

Faculty of Computer Science and Information Technology

CHILI PLANT HEALTH MONITORING SYSTEM (CHIPMS) USING IOT

Mohd Insyirah Bin Kamaruzaman(58753)

Bachelor of Computer Science with Honours

(Network Computing)

2019

CHILI PLANT HEALTH MONITORING SYSTEM (CHIPMS) USING IOT

MOHD INSYIRAH BIN KAMARUZAMAN (58753)

This project is submitted in partial fulfilment of the

requirement for the degree of

Bachelor of Computer Science and Information Technology

Faculty of Computer Science and Technology

UNIVERSITI MALAYSIA SARAWAK

2019

Form B

	THES	SIS STATUS EN	DORSEMEN	T FORM
TITLE .	CHILI PLAN	NT HEALTH MON	NITORING SYS	TEM(CHIPMS) USING IOT
	ACA	DEMIC SESSIO	N: 2019/	2020
		(CAPITAI	LETTERS)	
		shall be kept at the e following terms an		nic Information Services, Universiti
2. The	Centre for Acad			full rights to produce copies for
 The deve The as printer 	lop local content d Centre for Acader	mic Information Se latabase mic Information Ser e item program betw	vices is given full ri	rights to do digitization in order to ghts to produce copies of this Thesis ig Institutions [or for the purpose of
CO RES	NFIDENTIAL	SECRETS ACT 1 (Contains restricted	972)	bounded by the OFFICIAL lictated by the body or organization
UN UN	RESTRICTED			
Joseph	-		Valid	ated by Salited
(AUTHOR	'S SIGNATUR	E)	(SUP	ERVISOR'S SIGNATURE)
Permanent .	Address		Fall	Litt Bains Komputer dan Teknologi Matu
Renningenoversteinenssenannen	dar Ayer Chanal	l,		iorsie Malayala Sarawak
17500 Tana Kelantan.	h Merah,			
Date: 10 A	august 2020		Date:	10/8/2020

DECLARATION

I hereby declare that this project is my genuine work. I have not copied from neither other student work nor from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

Mohd Insyirah Bin Kamaruzaman

Faculty of Computer Science and Information Technology,

University Malaysia Sarawak

Acknowledgment

I give my thanks to everyone who motivated me and giving me idea during. Special appreciation to Dr Halikul Bin Lenando who ensures that my project does not go astray. He has given me enough guidance and knowledge for me to continue the project. Special thanks also to other lecturers who I have consult regarding the project either directly or indirectly. Next, a special thanks also to student from FSTS especially in Plant and Biotechnology course who give many tips regarding the project. I also did not forget to thanks to Masjid Desa Ilmu Committee that gave me the chance to test my system on their chili field. Lastly to all my friend in the same faculty and in the same course, directly or indirectly helping me, I personally offered my thanks and gratitude.

TABLE OF CONTENT

Contents

CHILI PLANT HEALTH MONITORING SYSTEM (CHIPMS) USING IOTii
Form Aiii
DECLARATIONiv
Acknowledgmenti
TABLE OF CONTENTii
List of Diagram vi
List of Tableviii
Abstractix
Abstrakx
CHAPTER 11
INTRODUCTION
1.1 BACKGROUND1
1.2 PROBLEM STATEMENT
1.3 SCOPE4
14 AIM AND OBJECTIVE
1.5 BRIEF METHODOLOGY5
1.6 THE SIGNIFICANCE OF PROJECT7
1.7 PROJECT SCHEDULE
1.8 EXPECTED OUTCOME
1.9 PROJECT REPORT OUTLINE
1.9.1 Chapter 1: introduction
1.9.2 Chapter 2: literature review8
1.9.3 Chapter 3: requirement analysis and design8
1.9.4 Chapter 4: implementation and analysis9
1.9.5 Chapter 5: conclusion and future work9
1.10 SUMMARY
CHAPTER 2: LITERATURE REVIEW
2.1 INTRODUCTION11
2.2 FERTIGATION SYSTEM AND ITS COMPONENT12
2.3 EXISTING SYSTEM PROPOSED BY RESEARCHER14

2.3.1 Plant leaf color detection monitoring system	14
2.3.2 Plant environment and soil monitoring with water pH balancing system.	15
2.3.3 Environment and light measurement with a coordinated sprinkler system	16
2.3.4 Plant monitoring using qr code and camera system	18
2.3.5 Greenhouse monitoring system using deep learning and bot notification services	20
2.4 COMPARISON OF PROPOSED SYSTEM	21
2.5 SUMMARY	24
CHAPTER 3: METHODOLOGY	25
3.1 INTRODUCTION	25
3.2 RAPID APPLICATION DEVELOPMENT METHODOLOGY	26
3.3 SOFTWARE REQUIREMENT	27
3.3.1 Arduino ide environment	27
3.3.2 Android Studio	28
3.3.3 XAMPPP	29
3.4 HARDWARE REQUIREMENT	30
3.4.1 Arduino uno r3	30
3.4.2 Cytron Wi-Fi shield	30
3.4.3 relay	31
3.4.4 soil moisture sensor	31
3.4.5 CCTV Camera	31
3.4.6 humidity and temperature sensor dt11 module	32
3.4.7 SOLENOID VALVE	33
3.5 SYSTEM DESIGN	33
3.5.1 schematic of the system	33
3.5.2 flowchart of the system	34
3.5.3 user interface	35
3.6 SUMMARY	36
CHAPTER 4: IMPLEMENTATION AND TESTING	37
4.1 INTRODUCTION	37
4.2 PROTOTYPE IMPLEMENTATION	38
4.2.1 HARDWARE IMPLEMENTATION	38
4.2.1.1 LIST OF DEVICES	38
4.2.1.2 INSTALLATION OF WIFI SHIELD	39
4.2.1.3 INSTALLATION OF TEMPERATURE AND HUMIDITY SENSOR (DT11)	39

4.2.1.4 INSTALLATION OF SOIL MOISTURE SENSOR SC-11	40
4.2.1.5 INSTALLATION OF SOLENOID VALVE AND RELAY	41
4.2.1.6 INSTALLATION OF CCTV	41
4.2.1.7 COMPLETE INSTALLATION OF HARDWARE	42
4.2.2 SOFTWARE IMPLEMENTATION	43
4.2.2.1 ARDUINO CODE	43
4.2.2.1.1: Wi-Fi shield code	43
4.2.2.1.2: Temperature and Humidity DT11 code	44
4.2.2.1.3: Soil moisture sensor code	44
4.2.2.1.4: Solenoid and relay code	45
4.2.2.1.4: Sending data to the database	45
4.2.2.2 PHP CODE AND DATABASE	46
4.2.2.2.1 Storing information retrieve from the Arduino	46
4.2.2.2.2 Connection from database to application	47
4.2.2.2.3: Database	47
4.2.2.3 JAVA CODE	48
4.2.2.3.1 Data presentation to user code	48
4.2.2.3.2: Connection of application to database	48
4.2.2.3.3: Disease presentation based on data code	49
4.2.2.3.4: Plant dehydration notification code	50
4.2.2.3.5: CCTV connection code	50
4.3 PROTOTYPE TESTING	51
4.3.1 COMPONENT TESTING	52
4.3.1.1 ARDUINO PARTS	52
4.3.1.1.1 Moisture, Temperature and Humidity sensor	52
4.3.1.1.2 Relay and Solenoid pipe	53
4.3.1.1.3 WiFi cytron modul	53
4.3.1.2 DATABASE UPDATE	53
4.3.1.3APPLICATION RUN	54
4.3.1.1.1 Data Panel	54
4.3.1.1.2 Disease Panel	55
4.3.1.1.3 Notification	55
4.3.1.1.4 CCTV access	56
4.3.1.1.5 Graph and Data Log	

4.3.2 SYSTEM TESTING	58
4.3.2.1 FUNCTIONAL TESTING	58
4.4 SUMMARY	60
CHAPTER 5: CONCLUSION AN FUTURE WORKS	61
5.1 INTRODUCTION	61
5.2 OBJECTIVE IMPROVEMENT	61
5.3 PROJECT LIMITATION	63
5.4 FUTURE WORKS	64
5.5 SUMMARY	65
REFERENCES	66
Appendix A: Source Code	69
Arduino Source Code	69
PHP Source Code	73
Java Source Code	76
Appendix B: Step to Install and run system	93

List of Diagram

Figure 1: Comparison RAD and traditional SLDC method (Mazepa, 2018).	6
Figure 2:Project Schedule	7
Figure 3: Structure of fertigation system (Jha, Mali, Naik, Kumar & Singh, 2015)	. 12
Figure 4: The interface of Plant Health monitoring system using color sensor (Mahale et. al	l ,
2016)	. 15
Figure 5: Automatic sprinkler system and monitoring system (Gultom et .al, 2017)	. 15
Figure 6: The simple architecture and component of the system (Pravin et al, 2018)	. 17
Figure 7: Camera nodes positioning method (Putra et al., 2019).	. 19
Figure 8: Current system and extended system of Shinchi Agri-Green. (Inoe et al, 2019)	. 20
Figure 9: Comparison RAD and traditional SLDC method (Mazepa, 2018)	. 26
Figure 10: The environment of Arduino IDE (Adnan, 2018)	. 27
Figure 11: The basic template offered in Android studio. (Kurniawan, 2019)	. 28
Figure 12: Function offer by XAMPP (Kling ,2016)	. 29
Figure 13: Description of Arduino uno.	. 30
Figure 14: Ethernet shield	. 30
Figure 15:Arduino relay	. 31
Figure 16: Soil Moisture sensor	. 31
Figure 17:CCTV Camera	
Figure 18: Humidity and Temperature sensor (DT11)	. 32
Figure 19: Solenoid Valve	. 33
Figure 20: Schematic design of Arduino parts	
Figure 21: Flowchart of the system	
Figure 22: The information interface.	
Figure 23: The threat interface and notification.	
Figure 24: Component of the project	. 39
Figure 25: Wi-Fi shield installation	
Figure 26: Wi-Fi shield installation	
Figure 27: Soil moisture sensor embedded in the soil	
Figure 28: Soil moisture sensor embedded in the soil	
Figure 29: Relay that connect solenoid to 12V power supply	
Figure 30: Relay that connect solenoid to 12V power supply	
Figure 31:The label of item in the project.	
Figure 32 The information needed to connect to access point and server.	
Figure 33: Code to access the Wi-Fi shield and determine the status	
Figure 34: DT11 built in function convert sensor value to useful data	
Figure 35: Taking analogue sensor value and convert into percentage value	
Figure 36: : Code to open valve if moist percentage under 20%	
Figure 37: shown the code that sends all the data to the database	
Figure 38: Connection from Arduino to a php file at the server	
Figure 39: PHP code sending data to phone application	
Figure 40:Tables used in the project	. 47

Figure 41:Shows the part of the code that receive the code from URL and convert into strin	ıgs
for presentation of data	48
Figure 42: shows the class that control the URL connection to database and naming	49
Figure 43: shows the part of code that determining the data presentation for disease	49
Figure 44: shows the plant dehydration notification	
Figure 45: The code that launch third party software to control CCTV	51
Figure 46: : Shows the data from all three sensors	52
Figure 47: Shown the respond from the data receive from sensors to relay4.3.1.1.3 Wi-Fi	
Shield	53
Figure 48: Shows the information gained from Wi-Fi shield	53
Figure 49: shows the data being sent	54
Figure 50: shows the data being updated	54
Figure 51: Shows the data panel for user application	54
Figure 52: Shows the disease of chili plant in disease panel	55
Figure 53: Shows the notification for plant dehydration	55
Figure 54: Shows the view of CCTV from third party software	56
Figure 55: Graph function combined(left) and single(right)	57
Figure 56 :Data Log	57

List of Table

Table 1: Pros and Consusing the method (Putra et al., 2019)	19
Table 2: The advantage and disadvantage of each systems	21
Table 3: Comparison of building cost and target user between each system	23
Table 4: All the function of ChipMS system being tested	58
Table 5: shows the objective and the achievement of the project	

Abstract

This paper is about fertigation system used in the agriculture sector to increase product yield and systematic farming. The problem of the fertigation system is that it is still labor intensive, does not collect any data from the farm and does not help the farmer monitoring the farm consistently. The objective of this paper is to aid and improve the fertigation system by adding Chili plant health monitoring system. The system will consist of sensors to collect data from the farm. Next, the data will be stored and process. The user will be able to monitor it through mobile application. The significance of this project is it can help the development of technology in agricultural sector in Malaysia, reduce the wastage of water and fertilizer and increase the farm production in terms of product and efficiency. The system is hoped to be useful in future technology and development in agricultural sector.

Abstrak

Kertas ini mengandungi perihal sistem fertigasi yang digunakan di dalam bidang pertanian untuk meningkatkan penghasilan produk tanaman dan penanaman secara bersistematik. Masalah system fertigasi adalah pengunaan tenaga buruh yang tinggi, tidak mendapatkan apaapa maklumat daripada ladang dan tiada bantuan untuk para peladang memantau keadaan semasa tapak penanaman. Tujuan kertas ini adalah untuk menambahbaik system fertigasi yang sedia ada dengan menambahkan pengunaan pengesan untuk mendapatkan maklumat dari ladang. Kemudian data tersebut akan disimpan dan diproses. Pengguna akan dapat melihat data tersebut melalui aplikasi telefon pintar. Kepentingan sistem ini adalah untuk menambahbaik penggunaan teknologi dalam sector pertanian. Mengurangkan pembaziran air dan baja dan meningkatkan kecekapan sistem dan hasil. Justeru, diharapkan pada masa hadapan sistem ini akan dapat diguna pakai dan ditambah baik dalam sektor pertanian.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Chili plant is one of the most valued vegetable in the world now days. It is said this plant originated from Mexico before it is being recognized by the Asian country (Mehta, 2017). It is used in many traditional cuisines in many countries all around the world like China, India, Malaysia and even in European country. Take India as example it is said in a research that the importance of spice is well known in India until there is saying among the women in India that "Chili rules the kitchen" (Mehta, 2017). Even in Malaysia, the ethnic like Malays have used it in traditional cuisine like Nasi Lemak, Rendang and many else to increase the taste impact of the food. In fact, almost all the food in Malaysia contain at least some type of chili in their food. In addition, chili also serves as an important item in humans' health as a natural medicine. Chili is a vegetable that add a bit of spice in the dishes while also containing vitamin c to maintain immunity (Handri, Judika Heiranto, Khameswara & Maaruf, 2017). Some of the disease that is proven to be cured or treatable by the consume of chili is asthma, Arthritis, blood clots, headaches and many else (Mehta, 2017). It also brings antibacterial and anticancer effect (Sanati, Razavi & Hosseinzadeh, 2018). Besides that, in today's trend for spicy food that goes around the world, chili is quite famous. In a certain chili like Jalapeno, Ghost Pepper and many kinds of chili is in high demand.

The term of health is given three definition that can be used said by Sartorius (2007). The first one is health is the unavailability of any disease or impairment. Second, health is a condition that permits the person to cope with all requirement for daily life. Third, is health is a condition where person in a state of balance where it literally means "an equilibrium that an individual has established within himself and between himself and his social and physical environment" (Sartorius, 2007). The first definition is more suitable for the plant since the project is focus in the early detect of disease of chili plant. Any impairment and disease should be considered as health issue for the plant.

The monitoring system is a system that monitors the object and area of the chili plant. In a work to create suitable area for the plant to grow and monitoring constantly for any change that will appear at chili plant. Unlike health monitoring for human or other type monitoring system. This system is specified in chili collecting data focused on plant. For many times we depend on the farmer experience and knowledge to check on plant. Farming is a labor-intensive work especially with a large plantation. Farming also relies on the experience farmer which are not many now days to supervise each plant in every lane. This result in late observing of plant disease, resulting in plant degrade in health and harvesting time (Kitpo, Kugai, Inoue, Yokemura &Satomura,2019). Hence, this a sign of need on a system that can monitor the health of plant especially chili plant.

This paper is about a system that uses the capability of Arduino UNO named Chili Plant's Health Monitoring System (ChiPMS). It will then handle a set of sensors in determining the condition of the plan and the environment. The sensors are the soil moisture, Arduino camera, humidity, and temperature sensor. The data is stored in a cloud database where it is been sort and save for future reference. User can access the data through a mobile apps that retrieve the data and process it to produce useful information. The application also provides awareness to farmer about current condition of plant through image and threat for a certain environment condition.

1.2 PROBLEM STATEMENT

Fertigation system is one of the solutions offered by the agriculture research. A system that inject or supply the nutrient to the plan direct to the root area. The previous technique where the nutrient or the fertilizer is spread manually using hand is labor intensive work which spending more time and energy. There are devices that eased the spreading by using pumpbased tools and engine but all of them still wasted a lot of water and fertilizer. The fertigation system required only small amount of water just enough for the plan to stay healthy. The plan is separated using polybag, resulting any soil inborn plant disease will be unable to spread.

The disease comes in any form through many medium. The most microorganism infection through soil, carried by insect or caused by its larvae or any genetic based problem. The microorganism like virus, fungi, bacteria and animal like bugs have a tight relationship with the environmental change or climate change. For example, Anthracnose a disease caused by fungal infection named Colletotrichum gloeosporioides and C. capsica is severe during the wet season that infect the fruit, this disease only can be managed by removing the infected fruit, removing the plant debris and increase the plant distance (Lee, Nur Najwa Hamsein & Eng, 2016). There is also condition called bacteria wilt often happen during the dryer season which is no cure and only can be diagnosed using certain method. It is caused by Ralstonia solanacearum that caused plant to wilt, the only method is to remove the plan before it spread to others (Lee et al, 2016).

There is no doubt that fertigation system offered solution to the farmer and researchers but still there are few disadvantages need to be counted. For example, the system does not collect the environment data to adjust the allocation of water and fertilizer during the different seasonal weather. The system also doesn't take note on any change to the medium of the plant to adjust the output of the nutrient. Next, the system does not aware for any change available

3

only to human eyes like plant and fruit disease. There are a few systems that offered the spreading of water and nutrition depends on the soil condition now days. For example, we took the water sprinkler system or plant watering system. Usually most of the time, this current solution takes the parameters and notice any change on the soil and the environment and spread the water and the fertilizer according to the need of the plant. This method will ensure that the plant is not over watered or malnutrition resulting in a stress state. Unfortunately, this system does not educate the user about the disease threat on plant. Hence, Chili Plant's Health Monitoring System (ChiPMS) is hoped to educate the user on when and what disease could occur in certain environmental change. With the respect for the value of the current system we modified to certain level to process the data gained from the sensor, store it for any purpose and present it in useful information so that user are aware the condition of the farm and leam on a disease that only can be identify by observation.

1.3 SCOPE

The scope of the project is to develop a system that can alert the farmer on the condition of the farm, medium(soil), environmental change and presenting useful information using available data. The system also should be able to trigger the user about possible disease based on certain condition.

14 AIM AND OBJECTIVE

- 1. To collect data automatically from the farm through sensors.
- 2. To analyzed and present collected data.
- 3. To monitor the condition of chili farm, medium and environment using the mobile application.
- 4. To develop a monitoring system to assist farmer in monitoring the health of chili plant.

1.5 BRIEF METHODOLOGY

This project will use the rapid application development as method to develop the system illustrated in Figure 1. The first phase is to make an analysis for the system. The method for analysis is through interview, observation on the farm itself and study case of the past project through research paper and journal article. Using the information gained, the second phase is to create early design the system according to the need of the user, observation, and research available system through research material.

Next, the prototyping phase. After a detailed early design is achieved the system will be constructed in the prototyping stage also known as prototype cycle. The construction will be an iterative proves from building, demonstrate, and refine until exist a final prototype according to analysis. The developer will be working with the user to achieve satisfaction on creating first prototype. This is to make sure user requirement is always updated and fulfill.

Figure 1:Comparison RAD and traditional SLDC method (Mazepa, 2018).

The next part is the testing phase where the system is tested in the field with a real plant. This stage we will look for any bugs that still need to be fixed and test the capability of the system to catch data and present useful information to the user. The last phase is to implement the system for the user while maintaining and updating from time to time. RAD is suitable because the iterative process during the construction phase allowing to check on error and resolving any issues regarding user requirement and design. Hence, RAD is suitable for IOT project that heavily rely in the prototype design.

1.6 THE SIGNIFICANCE OF PROJECT

The significance of this project is as follow: -

1. The need of development in Malaysia agriculture technology especially in common food item like chili and other vegetable.

2. Reducing the wastage of water and fertilizer according to the real needs of plant.

3. Increasing the production of chili in plantation and the detection of plant disease before it is too late.

1.7 PROJECT SCHEDULE

	•	Task					Oct '19	13 Oct '19		20 Oct '19		27 C	lct '19		03	Nov '19		
	Ô	Mode 💌	Task Name 🔹	Duration	🛛 Start 🗸	Finish 🗸	M T W T F S	S M T W	T F S	SMTV	VTF	S S I	WTW	TF	SS	MIT	WT	
1	<	*	Pre Proposal	7 days	Fri 20-09-19	Sun 29-09-19												
2		*	Full Proposal	16 days	Mon 30-09-19) Sat 19-10-19	_	_		L								
3		*	Completion of Chapter 1	.7 days	Sun 20-10-19	Sat 26-10-19												
4		*	Completion of Chapter 2	17 days	Sun 27-10-19	Sat 16-11-19												
5		*	Completion Of Chapter 3	15 days	Sun 17-11-19	Thu 05-12-19												
6		*	Fyp 1 Final Report	5 days	Fri 06-12-19	Thu 12-12-19												
7		*	Chapter 4 : Implementation and Testing	45 days	Fri 13-12-19	Thu 13-02-20												
8		*	Chapeter5 : Conclusion and Future Work	12 days	Fri 14-02-20	Sat 29-02-20												

Figure 2: Project Schedule

1.8 EXPECTED OUTCOME

- 1. Producing system that can collect data from the chili farm and store it in the database.
- 2. Producing a useful information using the data collected.
- Producing mobile application that warn the user about some disease occurrence in different season.

1.9 PROJECT REPORT OUTLINE

1.9.1 Chapter 1: introduction

Introductions contain all the essential definition of the project according to the title, background, objective, problem statement, scope, significance, methodology, project outcome, project schedule and project description. The chapter introduce the system and contain all basic information, necessary for this project.

1.9.2 Chapter 2: literature review

Chapter 2 discuss on the existing project that are related to the project and contribute on the idea of this project. The project from other researcher are compared with Chili Plant's Health Monitoring System (ChiPMS). The chapter also compared the system proposed by other the researcher. There are at least three different system compared each other. The system is compared in terms of cost, technology used and the significance behind their design.

1.9.3 Chapter 3: requirement analysis and design

Chapter 3 will discuss on the requirement of the user for this project. Focusing in how to get user requirement on design base on interview, observation and research through previous

project. This chapter will introduce the sensor, device and software used to build Chili Plant's Health Monitoring System (ChiPMS). Using RAD as a methodology. The project will quickly produce prototype and iteratively refine it.

1.9.4 Chapter 4: implementation and analysis

Chapter 4 focusing on the implementation of the project. Applying it for the user in the real situation. This chapter show on the how to conduct test with the device created. The product will be test and analysis. Chili Plant's Health Monitoring System (ChiPMS) will endure many tests to ensure it will work on the field. This chapter will also discuss the full function of the design.

1.9.5 Chapter 5: conclusion and future work

This is the final chapter. It concludes all the project. It includes the proper documentation and delivery. This chapter also discuss current any weakness available in Chili Plant's Health Monitoring System (ChiPMS). This chapter also includes the future work for the project. It is to maintain the project after delivery.

1.10 SUMMARY

Chili is one of the important spices needed by the world and known for its importance in food, medicine and even economy. The monitoring system is used to help farmers to detect any disease and irregularity to medium and farm environment that will affect the chili plant. Chili Plant's Health Monitoring System (ChiPMS) is aiming to ease the farmer job and increase the production of the chili. Next, it aims to decrease the rate of soil degrading and mortality of the plan itself. Aiming to use three type of parameter to control and monitor the condition of the plan. That parameter is environment, medium and the plant itself. This chili plant monitoring system may help the Malaysia industries like pepper industries in Sarawak, food industries and even health industries.