

DESIGN OF HORIZONTAL SLOPE PIPE WITH DIFFERENT OPENING SIZES OF GEOTEXTILE

KHUZARINA BINTI MARZUKI

Bachelor of Engineering with Honours

(Civil Engineering)

2017/2018

UNIVERSITI MALAYSIA SARAWAK

Grade:

Please tick (√) Final Year Project Report Masters PhD

/	

DECLARATION OF ORIGINAL WORK

This declaration is made on the day of 2018.

Student's Declaration:

I <u>Khuzarina Binti Marzuki, 41700, Faculty of Engineering</u> (PLEASE INDICATE STUDENTS NAME, MATRIC NO. AND FACULTY) hereby declare that the work entitled <u>Design of</u> <u>Horizontal Slope Pipe with Different Opening Sizes of Geotextile</u> is my original work. I have not copied from any other student's work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

> 4/6/2018 Date submitted

Khuzarina Binti Marzuki (41700)

Supervisor's Declaration:

I <u>Dr. Onni Suhaiza Binti Selaman</u> (SUPERVISOR'S NAME) hereby certifies that the work entitled <u>Design of Horizontal Slope Pipe with Different Opening Sizes of Geotextile</u> (TITLE) was prepared by the above named student, and was submitted to the "Faculty as a" partial fulfillment for the conferment of <u>BEng (Hons) Civil Engineering</u> (PLEASE INDICATE THE DEGREE), and the above mentioned work, to the best of my knowledge, is the said student work.

Date: 4/6/2018

Received for examination by:

.

(Dr. Onni Suhaiza Binti Selaman)

I declare this Project/Thesis is classified as (Please tick $(\sqrt{)}$):

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organization where research was done)*

OPEN ACCESS

Validation of Project/Thesis

1 therefore duly affirmed with free consent and willingness declared that this said Project/Thesis shall be placed officially in the Centre for Academic Information Science with the abide interest and right as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS).
- The Centre for Academic Information Science has the lawful right to make copies for the purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Science has the lawful right to digitize the content for the Local Content Database.
- The Centre for Academic Information Science has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes sole property of UNIMAS.
- This Project/Thesis or any material data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student's signature: Supervisor's signature:	SC-
(Date)	(Date)

Current Address:

2

Notes: *If the Project/Thesis is CONFIDENTIAL or RESTRICTED, please attach together as annexure a letter from the organization with the period and reasons of confidentiality and restriction.

(The instrument was duly prepared by the The Centre for Academic Information Services)

DESIGN OF HORIZONTAL SLOPE PIPE WITH DIFFERENT OPENING SIZES OF GEOTEXTILE

KHUZARINA BINTI MARZUKI

A dissertation submitted in partial fulfillment of the requirement for the degree of Bachelor of Engineering with Honours (Civil Engineering)

Faculty of Engineering

Universiti Malaysia Sarawak

2017/2018

To my beloved family and friends

ACKNOWLEDGEMENT

First and foremost, in the name of Allah, Most Gracious and Most merciful God, I would like to express my thankfulness and all praise to Allah who made me able to complete my final year project smoothly and successfully with all His guidance and blessings.

I would like to extend my deepest gratitude to my main and co-supervisor, Dr. Onni Suhaiza Binti Selaman and AP Ir. Dr. Siti Noor Linda Binti Taib and for their guidance, knowledge, kind attention, time and continuous support throughout the completion of this project. I would like to express my gratitude to Mr. Haji Affandi bin Othman for his support, time and guidance for my experiments needs.

I would also like to thank my seniors and fellow friends for their help, information, opinions and support in completion of this project. I will be always indebted to them. Besides, huge thanks to my parents and family members who encouraged me and prayed for me throughout the time of my research. The immense love and moral support they have given is truly unmeasurable.

ABSTRACT

This study evaluates the effectiveness of horizontal slope pipe wrapped with different apparent opening size (AOS) of double-layer geotextile installation in terms of increasing the water discharged and simultaneously reducing the sediment produced. Several studies have been accomplished so far by past researchers regarding the design of drain with various parameters including the use of geotextile as drain envelope in order to improve horizontal slope drainage system. Their studies result in having more water discharged with high sediment produced and vice versa. Four experiments were carried out in this study which are Experiment 1 (AOS Inner and Outer Geotextile = 0.26 mm), Experiment 2 (AOS Inner and Outer Geotextile = 0.19 mm), Experiment 3 (AOS Inner Geotextile = 0.19 mm, AOS Outer Geotextile = 0.26 mm) and Experiment 4 (AOS Inner Geotextile = 0.26 mm, AOS Outer Geotextile = 0.19 mm). It is distinguished by the used AOS of 0.19 mm or/and 0.26 mm in the double-layer system. The detailed of the doublelayer system are; (i) wrapped around the High Density Polyethylene (HDPE) pipe with a diameter of 25 mm indicate as inner geotextile (ii) wrapped around the quarry gravel which act as filter material indicate as outer geotextile. A caging was used to ease the installation of pipe and quarry gravel. It was placed at the bottom of a model box with a dimension of 25 cm width, 25 cm height and 56 cm length. The model box was filled with sand which was compacted by application of hand pressure. The rainfall event was introduced with the aid of a rainfall simulator.

From the experiments performed, Experiment 1 has the highest percentage of water discharge and sediment which is due to the large AOS of 0.26 mm used on both inner and outer geotextile. The large AOS of 0.26 mm eases the flow of water but unable to retain the smaller particle of sand. Experiment 2 does not perform well in respect of having the lowest water discharged with high sediment produced. The design causes the water to trap in the sand which makes the sand quickly fully covered with water and takes time before it can pass through the geotextile to be discharged. Meanwhile, Experiment 3 has the lowest amount of sediment produced but the discharged flow is very inconsistent during the entire process which is believed to be due to AOS of 0.19 mm wrapped around the pipe causing difficulty for water movement into the pipe to be discharged. Experiment 4 is the most effective design because it has the second highest percentage of water discharged which is 19.95% against mass of water introduced and also second lowest

amount of sediment produced with a value of 0.094 g. Therefore, it can be concluded that the application of double-layer system with the used of two different AOS of geotextile on the design has significantly increased the filtration capacity and facilitate the water discharged.

ABSTRAK

Kajian ini menilai keberkesanan paip cerun mendatar dibalut dengan dua lapisan geoteksil yang mempunyai saiz pembukaan jelas (AOS) yang berbeza dari segi meningkatkan air yang dikeluarkan dan pada masa yang sama mengurangkan sedimen yang terhasil. Beberapa kajian telah dicapai setakat ini oleh penyelidik terdahulu mengenai reka bentuk saliran dengan pelbagai parameter termasuk penggunaan geotekstil sebagai penapis saliran untuk meningkatkan sistem saliran cerun mendatar. Kajian mereka menghasilkan lebih banyak air yang dikeluarkan dengan sedimen yang tinggi dan sebaliknya. Empat eksperimen telah dijalankan dalam kajian ini iaitu Eksperimen 1 (AOS Geoteksil Dalaman dan Luaran = 0.26 mm), Eksperimen 2 (AOS Geoteksil Dalaman dan Luaran = 0.19 mm, Eksperimen 3 (AOS Geoteksil Dalaman = 0.19 mm, AOS Geoteksil Luaran = 0.26 mm) dan Eksperimen 4 (AOS Geoteksil Dalaman = 0.26 mm, AOS Geoteksil Luaran = 0.19 mm). Ia dibezakan oleh AOS yang digunakan iaitu 0.19 mm atau / dan 0.26 mm dalam sistem dua lapisan. Perincian sistem dua lapisan adalah; (i) dibalut sekeliling paip ketumpatan tinggi polyethylene (HDPE) dengan diameter 25 mm sebagai geotekstil dalaman (ii) dibalut sekeliling batu kerikil yang bertindak sebagai geotekstil luar. Sangkar digunakan untuk memudahkan pemasangan paip dan batu kerikil. Ia diletakkan di bahagian bawah kotak model dengan dimensi 25 cm lebar, 25 cm tinggi dan 56 cm panjang. Kotak model diisi dengan pasir yang dipadatkan dengan menggunakan tekanan tangan. Kejadian hujan diperkenalkan dengan bantuan simulator hujan.

Keputusan daripada eksperimen yang dilakukan mendapati Eksperimen 1 mempunyai peratusan air dan sedimen yang tertinggi disebabkan oleh AOS yang besar iaitu 0.26 mm yang digunakan pada kedua-dua geotekstil dalaman dan luaran. AOS yang besar ini memudahkan aliran air tetapi tidak dapat menapis zarah pasir yang lebih kecil. Eksperimen 2 mempunyai pencapaian yang kurang baik kerana mempunyai air terendah yang dikeluarkan dengan sedimen yang banyak. Reka bentuk ini menyebabkan air terperangkap di pasir yang membuat pasir dengan cepat dipenuhi dengan air dan mengambil masa untuk melalui geotekstil dan dikeluarkan. Sementara itu, Eksperimen 3 mempunyai jumlah sedimen yang paling rendah tetapi aliran yang dikeluarkan adalah tidak konsisten sepanjang proses dijalankan yang dipercayai disebabkan oleh AOS 0.19 mm yang dililit di sekitar paip menyebabkan kesukaran pergerakan air ke dalam paip untuk dikeluarkan. Eksperimen 4 adalah reka bentuk yang paling berkesan kerana ia mempunyai peratusan kedua tertinggi air iaitu 19.95% daripada jumlah air yang diperkenalkan dan juga jumlah sedimen kedua terendah dengan nilai 0.094 g. Oleh itu, dapat disimpulkan bahawa penggunaan sistem dua lapisan dengan penggunaan dua AOS geotekstil yang berbeza pada reka bentuk telah dapat meningkatkan keupayaan penapisan dan memudahkan air untuk dikeluarkan.

TABLE OF CONTENTS

	Page
Acknowledgement	i
Abstract	ii
Abstrak	iv
Table of Contents	vi
List of Tables	xii
List of Figures	xiv
List of Symbols	XX
List of Abbreviations	xxii
CHAPTER 1 INTRODUCTION	1
1.1 Research Background	1

1.3	Project Aims and Objectives	3
1.4	Scope of Study	3
1.5	Significance of Study	4

2

6

1.6Structure of Thesis4

CHAPTER 2 LITERATURE REVIEW

1.2 Problem Statement

2.1	General	6
2.2	Horizontal Slope Drain	6

2.3	Grour	ndwater Lowering	8	
2.4	Effect	iveness of Horizontal Slope Drain	11	
	2.4.1	Size and Drain Location	11	
	2.4.2	Length and Spacing of Drain	15	
	2.4.3	Direction Angle of Drain	16	
	2.4.4	Pipe Perforation	18	
2.5	Granu	ılar Drain Filter	23	
	2.5.1	Granular Filter Design Criteria	24	
2.6	Geote	xtile Drain Envelope	26	
	2.6.1	Geotextile Design Configuration	29	
	2.6.2	Geotextile Design Criteria	31	
2.7	Rainfa	all Simulation	34	
	2.7.1	Types of Rainfall Simulator	35	
	2.7.2	Rainfall Intensity Based on Past Studies	36	
	2.7.3	Rainfall Intensity Value	39	
	2.7.4	Uniform Rainfall Drop Distribution	40	
2.8	Sumn	nary	41	
CHAPTER 3 F	RESEA	RCH METHODOLOGY	42	
3.1	3.1 Introduction			
3.2	Exper	iment Set Up	44	
3.3	Desig	n Considerations for Slope Pipe	45	

	3.3.1	Soil Sa	nple	45
		3.3.1.1	Moisture Content Test	46
		3.3.1.2	Sieve Analysis	47
		3.3.1.3	Standard Proctor Test	48
		3.3.1.4	Permeability Test	50
		3.3.1.5	Specific Gravity	51
		3.3.1.6	Infiltrometer Test	52
	3.3.2	Pipe Sp	ecification	54
	3.3.3	Pipe Pe	rforation	54
	3.3.4	Drain E	nvelope	56
	3.3.5	Filter M	laterial	60
	3.3.6	Caging		60
	3.3.7	Angle I	Direction and Placement	62
	3.3.8	Model I	Box	63
	3.3.9	Rainfall	Simulator	65
	3.3.10	Bucket		66
	3.3.11	Stopwa	tch	67
3.4	Data .	Analysis		67
3.5	Sumn	nary		68

CHAPTER 4 I	RESULTS ANALYSIS AND DISCUSSION	69
4.1	Introduction	69

4.2	Proper	rties of S	69				
	4.2.1	Moistu	Moisture Content Test				
	4.2.2	Sieve A	Sieve Analysis				
	4.2.3	Standar	Standard Proctor Test				
		4.3.3.1	Soil Density Preparation	73			
	4.2.4	Permea	bility Test	74			
	4.2.5	Specific	c Gravity	75			
	4.2.6	Infiltro	meter Test	75			
4.3	Rainfa	all Simula	ll Simulator				
4.4	Analy	sis of Ex	is of Experiments Data				
	4.4.1		Similar AOS of Geotextile on Both Inner and Outer Geotextile				
	4.4.2		Different AOS of Geotextile on Both Inner and Outer Geotextile				
	4.4.3	0.26 m Geotext	rison between Similar AOS of n on both Inner and Outer tile and Different AOS on Inner ter Geotextile	89			
		4.4.3.1	Similar AOS of 0.26 mm on Inner Geotextile	89			
		4.4.3.2	Similar AOS of 0.26 mm on Outer Geotextile	93			
		4.4.3.3	Discussion	96			

	4.4.4	Compar	rison between Similar AOS of 0.19	97
		mm on	both Inner and Outer Geotextile	
		and Dif	ferent AOS on Inner and Outer	
		Geotex	tile	
		4.4.4.1	Similar AOS of 0.19 mm on	97
			Inner Geotextile	
		4.4.4.2	Similar AOS of 0.19 mm on	100
			Outer Geotextile	
		4.4.4.3	Discussion	103
4.5	Sum	nary		104
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS				
5.1	Conc	lusion		105
5.2	Reco	mmendat	ions for Future Works	108
REFERENCES	5			110
APPENDIX A:	Geote	extile Teo	chnical Data	118
APPENDIX B:	Moist	ture Con	tent (Before, During and After	119
	Expe	riments)		
APPENDIX C:	Stand	lard Pro	ctor Test	128
APPENDIX D:	Perm	eability '	Test	129
APPENDIX E:	Speci	fic Gravi	ity	132
APPENDIX F:	Infilt	ration Te	est	133
APPENDIX G:	: Rain	fall Simu	lator Test	141

APPENDIX H: Experiment Data

LIST OF TABLES

Table Page 2.1 Hydraulic Properties of Soils (Cai et al., 1998) 11 2.2 Pipe Drain Gradients (DID, 2009) 12 2.3 Comparison between Full Circumference Pipe and Partial 23 Circumference Pipe (Edwin, 2017) 2.4 Requirements for Well Graded Filter Material (DID, 2009) 26 2.5 Drain Filter and Envelop Recommendations (DID, 2009) 28 3.1 Proposed Partial Drainage Pipe 56 3.2 Scale Factor between Pipes in Experiments and Nanyang 63 4.1 Natural Moisture Content for Sand 70 4.2 Moisture Content of Before, During and After the 70 Experiment 71 4.3 Sieve Analysis of Sand 4.4 Amount of Water Needed to be Added into Soil 74 4.5 Summary of Volume of Water Infiltrate into the Soil and 75 Infiltration 4.6 Summary of Hydraulic Conductivity for All Experiments 75 4.7 Summarized Data for Experiment 1 and Experiment 2 83 4.8 Summarized Data for Experiment 3 and Experiment 4 86 4.9 Summarized Data for Experiment 1 and Experiment 4 90 4.10 Summarized Data for Experiment 1 and Experiment 3 94

4.11	Summarized Data for Experiment 2 and Experiment 3	98
4.12	Summarized Data for Experiment 2 and Experiment 4	101

LIST OF FIGURES

FigurePage

1.1	Slope Failure in Bukit Setiawangsa, Kuala Lumpur (Starproperty.my, 2013)	2
2.1	Horizontal Drainage System in the Slope (Highland & Bobrowsky, 2008)	7
2.2	(a) 3D Finite Element Mesh, (b) 2D Finite Element Mesh on Horizontal Plane for Selected Model (Cai et al., 1998)	10
2.3	(a) Profile 1, (b) Profile 2 of Selected Slopes (Rahardjo et al., 2003)	13
2.4	Drain Locations on Slope (Rahardjo et al., 2003)	14
2.5	Safety Factor Increase versus Direction Angle (Cai et al., 1998)	17
2.6	Class 1 Perforation (Partially Perforated Pipe) (AASHTO, M252/M294)	20
2.7	Class 2 Perforation (Fully Perforated Pipe) (AASHTO, M252/M294	20
2.8	(a) Cross Section View of Pipe (mm) (b) Angle of Pipe of Perforation (Yong et al., 2017)	21
2.9	Cross Section View of Pipe for Full Circumference (Edwin, 2017)	22
2.10	Cross Section View of Pipe for Partial Circumference (Edwin, 2017)	22
2.11	Example Filter Sand Design (Bergerman, 2011)	25

2.12	Geotextile Wrapped around a Gravel Aggregate Drain (U. S. Department of Interior & Bureau of Reclamation, 2014)	30
2.13	Geotextile Wrapped around a Perforated Drainpipe (U. S. Department of Interior & Bureau of Reclamation, 2014)	30
2.14	Illustration the Concepts of Soil Internal Erosion and Excessive Clogging (U. S. Department of Interior & Bureau of Reclamation, 2014)	32
2.15	Schematic Representation of the Laboratory Set-Up (de Lima & Singh, 2003)	37
2.16	Schematic Diagram of the Laboratory Test Apparatus (Liu et al., 2016)	38
3.1	Flowchart of this Study	43
3.2	Schematic Diagram of the Experiment	45
3.3	Sand	46
3.4	Oven-Drying Method of Soil Sample	47
3.5	Standard Test Sieves	48
3.6	Compacted Soil in a Mould	49
3.7	Apparatus needed to Conduct Standard Proctor Test	49
3.8	Constant Head Test of Sand	50
3.9	Constant Head Test of Quarry Gravel	51
3.10	Vacuum Desiccator	52
3.11	Pyknometer	52
3.12	Infiltrometer Test on Surface of Compacted Soil	53
3.13	HDPE Pipe	54

3.14	Perforation Patterns on HDPE pipe (mm)	55
3.15	Perforation on 220° Degree Pattern	55
3.16	Template of Perforation on Pipe	55
3.17	Non-Woven Geotextile	57
3.18	Double-layer System of Geotextile Wrapping	57
3.19	Experiment 1: AOS of 0.26 mm on both Inner Geotextile and Outer Geotextile	58
3.20	Experiment 2: AOS of 0.19 mm on both Inner Geotextile and Outer Geotextile	58
3.21	Experiment 3: AOS of 0.19 mm and 0.26 mm on Inner Geotextile and Outer Geotextile respectively.	59
3.22	Experiment 4: AOS of 0.26 mm and 0.19 mm on Inner Geotextile and Outer Geotextile respectively.	59
3.23	Quarry Gravel	60
3.24	Full View of Caging	61
3.25	Front View of Caging	61
3.26	Plan View of Caging	62
3.27	Inclinable Board	62
3.28	Placement of Inclinable Board Producing Angle	63
3.29	Side View of Model Box	64
3.30	Front View of Model Box	64
3.31	Rainfall Simulator	65
3.32	Containers Arranged on Soil Tray according to the Model Box	66

3.33	Collecting Water Discharged	67
4.1	Particle Size Distribution for Sand	72
4.2	Moisture Density Curve	73
4.3	Coefficient of Permeability (m/s) (British Standards 1377,1990)	74
4.4	Metal Plate	77
4.5	Closer View of the Metal Plate	77
4.6	Rainfall Simulator Set-up with Metal Plate	78
4.7	Rainfall Intensity Indicated in Each Cup Applied with Metal Plate	79
4.8	Nozzle Attached on the Rainfall Simulator	80
4.9	Rainfall Simulator Set-up with Nozzle	80
4.10	Rainfall Intensity Indicated in Each Cup	81
4.11	AOS of 0.26 mm on both Inner and Outer Geotextile	82
4.12	AOS of 0.19 mm on both Inner and Outer Geotextile	82
4.13	Physical Condition of Geotextile for Experiment 1 (a) Around the Pipe (b) Around the Quarry Gravel	84
4.14	Physical Condition of Geotextile for Experiment 2 (a) Around the Pipe (b) Around the Quarry Gravel	84
4.15	Comparison of Discharge Rate between Experiment 1 and Experiment 2	85
4.16	AOS of 0.19 mm and 0.26 mm on Inner and Outer Geotextile respectively	86
4.17	AOS of 0.26 mm and 0.19 mm on Inner and Outer Geotextile respectively	86

4.18	Physical Condition of Geotextile for Experiment 3 (a) Around the Pipe (b) Around the Quarry Gravel	87
4.19	Physical Condition of Geotextile for Experiment 4 (a) Around the Pipe (b) Around the Quarry Gravel	87
4.20	Comparison of Discharge Rate between Experiment 3 and Experiment 4	88
4.21	AOS of 0.26 mm on both Inner and Outer Geotextile	89
4.22	AOS of 0.26 mm and 0.19 mm on Inner and Outer Geotextile respectively	89
4.23	Physical Condition of Geotextile for Experiment 1 (a) Around the Pipe (b) Around the Quarry Gravel	91
4.24	Physical Condition of Geotextile for Experiment 4 (a) Around the Pipe (b) Around the Quarry Gravel	91
4.25	Graph of Discharge Rate for Experiment 1	92
4.26	Graph of Discharge Rate for Experiment 4	92
4.27	AOS of 0.26 mm on both Inner and Outer Geotextile	93
4.28	AOS of 0.19 mm and 0.26 mm on Inner and Outer Geotextile respectively	93
4.29	Physical Condition of Geotextile for Experiment 1 (a) Around the Pipe (b) Around the Quarry Gravel	94
4.30	Physical Condition of Geotextile for Experiment 3 (a) Around the Pipe (b) Around the Quarry Gravel	94
4.31	Graph of Discharge Rate for Experiment 1	95
4.32	Graph of Discharge Rate for Experiment 3	96
4.33	AOS of 0.19 mm on both Inner and Outer Geotextile	97

4.34	AOS of 0.19 mm and 0.26 mm on Inner and Outer Geotextile respectively	97
4.35	Physical Condition of Geotextile for Experiment 2 (a) Around the Pipe (b) Around the Quarry Gravel	99
4.36	Physical Condition of Geotextile for Experiment 3 (a) Around the Pipe (b) Around the Quarry Gravel	99
4.37	Comparison of Discharge Rate between Experiment 2 and Experiment 3	100
4.38	AOS of 0.19 mm on both Inner and Outer Geotextile	100
4.39	AOS of 0.26 mm and 0.19 mm on Inner and Outer Geotextile respectively	100
4.40	Physical Condition of Geotextile for Experiment 2 (a) Around the Pipe (b) Around the Quarry Gravel	102
4.41	Physical Condition of Geotextile for Experiment 4 (a) Around the Pipe (b) Around the Quarry Gravel	102
4.42	Comparison of Discharge Rate between Experiment 2 and Experiment 4	103
5.1	Overall Comparison on Mass of Water Discharged	106
5.2	Overall Comparison on Sediment Produced	106
5.3	Small Holes Around Pipe being Covered Up with Sellotape	109