

OPTIMIZATION STUDY ON PREPARATION OF ACTIVATED CARBON FROM ORANGE PEEL USING MICROWAVE INDUCED KOH ACTIVATION

SHALINI A/P PANISELVAM

Bachelor of Engineering with Honours (Chemical Engineering) 2018

UNIVERSITI MALAYSIA SARAWAK

Grade:	_
Please tick $()$	
Final Year Project Report	\checkmark
Masters	
PhD	

DECLARATION OF ORIGINAL WORK

This declaration is made on the <u>12th</u> day of <u>JUNE 2018</u>.

Student's Declaration:

I, SHALINI A/P PANISELVAM (48882) DEPT. OF CHEMICAL ENGINEERING AND ENERGY SUSTAINABILITY, FACULTY OF ENGINEERING hereby declare that the work entitled, <u>OPTIMIZATION STUDY ON PREPARATION OF</u> <u>ACTIVATED CARBON FROM ORANGE PEEL USING MICROWAVE INDUCED</u> <u>KOH ACTIVATION</u> is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

<u>12TH JUNE 2018</u> Date submitted <u>SHALINI A/P PANISELVAM (48882)</u> Name of the student (Matric No.)

Final Year Project Supervisor's Declaration:

I <u>DR. IVY TAN AI WEI</u> hereby certifies that the work entitled, <u>OPTIMIZATION</u> <u>STUDY ON PREPARATION OF ACTIVATED CARBON FROM ORANGE PEEL</u> <u>USING MICROWAVE INDUCED KOH ACTIVATION</u> was prepared by the above named student, and was submitted to the "FACULTY" as a fulfilment for the conferment of <u>BACHELOR OF ENGINEERING WITH HONOURS (CHEMICAL</u> <u>ENGINEERING)</u>, and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by: <u>DR. IVY TAN AI WEI</u> (Name of the coordinator) Date: <u>12TH JUNE 2018</u> I declare this Report is classified as (Please tick $(\sqrt{})$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organisation where research was done)*

 \checkmark OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Services has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitise the content to for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature ______ Supervisor's signature ______ 12TH JUNE 2018) 12TH JUNE 2018)

Current Address:

342, JALAN CENDRAWASIH 21, KG KENANGAN TUN DR ISMAIL 5, 84000 MUAR, JOHOR

Notes: * If the Report is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organization with the period and reasons of confidentiality and restriction.

APPROVAL SHEET

This project report which entitled **"Optimization Study on Preparation of Activated Carbon from Orange Peel Using Microwave Induced KOH Activation"** was prepared by Shalini A/P Paniselvam (48882) is hereby read and approved by:

> Dr. Ivy Tan Ai Wei (Final Year Project Coordinator)

<u>12th June 2018</u> Date

OPTIMIZATION STUDY ON PREPARATION OF ACTIVATED CARBON FROM ORANGE PEEL USING MICROWAVE INDUCED KOH ACTIVATION

SHALINI A/P PANISELVAM

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering with Honours (Chemical Engineering)

> Faculty of Engineering Universiti Malaysia Sarawak

> > 2018

Dedicated to my beloved parents and my family who always bestow me sustainable motivations and encouragements

ACKNOWLEDGEMENT

First and foremost, I would like to express my profound gratitude to my family especially to my parents for their endless love, support and motivation throughout my study period. They are always by my side, riding along with on my ups and downs as well as giving encouragement to pursue my dreams and supported me emotionally and financially. Deepest appreciation goes to my dedicated project supervisor, Dr. Ivy Tan Ai Wei for her patient guidance, motivation, care, suggestion and constructive comments throughout the project. I owe a debt of gratitude for her time, her careful attention to the details and also her untiring support and guidance throughout the project. Without her precious support and help, this project would have not been accomplished. Last but not least, I would like to express my sincere gratitude to all the lecturers, technicians and my beloved friends for the kind cooperation and helping hands. I would also like to express my appreciation to all the people who have helped directly or indirectly throughout the study period. Their contributions are very much appreciated.

ABSTRACT

The prolific use of commercial activated carbon (AC) is restricted despite AC has been known to be one of the most effective adsorbent due to its high cost since the precursor is usually non-renewable. Hence, this study aims to investigate the feasibility of producing AC from orange peel (OP) since the high demand of orange fruit in food processing industry is resulting in high output of fruit peels as waste which contain high carbon source with low ash content, great adsorption capacity as well as with considerable mechanical strength. This research focuses on the preparation of AC from OP using KOH impregnation followed by microwave - induced activation. The The effects of three preparation variables (microwave power, irradiation time and KOH:char impregnation ratio) on Methylene Blue (MB) adsorption and iodine adsorption were investigated. Based on the central composite design, mathematical models were developed to correlate the three preparation variables to the two responses. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. Two quadratic models and 3-D graphs were obtained for the influential factors of each responses. The optimization study with an initial MB concentration of 200 mg/L showed that the AC produced with impregnation ratio of 1.62, microwave power of 655.74 W and irradiation time of 5.77 minutes exhibited the highest MB and iodine adsorption uptake of 134.86 mg/g and 1147mg/g respectively. SEM analyses revealed that the prepared AC consisted of uniformly developed pores. FTIR spectrum showed the presence of various functional groups on the surface of the raw OP and prepared AC where there was some shift of adsorption bands occurred due to the evaporation of volatile materials present in the raw OP when heat was supplied to the samples. Batch adsorption studies of MB on the prepared AC were conducted to evaluate the equilibrium isotherms, kinetics and adsorption mechanism. The adsorption of MB was best fitted by the Langmuir isotherm model and best described by the pseudo-second order kinetic model. The maximum monolayer adsorption capacity of the AC on MB was 144.93 mg/g. The OP based AC was shown to be a promising adsorbent for the removal of pollutant from aqueous solutions.

ABSTRAK

Penggunaan karbon aktif komersil (AC) yang produktif dibatasi walaupun AC dikenalpasti sebagai salah satu penyerap yang paling berkesan kerana biaya yang tinggi sejak pendahulu biasanya tidak dapat diperbaharui. Oleh itu, kajian ini bertujuan untuk mengkaji kelayakan pengeluaran AC dari kulit jeruk (OP) kerana permintaan tinggi buah jeruk dalam industri pemprosesan makanan mengakibatkan keluaran buah-buahan yang tinggi sebagai bahan buangan yang mengandungi sumber karbon yang tinggi dengan kandungan abu yang rendah kapasiti penjerapan serta kekuatan mekanikal yang besar. Penyelidikan ini memberi tumpuan kepada penyediaan AC dari OP menggunakan KOH impregnation diikuti dengan pengaktifan induksi gelombang mikro. Kesan daripada tiga pemboleh ubah penyediaan (kuasa gelombang mikro, masa penyinaran dan KOH: nisbah penyerapan char) pada penjerapan Methylene Blue (MB) dan penjerapan iodin diselidiki. Berdasarkan reka bentuk komposit pusat, model matematik telah dibangunkan untuk mengaitkan tiga pemboleh ubah penyediaan kepada dua respon. Dari analisis varians (ANOVA), faktor yang paling berpengaruh terhadap setiap tindak balas reka bentuk eksperimen telah dikenalpasti. Kajian pengoptimuman dengan kepekatan awal MB sebanyak 200 mg / L menunjukkan bahawa AC dihasilkan dengan nisbah impregnasi sebanyak 1.62, kuasa gelombang mikro 655.74 W dan masa penyinaran selama 5.77 minit mempamerkan pengambilan MB dan penyerapan penyerapan iodin tertinggi iaitu 134.86 mg/g dan 1147mg/g masing-masing. Analisis SEM mendedahkan bahawa AC yang disediakan terdiri daripada liang-liang yang dikembangkan seragam. Spektrum FTIR menunjukkan kehadiran pelbagai kumpulan berfungsi pada permukaan OP mentah dan AC yang disediakan di mana terdapat beberapa pergeseran band penjerapan yang berlaku disebabkan oleh penyejatan bahan tidak menentu yang hadir dalam OP mentah apabila haba dibekalkan kepada sampel. Kajian penyerapan batch MB pada AC yang disediakan telah dijalankan untuk menilai isoterma keseimbangan, kinetik dan mekanisme penjerapan. Penjerapan MB paling sesuai dengan model isoterm Langmuir dan yang paling digambarkan oleh model kinetik pesanan pseudo-kedua. Kapasiti penyerapan monolayer maksimum AC pada MB adalah 144.93 mg/g.

TABLE OF CONTENTS

Pages

ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vi
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF EQUATIONS	xiv
NOMENCLATURE	xvi
ABBREVIATION	xvii

CHAPTER 1 INTRODUCTION

1.1	Environmental Pollution: Current Situation and	1
	Problems	
1.2	Activated Carbon	2
1.3	Activated Carbon Derived from Fruit Waste	3
1.4	Activated Carbon Synthesis	3
1.5	Microwave-assisted Pyrolysis	3
1.6	Optimization of Activated Carbon Synthesis	4
	Conditions	
1.7	Problem Statement	4
1.8	Research Questions	5
1.9	Research Objectives	5
1.10	Scope of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Activate	ed Carbon as Adsorbent	6
	2.1.1	Market Demand of Activated Carbon	7
	2.1.2	Activated Carbon Characteristics	9
	2.1.3	Working Principle of Activated Carbon in	10
		Dye Removal from Wastewater	
2.2	Fruit W	aste as Activated Carbon Precursor	11
	2.2.1	Orange Peel as AC Precursor	13
2.3	Preparat	tion of Activated Carbon	15
	2.3.1	Types of AC Activation Method	16
		2.3.1.1 Physical Activation	17
		2.3.1.2 Chemical Activation	18
	2.3.2	Microwave Pyrolysis	21
2.4	Factors	Affecting the Preparation of Activated	23
	Carbon		
	2.4.1	Effect of Activating Agent Impregnation	24
		Ratio (IR)	
	2.4.2	Effect of Microwave Power	25
	2.4.3	Effect of Irradiation Time	26
2.5	Charact	erization Techniques of Activated Carbon	28
	2.5.1	Textural Characteristics	28
	2.5.2	Iodine Adsorption & Methylene Blue	29
		Adsorption	
2.6	Adsorpt	ion Isotherm	30
	2.6.1	Langmuir Isotherm	31

	2.6.2	Freundlic Isotherm	32
	2.6.3	Temkin Isotherm	33
2.7	Adsorp	otion Kinetics	34
	2.7.1	Pseudo-First-Order Kinetics Model	34
	2.7.2	Pseudo-Second-Order Kinetic Model	35
2.8	Adsorp	otion Mechanism- Intraparticle Diffusion	35
2.9	Summa	ary	36

CHAPTER 3 METHODOLOGY

3.1	Introdu	iction	37
3.2	Materia	als and Chemicals	37
3.3	Equipn	nent and Apparatus	37
3.4	Experi	mental Methodology	38
	3.4.1	Pre-Treatment and Preparation of Orange	39
		Peel as Precursor	
	3.4.2	Production of Activated Carbon	40
3.5	Charac	terization of Activated Carbon	41
	3.5.1	Textural Characteristics	41
	3.5.2	Surface Chemistry Characterization	41
3.6	Evalua	tion of AC Adsorption Performance	42
	3.6.1	Iodine Adsorption Uptake	42
	3.6.2	Methylene Blue Adsorption Studies	42
3.7	Optimi	zation of Activated Carbon Production	43

CHAPTER 4 RESULTS AND DISCUSSION

4.0	Introdu	ction	45
4.1	Develo	pment of Regression Model Equation	45
	4.1.1	Methylene Blue Adsorption	47
	4.1.2	Iodine Adsorption	50
	4.1.3	Process Optimization	53
4.2	Batch A	Adsorption Studies of Methylene Blue on	55
	Prepare	ed Activated Carbon	
	4.2.1	Adsorption Isotherm	55
	4.2.2	Adsorption Kinetics Study	60
4.3	Charact	terization of Material	65
	4.3.1	Surface Morphology	67
	4.3.2	Surface Chemistry	68

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	71
5.2	Recommendations	72
REFERENCES		73
APPENDIX A		91

LIST OF TABLES

Table		Page
2.1	Physical characteristics of AC from various fruit peels	13
2.2	Synthesis of OP-based AC	15
2.3	Predominant components of products from fast pyrolysis & gasification	16
2.4	Physical activation of AC	18
2.5	Various preparation condition of AC through chemical activation	20
2.6	Preparation of AC from various biomass sources using microwave pyrolysis	27
2.7	Textural analysis of AC from various biomass precursor	28
2.8	Comparison study of maximum CO ₂ adsorption capacity on various adsorbents	29
2.9	Comparison of MB adsorption test and iodine number for various AC source	30
2.10	Adsorption isotherms of different heavy metals on various adsorbents	32
2.11	Separation factor	33
3.1	List of apparatus and equipment	39
4.1	Experimental design matrix and results	47
4.2	Analysis of variance (ANOVA) for response surface quadratic model for MB adsorption	49

4.3	Analysis of variance (ANOVA) for response surface	53
	quadratic model for iodine adsorption	
4.4	Model validation	54
4.5	Adsorption capacity of MB and iodine on AC	55
4.6	Langmuir, Freundlich, and Temkin isotherm model	60
	constants and correlation coefficients for the adsorption of	
	MB on OP based AC	
4.7	Comparison of the Langmuir adsorption capacity, Q0 of	61
	different adsorbents for MB adsorption	
4.8	Pseudo-first-order model and pseudo-second-order model	
	constants and correlation coefficients for the adsorption of	
	MB on OP based AC	
4.9	Comparison of the kinetic models of different adsorbents	65
	for MB adsorption	
4.10	Intraparticle diffusion model constants and correlation	68
	coefficient of MB adsorption on OP based AC	

LIST OF FIGURES

Figure		Page
2.1	Granular AC	7
2.2	U.S AC market revenue by product, 2014 - 2024	8
2.3	Pore size distribution of AC defined by IUPAC	10
2.4	Water treatment through AC filter	11
2.5	Composition of an OP	14
2.6	Structural comparison between a tube furnace and a microwave reactor	22
2.7	Product distributions of microwave and conventional pyrolysis	23
3.1	Overall methodology of AC synthesis	40
3.2	Process of AC synthesis	42
4.1	Predicted versus experimental MB adsorption	50
4.2	Predicted versus experimental iodine adsorption	50
4.3	Three-dimensional response surface plot of MB adsorption: effect of microwave power and chemical impregnation ratio	51
4.4	Three-dimensional response surface plot of iodine adsorption: effect of microwave power and impregnation ratio	52
4.5	Three-dimensional response surface plot of iodine adsorption: effect of microwave power and irradiation time	53

4.6	Langmuir isotherm for adsorption of MB on OP based AC	57
4.7	Freundlich isotherm for adsorption of MB on OP based	58
	AC	
4.8	Temkin isotherm for adsorption of MB on OP based AC	59
4.9	Pseudo-first-order plots for the adsorption of MB on OP based AC	62
4.10	Pseudo-second-order plots for the adsorption of MB on OP based AC	64
4.11	Plot of intraparticle diffusion model for the adsorption of MB on OP based AC	67
4.12(a)	SEM image of the raw OP	69
4.12(b)	SEM image of the optimized AC	69
4.13	FTIR spectra of the raw OP	70
4.14	FTIR spectra of the prepared AC	71

LIST OF EQUATIONS

Equation		Page
2.1	Chemical activation of KOH (step 1)	24
2.2	Chemical activation of KOH (step 2)	24
2.3	Chemical activation of KOH (step 3)	24
2.4	Chemical activation of KOH (step 4)	24
2.5	Chemical activation of KOH (step 5)	25
2.6	Chemical activation of KOH (step 6)	25
2.7	Langmuir model	33
2.8	Linearized Langmuir model	33
2.9	Dimensionless constant separation factor	33
2.10	Freunlich isotherm model	34
2.11	Linearized Freunlich isotherm model	34
2.12	Temkin isotherm	34
2.13	Temkin isotherm	34
2.14	Pseudo-first-order kinetic model	35
2.15	Linearized pseudo-first-order kinetic model	35
2.16	Pseudo-second-order kinetic model	36
2.17	Linearized Pseudo-second-order kinetic model	36
2.18	Intraparticle diffusion model	36
3.1	Impregnation ratio	41

3.2	Iodine adsorption uptake	43
3.3	MB adsorption uptake	44
3.4	Number of experiment	44
3.5	Second - degree polynomial	45
4.1	Quadratic model of MB adsorption	48
4.2	Quadratic model of iodine adsorption	48

NOMENCLATURE

%	:	Percent
°C	:	Degree Celsius
cm ⁻¹	:	Per centimetre
g	:	Gram
mg/g	:	Milligram per gram
mL	:	Milli litre
rpm	:	Revolution per minute
W	:	Watt
min	:	minute

ABBREVIATIONS

AC	:	Activated Carbon
ANOVA	:	Analysis of Variance
BET	:	Brunauer-Emmett-Teller
CCD	:	Central Composite Design
FTIR	:	Fourier Transform Infrared Spectroscopy
GAC	:	Granular Activated Carbon
H ₃ PO ₄	:	Phosphoric Acid
HCl	:	Hydrochloric Acid
IUPAC	:	International Union of Pure and Applied Chemistry
КОН	:	Potassium Hydroxide
MB	:	Methylene Blue
OP	:	Orange Peel
RSM	:	Response Surface Methodology
SEM	:	Scanning Electron Microscope

CHAPTER 1

INTRODUCTION

1.1 Environmental Pollution: Current Situation and Problems

Environmental pollution is considered as a global phenomenon as it can cause adverse effects on human health, plants, animals and exposed materials. Industrialization and urbanization are attributing greatly to the pollution issues due to the huge amount of organic and industrial effluents released to the environment which increases water, land and air pollution problems manifold (Rajan & David, 2014). The discharge of effluent which contain harmful chemicals and compounds that attributes to water pollution is a major concern due to their adverse effect to many forms of life since large quantity of effluent is discharged into the water bodies. The presence of dye effluent is highly toxic in nature due to its high suspended solid, COD, dye and chemicals along with high concentration of heavy metals such as Cu and Cd (Tan, et al., 2008). Furthermore, the contaminated surface and the ground water by the untreated industrial effluent is no longer suitable for irrigation and drinking (Rajan & David, 2014).

Industries such as textile, leather, paper, plastics, etc., are some of the sources for dye effluents discharge. According to Wong et al. (2004), the global dye consumption of the textile industry has reached the amount of 107 kg/year and it is estimated 90% of this ends up on fabrics. Consequently, about 1,000,000 kg/year of dye are discharged into waste

streams by the textile industry. In this case, Methylene Blue (MB) is a widely used substance for dying cotton, wood and silk which has its harmful effects including permanent injury to the eyes of human and animals. Besides, upon inhalation, it can cause short breath or difficulty in breathing while ingestion through the mouth causes a burning sensation and may cause vomiting, mental confusion, nausea and methemoglobinemia profuse sweating (Chen et al., 2007).

Beside water pollution, another serious problem in environmental issue is the air pollution. Greenhouse gas (GHG) emission which contributes to global warming is the most worrisome situation all over the world as it can cause climate changes. According to (Scientific Malaysian, 2017) Malaysia's total GHG emission was recorded as 290.23 Mt CO_2eq . Beside GHG, some other pollutants like volatile organic compounds, sulphur dioxide and nitrogen dioxide act as pre-cursors to others air pollutants. For example, NO_x and SO_2 can react in the atmosphere and lead to particulate matter (PM) compounds formation. The sources of each pollutant most of the time linked with fuel combustion and industrial activities; pollutants are released as by-products of these processes (Cohen et al., 2015).

Malaysia has gained benefits from the significant development during recent years. However, there is a price to pay behind it. The speedy development has increased the severity of the environmental pollution problems like discharge of pollution causing matters into environment. In Malaysia, the Environmental Quality Act 1974 (amended 1985) is the law that is directly related to the environmental pollution and the Department of Environment is the authority to monitor and enforce the act (EQA, 2015).

1.2 Activated Carbon

Over the centuries, activated carbon (AC) is a commonly used adsorbent for wastewater treatment especially to purify the effluents from an industry. The abundant use of AC as adsorbent is due to certain characteristics such as tremendously high surface area with various micropore volumes, high capacity of adsorption, fast adsorption kinetics as well as the ability of regeneration (Sircar et al. 2008). AC can be extracted from a variety of carbonaceous materials such as petroleum pitch, agricultural waste and even by using waste tires. In this case, the production of AC is highly depending on the availability of the raw