaysia Energy Information Hub (MEIH) [1], the total electricity consumption increased significantly from the year 2014 to 2016. From the statistics, home power consumption contributes to part of the energy consumption. There are few factors causing the high consumption of power electricity in residential. One of the main factors is the lighting systems. This is due to manual switching and human carelessness whereby people forget to switch off the lights when they are away from home. Thus, resulting in the total electricity consumption increases and yet a lot of energy is being wasted.

