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ABSTRACT 

 

One of the valve nonlinearities is the existence of control valve stiction. Stiction is 

a condition where the valve stem resists movement and does not give the required 

response to the output signal from the controller. Control valve stiction has adverse 

effects to the control loop performance of a process as it introduces variability in the 

process parameters. This can lead to deterioration in product quality and economic 

loss. As a result, this project puts an emphasis on the stiction detection methods in the 

research areas of process control. Therefore, the main objective of the project is to 

develop an OE-based Brown-Forsythe test algorithm to effectively detect the presence 

of control valve stiction.  

In this study, the proposed OE model is developed using System Identification in 

MATLAB, where it is used to simulate the process output (PV). Residual distribution 

is generated from the difference between actual and simulated PV. Brown-Forsythe 

test statistics, H(R) are calculated using Kruskal-Wallis (non-parametric ANOVA) test 

and hypothesis testing is performed. Stiction is then declared if the values exceed the 

threshold value, X2, where the null hypothesis is rejected at 5% significance level. 

In order to investigate the effectiveness of the proposed method, two case studies 

are considered whereby step change and PRBS input signals are introduced for each 

case study, respectively. Case Study 1 studies three strengths of stiction, which are no 

stiction (Base Case 1), weak stiction (Case 1.1) and strong stiction (Case 1.2), while 

Case Study 2 investigates the presence of several sources of process nonlinearities in 

control loops, which include well-tuned controller (Base Case 2), tight-tuned 

controller (Case 2.1), presence of external disturbances (Case 2.2) and presence of 

stiction (Case 2.3).  

As a result, the proposed method is able to successfully detect and distinguish 

presence of stiction for both types of inputs at 95% confidence level. A sensitivity 

analysis is also conducted for process gain, K and time constant, τ model parameters, 

whereby the method is considered satisfactorily robust as it is shown to be insensitive 

to ±10% of changes in the model parameters. The method is also found to be applicable 

to successfully detect stiction within industrial control loops. Lastly, it is compared 

with other published stiction detection methods, where it performs as efficient and 

even better than other methods. 
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ABSTRAK 

 

Satu bentuk ketidaklinearan dalam injap adalah kewujudan geseran static pada 

injap kawalan. Sekatan adalah keadaan di mana batang injap menentang pergerakan 

dan tidak memberi respons kepada isyarat yang dikeluarkan daripada pengawal. Stik 

injap kawalan mempunyai kesan buruk kepada prestasi kawalan suatu proses kerana 

ia memperkenalkan kebolehubahan dalam parameter proses. Ini boleh mengakibatkan 

kemerosotan kualiti produk dan kerugian ekonomi. Akibatnya, projek ini memberikan 

penekanan kepada kaedah mengesan geseran static pada injap kawalan dalam bidang 

penyelidikan kawalan proses. Oleh itu, matlamat utama projek ini adalah untuk 

menghasilkan satu algoritma OE-based Brown Forsythe test untuk mengesan geseran 

static pada injap kawalan dengan berkesan. 

Dalam kajian ini, model OE yang dicadangkan dihasilkan menggunakan System 

Identification dalam MATLAB, di mana ia digunakan untuk mensimulasikan 

pembolehubah yang dikawal (PV). Residual distribution dihasilkan daripada 

perbezaan antara PV sebenar dan simulasi. Ujian statistik Brown-Forsythe, H(R) 

dihintung menggunakan ujian Kruskal-Wallis (ujian non-parametrik ANOVA) dan 

ujian hipotesis dilakukan. Geseran statik kemudian diisytiharkan jika nilai melebihi 

nilai ambang, X2, di mana hipotesis null ditolak pada tahap signifikan 5%. 

Untuk mengkaji keberkesanan kaedah, dua kajian kes dijalankan, di mana input 

perubahan langkah (step change) dan PRBS dijalankan untuk setiap kajian kes. Kajian 

1es 1 mengkaji tiga kekuatan geseran static seperti, no stiction  (Kes Asas 1), weak 

stiction (Kes 1.1) dan strong stiction (Kes 1.2), manakala Kajian Kes 2 menyiasat 

kehadiran ketidaklinearan selain daripada geseran static pada process system, iaitu 

termasuk well-tuned controller (Base Case 2), tightly-tuned controller (Kes 2.1), 

presence of external disturbances (Kes 2.2) dan presence of stiction (Kes 2.3). 

Keseluruhannya, kaedah ini dapat mengesan dan membezakan kehadiran geseran 

statik untuk kedua-dua jenis input. Analisis kepekaan juga dilakukan untuk 

mendapatkan process gain, K dan time constant, τ, di mana kaedah dikatakan kurang 

sensitif kepada ± 10% perubahan dalam parameter model. Kaedah ini juga boleh 

digunakan untuk mengesan geseran statik dalam gelung kawalan perindustrian. Akhir 

sekali, kaedah ini juga dibandingkan dengan kaedah lain yang telah diterbitkan, di 

mana kaedah ini berfungsi dengan cekap dan lebih baik daripada kaedah-kaedah lain. 
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CHAPTER 1 

 

 

 INTRODUCTION 

 

 

1.1 Introduction 

Highly integrated processing plants, such as crude oil refineries, power plants, and 

petrochemical plants have included thousands upon thousands of control loops.  

Subsequently, integrated operations in manufacturing plants have been increasingly 

complex and challenging to manage as technology advances rapidly in order to achieve 

desired product quality while also maintain a safe environment. Therefore, monitoring 

of control loop and its assessment are imperative in ensuring the high product quality 

as well as improving the profitability of the plant. 

  Control valve is a final control element in a control loop that greatly influences the 

stability of a process control system as compared to other control elements. For the 

past decade, control valve has been persistently the most common problem in the 

processing industries (Zakharov & Jämsä-Jounela, Robust oscillation detection index 

and characterization of oscillating signals for valve stiction detection, 2014). A 

comprehensive study on the fault analysis of an industrial paperboard machine 

indicates that valve nonlinearities comprises almost 10% of the faults present in its 

yearly operation (Jämsä-Jounela, et al., 2013). When automated, especially, the control 

valve is most likely the first to experience accelerated wear and tear, which could cause 

variations in the product quality of a plant.  

 According to Jelali and Huang (2010), nonlinearities in control valve loops are 

primarily caused by valve stiction. Fluctuations typically caused by valve stiction 

increase the variability in product quality, accelerate equipment wear, move operating 

conditions away from optimality, and generally cause excessive or unnecessary energy 

and raw materials consumption (Bacci di Capaci, Scali, & Pannocchia, 2015). Despite 

gaining numerous attention in the engineering research field, the diagnosis of 

nonlinearities for specific fault is still open for more development and improvement.  
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1.2 Problem Statement 

Process disturbances are generally oscillatory fluctuations and inconsistent 

variations that continuously and intermittently stop and reverse its direction. This 

causes the control valve to mimic the exact pattern of reversing and stopping. 

Whenever this situation happens, it accelerates the malfunction of the control valve. 

Subsequently, nonlinearities in control valve system becomes a problem because the 

variability of the loop is no longer stable (Jury, 2008), and exhibits a higher tendency 

to go beyond the allowable upper and lower ranges.  

Control valve nonlinearities are usually due to friction, backlash, relay dead zone, 

hysteresis and fluid turbulence. Among these many types of nonlinearities, valve 

stiction continues to become one of the major problems in the plant (Jelali & Huang, 

2010). The oscillation, often induced by the stiction, is the main cause of poor 

performance in control system, in which it not only produces limit cycles, but also 

affects the productivity and economic performance of the plant.  

When stiction in control valves go undetected and ignored for an extended period 

of time, major disruptions within the plant operations could happen which may worsen 

to a sudden plant shutdown for valve maintenance. This can result in a large loss of 

profit and production time, as valve maintenance can take about 6 months to 3 years 

(Subbaraj & Kannapiran, 2014). Therefore, immediate detection of stiction in the early 

phase is very important to prevent the oscillations from propagating and disturbing 

other process control loops. Additionally, modelling and detection of valve stiction in 

control loops are imperative as stiction distinctly contributes to process variability 

which then adversely causes an impact on the profits of the plant. 

In this project, the modelling of open loop system is accomplished using the  

Output-Error (OE) model in System Identification. OE model is chosen as it gives the 

highest best-fit estimation with lower orders on a fault-free open loop data compared 

to ARX, ARMAX and BJ model in System Identification. 

Detection of stiction can be performed visually as it displays a distinct oscillatory 

pattern, but it is infeasible to be implemented in a large process plants with hundreds 

and thousands of control loops. Consequently, quantitative methods like statistical 

methods are much more preferable to detect the presence of stiction by analyzing its 

mathematical characteristics.  
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There are numerous researches conducted on primarily model-based, shape-based 

and frequency-domain based stiction detection techniques. However, very few stiction 

detection methods focus on statistical analysis – particularly statistical hypothesis test. 

Subsequently, the detection technique of the modelled valve stiction is executed 

through a developed statistical-based algorithm. Statistical hypothesis testing detection 

method provides a substantial, quantitative result, which can also be potentially useful 

for future researches in quantification of stiction. In this paper, a combination of model 

and statistical-based approach is proposed, whereby the model used is the Output-Error 

model while Brown-Forsythe test is chosen as the statistical method.  

This combined method of model and statistical-based is also useful because it is 

non-intrusive, which means the whole plant does not need to be shut down in order to 

detect stiction in control valve. This is done whereby the proposed method analyzes 

the presence of stiction though previous historical process data and does not affect the 

operation of the processes.  

 

1.3 Scope and Objectives 

The study of valve stiction encompasses four main fields, which are (1) Modelling, 

(2) Detection, (3) Quantification, and (4) Compensation. This project mainly 

emphasizes on developing an effective algorithm for the detection of control valve 

stiction in control system loops. The model proposed for the identification of valve 

stiction is the polynomial Output-Error (OE) model.  

This project emphasizes on analyzing two case studies surrounding the Single-

Input-Single-Output (SISO) feedback control systems. These case studies are adapted 

from a research journal by Zabiri and Ramasamy (2009). The case studies focus on the 

different situations that typically occur in a process control system. The case studies 

are stated as follows. 

Case Study 1: Examines an ideal condition (no process nonlinearities exists, 

except for valve stiction) where only stiction of differing strengths exist in the 

system. 

Objective: To detect the presence of stiction despite differing strengths. 

1.1) No stiction (Base Case 1) 

1.2) Weak stiction (Case 1.1) 

1.3) Strong stiction (Case 1.2) 
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Case Study 2: Examines a general condition where other process nonlinearities 

including stiction exist in the system. 

Objective: To distinguish the presence of stiction from other sources of process 

nonlinearities. 

2.1) Well-tuned controller (Base Case 2) 

 2.2) Tight-tuned controller (Case 2.1) 

 2.3) External disturbances (Case 2.2) 

 2.4) Presence of valve stiction (Case 2.3) 

The models used in the case studies are continuous process model (Eq. 1.1) for 

Case Study 1 and discrete process model (Eq 1.2) for Case Study 2. The models used 

in the abovementioned case studies are as shown in Eq 1.1 and Eq 1.2 respectively.  

Case Study 1: 𝐺𝑝(𝑠) =  
1

0.2𝑠 + 1
 (1.1) 

Case Study 2: 𝐺𝑝(𝑧−1) =  
𝑧−2 × (1.45𝑧 − 1)

𝑧 − 0.8
 (1.2) 

The objectives of the project are as follows: 

1) To develop OE models for stiction detection analysis. 

2) To develop an effective OE-based Brown-Forsythe test algorithm in detecting 

and assessing the presence of control valve stiction in a closed-loop system. 

3) To assess the effectiveness of the algorithm proposed towards changes in 

model parameters through sensitivity analysis. 

4) To validate the effectiveness of the statistical algorithm developed in actual 

industrial data. 

 

1.4 Overview of Thesis 

This thesis is organized according to the following chapters: 

Chapter 2: Literature Review 

This chapter includes the types of nonlinearities in control system, definition, 

phenomenon, and effects of control valve stiction and modelling of control valve 

stiction. The chapter also discusses about past researches on stiction detection methods 

in control loops, as well as the theories of Output-Error model for System 

Identification, Brown-Forsythe test and Kruskal-Wallis tests. 
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Chapter 3: Methodology 

This chapter covers the detailed steps applied to accomplish the objectives of this 

research. The important steps are Case Study Development, Output Error Model 

developed through System Identification, OE-based Stiction Detection Algorithm and 

Sensitivity Analysis.  

Chapter 4: Results and Discussions 

This chapter presents the results from the two case studies, whereby the algorithm runs 

for both step change and PRBS input signals separately. The results include visual plot 

of controller output (OP) and controller variable (PV), the residual distribution plots, 

the histogram of the residual distribution vectors, the Brown-Forsythe test statistics 

computation (H(R)), and lastly the results of the hypothesis testing. Moreover, the 

results of the sensitivity analysis of the algorithm are also discussed. Lastly, to validate 

the effectiveness of the algorithm, testing results of 5 loops from verified industrial 

data are presented and analyzed further. 

Chapter 5: Conclusion and Recommendations 

This chapter summarizes all the findings mainly from the previous chapter and 

concludes the overall effectiveness of the proposed OE-based Brown-Forsythe method 

in detecting control valve stiction in SISO control loops. The chapter also includes 

some constructive recommendation that could help future researches on this field. 

 

1.5 Summary 

This chapter introduces briefly on the problems in process control system of 

complex process plants. It also describes the significance of developing an effective 

technique or algorithm to detect and assess control valve stiction within a process to 

avoid loss of profit and product quality. In this project, an OE-based Brown-Forsythe 

test algorithm is proposed to diagnose the presence of control valve stiction. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

This chapter provides a brief understanding of process nonlinearities in control 

system, explanations related to control valve stiction, its effect and phenomenon, as 

well as the recurring models and stiction detection methods. It also includes the theory 

of Output-Error (OE) model for System Identification, Brown-Forsythe and Kruskal-

Wallis tests. 

 

2.2 Process Nonlinearities in Control System 

A control loop generally consists of a sensor, transmitter, controller and final 

control element (actuator) that compares the process variable received from the 

transmitter to the desired process condition (set point). The controller then sends 

signals to the control valve (final control element) to take corrective actions. The 

responses or actions taken by the control valve strongly affects the performance 

stability of many process control loops. For throttling control, the key performance 

factors are the ability of the control valve to respond consistently to small input 

changes and the installed loop gain resulting from the match of the valve to the other 

loop components (Jelali & Huang, 2010). The behavior of the valve will vary 

depending on its position, direction and magnitude when a command (manipulated 

variable) is given to a control valve for a new flow rate or position. 

The following definitions of terms related to nonlinearities in control loop are 

briefly explained and reviewed by American National Standards Institute (1979). The 

valve nonlinearities are displayed in Figure 2.1. 

Backlash:  “In process instrumentation, it is a relative movement between interacting 

mechanical parts due to looseness when the motion is reversed.” 


