

KINETIC STUDY AND STATISTICAL MODELLING OF SARAWAK PEAT WATER CONTINUOUS ELECTROCOAGULATION TREATMENT PROCESS BY USING ALUMINIUM ELECTRODES

ONG CHENG EE

Bachelor of Engineering with Honours (Chemical Engineering) 2017/2018

UNIVERSITI MALAYSIA SARAWAK

Grade:	
Please tick ()
Final Year	2
Project Report	N
Masters	
PhD	

DECLARATION OF ORIGINAL WORK

This declaration is made on the <u>12th</u> day of <u>June 2018</u>

Student's Declaration:

I, ONG CHENNG EE, (48665), DEPT. OF CHEMICAL ENGINEERING AND ENERGY SUSTAINABILITY, FACULTY OF ENGINEERING hereby declare that the work entitle **KINETIC STUDY AND STATISTICAL MODELLING OF SARAWAK PEAT WATER CONTINUOUS ELECTROCOAGULATION TREATMENT PROCESS USING ALUMIMIUN ELECTRODES** is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

12th JUNE 2018

Date submitted

ONG CHENG EE (48665)

Name of the student (Matric No.)

Industrial Training Coordinator's Declaration:

I, <u>NAZERI ABDUL RAHMAN</u> hereby certifies that the work entitled, **KINETIC STUDY AND STATISTICAL MODELLING OF SARAWAK PEAT WATER CONTINUOUS ELECTROCOAGULATION TREATMENT PROCESS USING ALUMIMIUN ELECTRODES** was prepared by the above named student, and was submitted to the "FACULTY" as a * partial KNF 4344 Final Year Project II Course fulfilment for the conferment of <u>BACHELOR OF ENGINEERING WITH HONOURS (CHEMICAL ENGINEERING)</u>, and the aforementioned work, to the best of my knowledge, is the said student's work Received for examination by: <u>NAZERI ADBUL RAHMAN</u> Date: <u>12th JUNE 2018</u>

I declare this Project/Thesis is classified as (Please tick ($\sqrt{}$)):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
 ■ RESTRICTED (Contains restricted information as specified by the organisation where research was done)*
 ✓ OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirmed with free consent and willingness declared that this said report shall be placed officially in Department of Chemical Engineering and Energy Sustainability with the abide interest and rights as follows:

- This Project/Thesis is the sole legal property of Department of Chemical Engineering and Energy Sustainability, Universiti Malaysia Sarawak (UNIMAS).
- The Department of Chemical Engineering and Energy Sustainability has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Department of Chemical Engineering and Energy Sustainability has the lawful right to digitise the content to for the Local Content Database.
- The Department of Chemical Engineering and Energy Sustainability has the lawful right to make copies of the Report for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of Department of Chemical Engineering and Energy Sustainability, Universiti Malaysia Sarawak (UNIMAS).
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with Department of Chemical Engineering and Energy Sustainability, Universiti Malaysia Sarawak (UNIMAS) permission.

Student's signature _

(12th JUNE 2018)

Supervisor's signature: _____

(12th JUNE 2018)

Current Address:

23, JALAN MELAKA BARU 1, TAMAN MELAKA BARU (FASA 3), BATU BERENDAM, 75350 MELAKA.

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

APPROVAL SHEET

This final year project report, which entitled **KINETIC STUDY AND STATISTICAL MODELLING OF SARAWAK PEAT WATER CONTINUOUS ELECTROCOAGULATION TREATMENT PROCESS USING ALUMIMIUN ELECTRODES** was prepared by Ong Cheng Ee (48665) as a partial fulfilment for the Degree of Bachelor of Chemical Engineering is hereby read and approved by:

12TH JUNE 2018

DR. NAZERI ABDUL RAHMAN (Supervisor) DATE

KINETIC STUDY AND STATISTICAL MODELLING OF SARAWAK PEAT WATER CONTINUOUS ELECTROCOAGULATION TREATMENT PROCESS USING ALUMIMIUN ELECTRODES

ONG CHENG EE

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering with Honours (Chemical Engineering)

> Faculty of Engineering Universiti Malaysia Sarawak

> > 2017/2018

Dedicated to my beloved parents and my supervisor who always bestow me sustainable motivations and encouragements

ACKNOWLEDGEMENT

First and foremost, the author would like to express his gratitude to the Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak for giving the opportunity to the author for conducting the study. In addition, the author is highly indebted to the final year project supervisor, Dr. Nazeri Abdul Rahman for his professional guidance on the study, knowledge and experience sharing as well as advices and recommendations to improve the project. Special acknowledgement is also delivered to all the individuals and organizations for kind cooperated and contributed throughout the study. Besides, the author would like to express thanks to the chemical workshop and laboratory technicians of Department of Chemical Engineering and Energy Sustainability for their assistance and suggestions when conducting the experiments. Last but not least, deepest appreciation is dedicated to the author's beloved family members, partner as well as friends for their endless support, encouragement and motivation throughout the completion of the report.

ABSTRACT

In this globalization era, human population is growing drastically. Corresponding to the population growth, the demand for water is increasing and lead to the insufficient of water supply issues in Malaysia especially at the Sarawak isolated coastal area. For domestic usage purpose, the local residents have to rely on natural water resources such as rainwater and peat water. Consuming of peat water is harmful to human health as it contained humic substance, which affects the thyroid gland, Blackfoot disease (BFD) and others. Hence, peat water has to be treated before consumption in order to reach the allowable quality for domestic usage. The main aim of this study is to design an electrocoagulation process model using Aluminium electrode for the treatment of peat water in Sarawak. The function of the electrocoagulation system is to eliminate the turbidity and COD level in peat water by using pairs of Aluminium sacrificial electrodes which connected to a direct current power supply. The system is designed as a continuous flow reactor which operated together with equipments such as pump, filter, and magnetic stirrer. The dimension of the system is 100 cm x 15 cm x 25 cm. For this project, Microsoft Excel and Design Expert (RSM) software is used for kinetic studies, modelling and optimization function. Results of kinetic study indicated that the reaction rate constant for turbidity and COD removal at 5A current supplied is 0.0853 and 0.3841 min⁻ ¹ respectively. The statistical modelling equation for both turbidity and COD removal efficiency is developed. Comparison between statistical modelling results and experimental results shows that the maximum deviation is approximately 19.27 % and 19.74% for turbidity and COD removal efficiency. The equation is verified and able to be used for scale-up function.

Keywords: Peat Water, Humic Acid, Electrocoagulation, Statistical Modelling, Optimization

ABSTRAK

Dalam era globalisasi ini, populasi manusia berkembang secara drastic. Sejajar dengan pertumbuhan penduduk, keperluan air semakin meningkat dan membawa kepada isu kekurangan bekalan air yang berlaku di Malaysia, terutamanya di kawasan kampung pedalaman. Untuk tujuan penggunaan domestic, penduduk terpaksa bergantung kepada sumber air semula jadi seperti air hujan dan air gambut. Penggunaan air gambut adalah tidak sesuai dan berbahaya kepada manusia disebabkan oleh kandungan bahan humik. Bahan humik akan mempengaruhi kelenjar tiroid, menyebabkan penyakit Blackfoot (BFD) dan lain-lain. Oleh itu, air gambut perlu dirawati untuk mencapai kualiti yang dibenarkan untuk penggunaan domestik. Tujuan utama kajian ini adalah untuk merekabentuk model proses elektrokoagulasi menggunakan elektrod Aluminium untuk rawatan air gambut di Sarawak. Fungsi elektrokoagulasi adalah untuk menghilangkan kekeruhan dan COD air gambut dengan menggunakan pasangan elektrod Aluminium yang bersambungan dengan bekalan kuasa arus langsung. System ini direkabentuk sebagai reaktor aliran berterusan yang beroperasi selaras dengan beberapa operasi unit seperti pam, penapis dan stirrer megnetik. Dimensi untuk system elektrokoagulasi ialah 100 cm x 15 cm x 25 cm. Untuk kajian in, perisian Microsoft Excel and Design Expert (RSM) digunakan untuk pembelajaran kinetik, pemodelan dan proses pengoptimuman. Hasil kajian kinetik menunjukkan bahawa kadar tindak balas untuk kecekapan penyingkiran kekeruhan dan COD pada arus 5A adalah 0.0853 and 0.3841 min⁻¹. Persamaan pemodelan statistik untuk kecekapan penyingkiran kekeruhan dan COD dihasilkan. Perbandingan antara hasil pemodelan statistik dan keputusan eksperimen menunjukkan bahawa sisihan maksimum adalah lebih kurang 19.27% dan 19.74% untuk kecekapan penyingkiran kekeruhan dan COD. Persamaan telah disahkan dan dapat digunakan untuk fungsi skala.

Kata Kunci: Air Gambut, Asid Humik, Elektrokoagulasi, Pemodelan Statistik, Pengoptimuman

TABLE OF CONTENT

	Page
ACKNOWLEDGEMENT	i
ABSTRACT	ii
ABSTRAK	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATION	xi
LIST OF NOMENCLATURE	xii

Chapter 1 INTRODUCTION

1.1	General View on Domestic Water	1
1.2	Peat Water	2
1.3	Humic Acid	3
1.4	Water Treatment	4
1.5	Electrocoagulation	4
1.6	Problem Statement	5
1.7	Aim and Objectives	6
1.8	Scope of Study	7
1.9	Methodology	7
1.10	Significant of Study	9
1.11	Summary	10

Chapter 2 LITERATURE REVIEW

2.1	Introd	Introduction 1		
2.2	Domestic Water in Malaysia 1			
	2.2.1	National Standard Water Quality Malaysia	12	
	2.2.2	Sarawak Peat Water	14	
	2.2.3	Humic Substances	15	
	2.2.4	Turbidity	16	
2.3	Water Treatment System		18	

2.4	Electrocoagulation 1			
	2.4.1	Theory and Principle of Electrocoagulation	20	
	2.4.2.	Factors Affecting the Electrocoagulation	22	
		Process		
	2.4.3	Advantages and Disadvantages	27	
2.5	Statist	ical Modelling of Electrocoagulation Process	28	
	2.5.1	Kinetics Relationship and Reaction Rate	28	
		Constant		
	2.5.2	Faraday's Law	30	
	2.5.3	Langmuir Adsorption Isotherm	31	
	2.5.4	Respose Surface Methodology (RSM)	33	
2.6	Proces	Process Optimization 3		
2.7	Summary 35			

Chapter 3 METHODOLOGY

3.1	Introduction 37			
3.2	Litera	Literature Review 37		
3.3	Data a	and Sample Collection	38	
3.4	Design	n of Electrocoagulation System	40	
3.5	Fabric	ation of Electrocoagulation System	40	
3.6	Kineti	c Study and Statistical Model Development	41	
	3.6.1	Experiment Data Collection	42	
	3.6.2	Amount of Metal Dissolved by Anodic	43	
		Oxidization		
	3.6.3	Reaction Rate Constant Determination	43	
	3.6.4	Amount of Pollutants Absorbed	44	
	3.6.5	Variable-Order-Kinetic Model	45	
3.7	Syster	n Optimization	45	
	3.7.1	Process Optimization	46	
3.8	Result	ts and Discussion	46	
3.9	Summary 46			

Chapter 4 RESULTS AND DISCUSSION

APPENDIX B: GANTT CHART (FYP 2)

	4.1	Introduction			
	4.2	Design of Electrocoagulation System			
		4.2.1 Concern for Designing the Electrocoagulation	49		
		Treatment System			
		4.2.2 Recommendation on the Designed System	52		
	4.3	Kinetic Study of Electrocoagulation Treatment	53		
		Process			
	4.4	Statistical Modelling of Electrocoagulation Process	59		
		4.4.1 Turbidity	60		
		4.4.2 COD Level			
	4.5	Comparison of Results			
	4.6	Equation Optimization			
	4.7	Summary			
Chapter 5	CO	NCLUSION AND RECOMMENDATION			
	5.1	Introduction	72		
	5.2	Conclusion	72		
	5.3	Recommendation for Further Study	73		
	5.4	Summary	74		
BIBLIOGRAP	HY		75		
APPENDIX A:	GAN	TTT CHART (FYP 1)	85		

87

LIST OF TABLES

Table

Page

1.1	Classification of Peat Layer	2
1.2	Types of Water Treatment Technologies	4
2.1	Source of Pollutants	13
2.2	Standard for Malaysia Water Quality	13
2.3	Comparison of Humic Acid, Fulvic Acid and Humin	15
2.4	Electrocoagulation Applications	19
2.5	Effect of initial pH	22
2.6	Metal Ions Produced by Different Initial pH	22
2.7	Effect of Inter-Electrode Distance	25
2.8	Description for Electrode Arrangement	26
2.9	Advantages and Disadvantages of Electrocoagulation	27
2.10	Comparison between CCD and BBD	34
3.1	Description of Electrocoagulation System	40
3.2	Experiment Condition	42
4.1	Effect of No. of Plates on Turbidity and COD Removal Efficiency	53
4.2	Experimental Results	54
4.3	Kinetic Study on the Effect of Current Density on Turbidity and	57
	COD Removal Efficiency	
4.4	Kinetic Study on the Effect of Residence Time on Turbidity and	57
	COD Removal Efficiency	
4.5	Values for Langmuir Adsorption Isotherm	58
4.6	Design of Experiment for Electrocoagulation Process Modelling	60
4.7	ANOVA Study on Turbidity Removal Efficiency Equation	61
4.8	ANOVA Study on COD Removal Efficiency Equation	64
4.9	Coefficient of Determination for COD Removal Efficiency	65
4.10	Comparison of Experimental and Modelling Turbidity Removal	68
	Efficiency	

4.11	Comparison of Experimental and Modelling COD Removal	68
	Efficiency	
4.12	Constraints Set for Removal Efficiency Optimization	69
4.13	Optimum Value for Maximum Turbidity Removal Efficiency	70
4.14	Optimum Value for Maximum COD Removal Efficiency	70

LIST OF FIGURES

Figure

Page

1.1	Typical Household Water Use	1
1.2	Peat Water	3
1.3	Electrocoagulation	5
1.4	Methodology for Project	8
2.1	Molecular Structure of Humic Acids	16
2.2	Effect of Current Density on Turbidity Removal	17
2.3	Graph of COD removal against Treatment Time	23
2.4	Graph of DOC Removal against Treatment Time	23
2.5	Arrangement of Electrode	25
2.6	Graph of Reaction Rate Constant against Current Density	29
2.7	Graph of Reaction Rate Constant against Influent Concentration	29
2.8	Graph comparing Langmuir and Freundlich Adsorption Isotherm	32
3.1	Methodology Flow Chart for Research Project	38
3.2	Flow Diagram of Electrocoagulation System	41
4.1	Flow Diagram of Electrocoagulation System	49
4.2	Top View of Electrocoagulation System Design	50
4.3	Front View of Electrocoagulation System Design	51
4.4	Side View of Electrocoagulation System Design	51
4.5	Cross-Sectional View of Electrocoagulation System Design	51
4.6	Fabricated Electrocoagulation System	52
4.7	Effect of Current Applied for Peat Water Turbidity Treatment	55
4.8	Effect of Current Applied for Peat Water COD Treatment	55
4.9	Reaction Rate Constant of Turbidity Removal	56
4.10	Reaction Rate Constant of COD Removal	56
4.11	Effect of Current to q _e (turbidity)	58
4.12	Effect of Current to q _e (COD)	58
4.13	Effect of Residence Time to qe (turbidity)	59
4.14	Effect of Residence Time to qe (COD)	59

4.15	Graph of Normal Plot of Residuals	62
4.16	Graph of Residuals vs. Predicted	62
4.17	Graph of Residuals vs. Run	63
4.18	3D Surface Graph for Turbidity Removal Efficiency	63
4.19	Graph of Normal Plot of Residuals	65
4.20	Graph of Residuals vs. Predicted	66
4.21	Graph of Residuals vs. Run	66
4.22	3D Surface Graph for COD Removal Efficiency	67

ABBREVIATION

AAS	-	Atomic Absorption Spectrometry
AC	-	Alternating Current
ANOVA	-	Analysis of Varience
A/V	-	Area per Volume Ratio
BBD	-	Box-Behnken Design
BOD	-	Biochemical Oxygen Demand
BP-S	-	Bipolar-Series
CCD	-	Central Composite Design
COD	-	Chemical Oxygen Demand
DC	-	Direct Current
DOC	-	Dissolved Oxygen Demand
I/V	-	Current per Volume Ratio
MP-P	-	Monopolar-Parallel
MP-S	-	Monopolar-Series
RSM	-	Response Surface Methodology
VOK	-	Variable-order-kinetic Model

NOMENCLATURE

А	-	Ampere
Adm ⁻²	-	Ampere per decimetre square
A/m ²	-	Ampere per meter square
Cm	-	Centimetre
°C	-	Degree Celsius
g Al/cm ⁻²	-	Gram of Aluminium per centimetre square
g/m ³	-	Gram per meter cube
g/mol	-	Gram per mole
kg/m ³	-	Kilogram per meter cube
М	-	Meter
m^2	-	Meter square
m^2/m^3	-	Meter square per meter cube
Min	-	Minutes
mg/g	-	Milli gram per gram
mg/L	-	Milli gram per liter
Mm	-	Milli meter
mV	-	Milli volt
NTU	-	Nephelometric Turbidity Unit
%	-	Percent
Ppm	-	Part per Million
RM	-	Ringgit Malaysia

CHAPTER 1

INTRODUCTION

1.1 General View on Domestic Water

Domestic water is commonly recognized as the household water that used for daily life activities. In Malaysia, 97% of the water resources are from the surface water while the other 3% is from the groundwater. The usage of domestic water can be classified into indoor usage and outdoor usage. For indoor household purposes, water can use for drinking, bathing, washing dishes, laundry, cooking, etc. While for outdoor purposes, water can be used for watering plants and garden, cleaning drain and others. In 2014, statistic showed that on average, 212 liters of water was consumed by Malaysians per day. Based on the research, 30% of the water is for consumption while 70% is for utility usage (Water and Energy Consumer Association of Malaysia, 2017). According to the data collected by East Larimer Country Water District (2017), the water consumption of household water can be classified into eight main classes. **Figure 1.1** shows the typical household water used in the residential area.

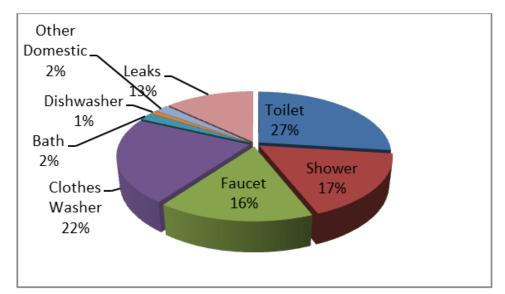


Figure 1.1: Typical Household Water Use (East Larimer Country Water District, 2017).

According to Auden (2017), an English-American poet, thousands have lived without love, not one without water. This quote had clearly interpreted the importance of having clean water in our daily life. Clean consumable water playing an important role for human being as it is the basic requirement for them to survive. Besides, 60% of the ordinary human body is water. Clean water content in the body regulate the blood circulation, promote sweating, produce saliva and others (United States Geological Survey, 2016).

1.2 Peat Water

Peat or known as turf is the organic soil which is accumulated with the heterogeneous mixture of partly decomposed vegetable matter or plant. Under water-saturated environment and anaerobic condition, peat can be formed when vegetative material does not fully decay (International Peatland Society, 2017). The content of peat is organic matter, sand, fibre, clay, humic substance and silt. According to research, peat layer is scattered around Malaysia especially East Malaysia area and about 13% of the total land area in Sarawak is covered by peatland. Generally, peat can be categorized into three layers based on the Von Post classification system. The system differentiates the peat layer based on the position of peat layer as well as the fibre percent (Sa'don, Karim, Jaol, & Lili, 2015). **Table 1.1** shows the classification of peat layer.

Peat Layer Name	Von Post Classification	Position of Layer	Fibre Content
Sapric Peat	H7-H10	0.5 m to 1.5 m of the top	< 33%
		layer	
Hemic Peat	H4-H6	Second layer. Below	33% to 66%
		Sapric layer.	
Fibric Peat	H1-H3	Last layer which near to	> 66%
		the bottom of peat layer	

 Table 1.1: Classification of Peat Layer (Sa'don et al., 2015)

Peat water is one of the water resources in Asia. Due to the characteristic, peat water is not suitable to be consumed. The formation of peat water is through the mixing of peat in the water source. It is usually in brown colour and acidic. Peat water is not suitable for drinking is due to five main parameters, which are the COD, pH value, turbidity, colour and iron content. All of these five parameters exceeded the limit for the drinking water quality standard (Siti, Syafalni, & Nastaein, 2014). **Figure 1.2** represents the view of peat water.

Figure 1.2: Peat Water

1.3 Humic Acid

According to Steelink (1963), humic acid is the main organic component of coal, soil (humus), and peat as well as streams, river and ocean water. The most common method for the formation of humic acid is by the biodegradation of plant matter. Through the rainfall runoff from nearby soil, humic acid enters the water resources. Humic acids are usually in dark brown or grey black colour, 4 - 6 pH value and 0.08 kg/m³ of specific gravity. It is soluble in alkali solution but insoluble in alcohol and acidic water. For chemical properties, humic acid contained carbon, oxygen, hydrogen and 4% of nitrogen. The microbial decay rate of humic acid is up to 0.3% per year (Kussow, 2002).

In medical field, humic acid is very useful in boosting the immune system of human body. Suitable quantity of humic acid can be consumed as vitamin to strengthen the immune of illness such as flu and viral infection (WebMD, 2017). One of the main factor where peat water cannot be drank is due to the humic acid content. The higher the concentration of humic acid, the darker the water colour. The main problem of humic acid content in the drinking water resources is the unwanted water taste and colour. During disinfection process, humic acid is able to react with the chemicals and produced toxic substances such as dihaloacetonitriles, which is a carcinogenic product (Kim et al., 2016).

1.4 Water Treatment

In this globalisation era, water shortage is one of the main challenge faced by the humankind due to the increase in the human's population growth rate as well as the water consumption rate. In order to overcome this problem, environmental friendly, economic effective and high efficiency wastewater treatment system has to be developed to treat the available water resources such as groundwater and surface water so that the water can be used for domestic purposes. In general, there are three main types of water treatment technologies, which are chemical process, biological process and physical process (Moussa, El-Naas, Nasser, & Al-Marri, 2017). **Table 1.2** shows the description of each process.

Types	Description	Processes
Chemical	Additional of chemicals are required to react with the	Ion Exchange,
	targeted pollutants in order to purify the water.	Coagulation
Biological	Mainly remove the organic content and nutrients in	Activated Sludge,
	wastewater by utilizing the microorganisms for	Trickling Filters
	contaminants degradation.	
Physical	Rely solely on physical techniques such as screening and	Membrane Filtration,
	filtering. Does not involved additional of chemicals.	Electrocoagulation

Table 1.2: Types of Water Treatment Technologies (Moussa et al., 2017)

1.5 Electrocoagulation

Electrocoagulation is one of the famous wastewater treatment method which coagulates the impurities particles and ions by using electric current. The operating concept for electrocoagulation is based on coagulation, flotation and electrochemistry. By comparing to chemical coagulation, electrocoagulation is more environmental friendly as this process does not required the addition of chemicals into the water. However, the capital cost and electricity cost of the operation of electrocoagulation system are found to be impractically high (Moussa et al., 2017).

A basic electrocoagulation system consists of an anode electrode and cathode electrode connected with a current supply source. The function of this system is to destabilize the repulsive force which causes the particles and impurities to be suspended in the solution. When electric current is connected, the anode electrode will oxidized to release metal ion while the cathode electrode will react with water to form hydroxide ion and hydrogen gas (Un, Savas, & Ogutveren, 2009). Equation (1.1) and (1.2) are the reaction for the electrocoagulation at anode and cathode.

At Anode: $Al \rightarrow Al^{3+} + 3e^{-}$ (1.1)

At Cathode:
$$3H_2O + 3e^- \to \frac{3}{2}H_2 + OH^-$$
 (1.2)

In order to maximize the efficiency of the system, there are several parameters which have to be studied and understand. The parameters are the current density electrode arrangement, initial pH of solution, type of power supply and others (Moussa et al., 2017). **Figure 1.3** displayed a basic ion transfer in electrocoagulation system.

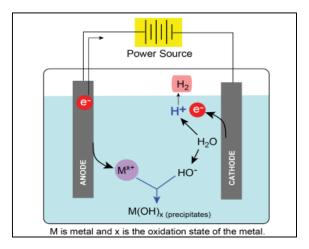


Figure 1.3: Electrocoagulation (Hoganas, 2017)

1.6 Research Problem

As one of the major state in East Malaysia, Sarawak is facing a significant crisis where there is insufficient or even no coverage of clean water supply to the isolated rural area. According to the Utilities Minister Datuk Seri Dr Stephen Rundi Utom, the coverage of water supply in rural area is less than 61% and there are around 114,000 households do not received the water supply. Besides, a huge amount of approximately RM10 billion is required for the implementation of water supply programme for isolated rural area in Sarawak (Ogilvy, 18 August 2017). According to Datuk Amar Awang Tengah Ali Hassan, Deputy Chief Minister of Sarawak, the shortage of water supply is due to several factors. For example, the rapid increment of Sarawak population, the lack of reservoir tank as well as the sparse distribution of residents' population in Sarawak which limit the pipeline coverage for water supply (Devindran, 2010). The design of water treatment