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ABSTRACT

Computational DNA motif prediction is a challenging problem because motifs are short,

degenerated, and are associated with ill-defined features. With the advances of genome-wide

ChIP analysis technology, computational motif discovery tools are necessary to effectively

tackle the large-scale datasets for motifs search. Ensemble of DNA motif discovery methods

is one of the most successful approaches for motif discovery. Nevertheless, most of the

existing works cannot perform motif searches in ChIP datasets because of the limited input

sizes of the classical tools employed in the ensemble. Ensemble approach not only uses

the results from the classical motif discovery tools, it also combines the discovered results

to produce better results. The merging algorithm contributes to the prediction accuracy of

the discovered motifs. The primary contribution of this thesis work is the development

of an ensemble method called ENSPART with the novelty of using data partitioning

technique on ChIP dataset for DNA motif prediction. The idea is to reduce the search

space by portioning the input datasets into subsets and tackle by ensemble of classical

motif discovery tools separately. Then, using a proposed merging algorithm, the candidate

motifs are merged regardless the different lengths. Three experiments are conducted.

ChIP datasets have been downloaded to evaluate the performances of the ENSPART with

Receiver Operative Curves and Area Under Curve performance metrics. ENSPART was

compared with the genome-wide motif discovery tools MEME-ChIP, ChIPMunk, and

RSAT peak-motifs using partitioning technique. The results demonstrate that ENSPART

performed significantly better than MEME-ChIP and RSAT peak-motifs in terms of the

two performance metrics. Another set of datasets are gathered and sampled without

partitioning. ENSPART is compared to its employed classifiers: AMD, BioProspector,

MDscan, MEME-ChIP, MotifSampler, and Weeder 2. ENSPART is also compared to
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MEME-ChIP, ChIPMunk, and RSAT peak-motifs without partitioning. The results show

that ENSPART produces significantly better results than its individual classifiers and also

MEME-ChIP, ChIPMunk, and RSAT peak-motifs. Finally, an experiment on the simulated

datasets is conducted. ENSPART is compared to GimmeMotifs and MotifVoter which

both are also ensemble-based tools. The results show that ENSPART produce significantly

higher precision and recall rates than GimmeMotifs and MotifVoter. In conclusion, the

ensemble technique is effective for DNA motif prediction, while the ChIP dataset can be

tackled effectively using data partitioning techniques. The developed merging technique in

ENSPART allows effective merging of same motifs from different data partitions. Such

methods are generally applicable to any ensemble techniques that utilised classical motif

discovery tools, or more recently, ChIP analysis tools.

Keywords: DNA motif discovery, ensemble method, data partitioning
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Rangka Kerja “Ensemble” untuk Ramalan Motif DNA Berdasarkan Pembahagian Data

ABSTRAK

Ramalanmotif DNA komputasi adalah sesuatu yangmencabarkan keranamotif yang pendek,

merosot, dan dikaitkan dengan ciri-ciri yang tidak jelas. Kemajuan teknologi analisis

ChIP yang genomik amat memerlukan kemudahan alat penemuan motif komputasi yang

dapat mencari motif daripada data berskala besar dengan berkesan. Penemuan motif DNA

kaedah “ensemble” adalah salah satus pendekatan yang paling berjaya untuk penemuan

motif. Walau bagaimanapun, sebahagian besar penyelidikan yang sedia ada tidak dapat

melakukan pencarian motif dalam dataset ChIP kerana alat-alat klasik yang digunakan

dalam bersama bersifat dengan saiz input terhad. Pendekatan “ensemble” bukan hanya

menggunakan hasil daripada alat penemuan motif klasik, ia juga menggabungkan hasil

yang ditemui untuk keputusan yang lebih berkesan. Algoritma penggabungan menyumbang

kepada ketepatan ramalan motif yang ditemui. Sumbangan utama kerja tesis ini adalah

pembangunan kaedah “ensemble” yang dipanggil ENSPART dengan menggunakan teknik

pemecahan data daripada dataset ChIP untuk ramalan motif DNA. Idea ini adalah untuk

mengurangkan ruang carian dengan memasangkan dataset input ke dalam subset dan diatasi

dengan alat penemuan motif klasik secara berasingan. Dengan menggunakan algoritma

penggabungan yang dicadangkan, motif calon disatukan tanpa mengira kepanjangan yang

berlainan. Tiga eksperimen telah dijalankan. Dataset ChIP telah dimuat turun untuk menilai

prestasi ENSPART dengan metrik “Receiver Operative Curves” dan “Area Under Curve”.

ENSPART telah dibandingkan dengan alat penemuan motif MEME-ChIP, ChIPMunk,

dan RSAT peak-motifs menggunakan teknik pemecahan. Hasilnya menunjukkan bahawa

penggunaan ENSPART lebih berkesan daripada MEME-ChIP dan RSAT peak-motifs dari

segi dua metrik prestasi. Satu lagi kumpulan dataset dikumpulkan dan disampel tanpa
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pemecahan. ENSPART dibandingkan dengan pengelas yang telah digunakan, iaitu AMD,

BioProspector, MDscan, MEME-ChIP, MotifSampler, dan Weeder 2. ENSPART juga

dibandingkan dengan MEME-ChIP, ChIPMunk, dan RSAT peak-motifs tanpa pemecahan

dataset. Hasilnya menunjukkan bahawa ENSPART menghasilkan keputusan yang lebih

baik dan mempunyai kesan ketara daripada pengkelas individu dan juga MEME-ChIP,

ChIPMunk, dan RSAT peak-motifs. Akhir sekali, eksperimen dengan dataset simulasi telah

dijalankan. ENSPART dibandingkan dengan dua alat yang berasaskan kaedah “ensemble”

iaitu GimmeMotifs dan MotifVoter. Keputusan menunjukkan bahawa ENSPART mempunyai

kadar ketepatan dan pengingatan yang lebih tinggi daripada GimmeMotifs dan MotifVoter.

Kesimpulannya, teknik “ensemble” adalah berkesan untuk ramalan motif DNA, manakala

ChIP dataset dapat diatasi secara berkesan dengan menggunakan teknik pembahagian

data. Teknik penggabungan dalam ENSPART berkesan dalam menggabungkan motif yang

sama hasil daripada pembahagian data yang berlainan. Secara amnya, kaedah-kaedah

sedemikian dapat digunakan di mana-mana teknik “ensemble” yang menggunakan alat

penemuan motif klasik atau alat analisis ChIP yang baru secara amnya.

Kata kunci: Penemuan motif DNA, kaedah ensemble, pemecahan dataset
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CHAPTER 1

INTRODUCTION

1.1 Background

Proteins are essential biopolymers in cells as the building blocks of various organs or tissues

as well as essential component of enzymes. Proteins are produced through a process known

as gene-expression, which involves decoding the information stored in protein coding genes

in genomes. The two steps involved are transcription and translation. Transcription is

a step that replicates the exact copy of genetic codes in the gene into messenger RNA,

where the translation step decodes the information in the messenger RNA into proteins.

Transcription factor (TF) proteins control when and to what extent each gene is transcribed.

The short sequences (i.e. 6–12 bp or base pair) in a genome that are bound by TFs for

regulating gene-expression are called transcription factor binding sites (TFBSs) of motifs

which are located in the gene’s upstream or downstream. There are various types of motifs

in the DNA sequences, such as the promoter, silencer, enhancer, insulator, proximal, and

distal regulatory motifs. Predicting transcription factors is essential so that biologists are

able to study the various diseases such as cancers (Lanchantin, Singh, Wang, & Qi, 2016;

Shlyueva, Stampfel, & Stark, 2014; Whitaker, Nguyen, Zhu, Wildberg, & Wang, 2015).

Biologists are able to prepare the sequence regions that are anticipated to contain the TFBSs

through wet-lab technology (N. K. Lee & Choong, 2013). However, wet-lab experiments

to identify the motifs are costly and time-consuming (D. Wang & Do, 2012). Therefore,

computational motif analysis techniques are necessary to predict the candidate motifs before

further verification (N. K. Lee, Choong, & Omar, 2016). That would allow rapid analysis of

transcription factors binding sites in genomic datasets.
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Computational motif discovery is a non-deterministic polynomial-time hard (NP-hard)

problem (Rigoutsos & Floratos, 1998) because motifs are short (5–20 bp or base pair) and

degenerated (Jin, O’Geen, Iyengar, Green, & Farnham, 2007). Dozens of computational tools

have been developed to predict the location of TFBSs (Das & Dai, 2007; Lihu & Holban,

2015; Salekin, Zhang, & Huang, 2017; Tran & Huang, 2014). De novo motif discovery tools

predict novel motifs representing binding sites using certain algorithms. Given an input DNA

dataset which contains the binding sites of a TF and its co-factors, computational tools return

the most overrepresented repeating sequence patterns or motifs, in the DNA sequences. The

predicted candidate motifs can be verified by biologists for functional roles (Bailey, 2011;

Satya & Mukherjee, 2004).

A set of motifs which cooperates together is known as cis-regulatory module

(CRM) (Klepper, Sandve, Abul, Johansen, & Drablos, 2008). There are several types

of CRMs: enhancer, silencer, and insulator (Maston, Evans, & Green, 2006). Enhancers

are genomic regions that controls the timing, amplitude, and cell-type specific gene

expression (Erwin et al., 2014; C. Wang, Zhang, & Zhang, 2013). Because of the role of

these enhancers, they are of great interest to understand the evolution and diseases like

cancer (Shlyueva et al., 2014). By studying enhancers, biologists are able to understand

the development of DNA in order to foresee the tissue specific activity of regulatory

elements (Ghandi, Lee, Mohammad-Noori, & Beer, 2014). Enhancers are usually found at

distal location from promoter in non-coding regions (C. Wang et al., 2013). They can be

located in megabases away from the target genes (Noonan & McCallion, 2010) or located

at other chromosomes (Lomvardas et al., 2006). Furthermore, there is no single type of

data that is adequate to identify all the enhancers. As a result, enhancers are difficult to be

identified (Erwin et al., 2014).
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Traditional motif discovery tools are broadly categorised into probabilistic and enumerative

approaches. Probabilistic approach uses position weight matrix (PWM) to represent the

probability of the nucleotides (A, C, G, and T) occur in the data sequence (Das & Dai, 2007;

N. K. Lee & Wang, 2011). Probabilistic approach implements stochastic method such as

expectation maximization (EM) and Gibbs sampling (Das & Dai, 2007) while enumerative

approach performs exhaustive matching of the nucleotides that are commonly enumerated as

A, C, G, and T (Das & Dai, 2007; Kuksa & Pavlovic, 2010; Sandve & Drabløs, 2006).

Artificial intelligence (AI) approaches are also been widely used for DNA motif discovery.

Applying AI techniques in motif discovery requires different definition of the problem. For

instance, clustering algorithms can be employed to cluster k-mers in a set of DNA sequences

based on the k-mers similarities, self-organizing map (SOM) (Mahony, Benos, Smith, &

Golden, 2006) has been employed in motif discovery. Furthermore, a motif that is represented

as PWM can be assumed as the population in Genetic Algorithm (GA). By using GA, the

motifs can be optimised and discovered (L. Li, 2009; L. Li, Liang, & Bass, 2007; F. F. M. Liu,

Tsai, Chen, Chen, & Shih, 2004; Z. Wei & Jensen, 2006) in motif discovery.

Motif discovery can be considered as a machine learning task (Brazma, Jonassen,

Eidhammer, & Gilbert, 1998) because discovering the motifs is extracting the general rules

from the dataset. The sequences that contain the motifs are the positive sequences, while

the background sequences are the negative sequences. Thus, the objective of the motif

discovery is to identify the motifs through the training from these positive and negative

datasets. Recently, supervised learning, especially deep learning, has shown good results

in bioinformatics in recent years (Alipanahi, Delong, Weirauch, & Frey, 2015; Eser &

Churchman, 2016; Kelley, Snoek, & Rinn, 2015; Qin & Feng, 2017; J. Zhou & Troyanskaya,
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2015).

Ensemble approach is a machine learning that uses multiple classifiers to produce a new

classifier (Hu, Li, & Kihara, 2005). Unlike hybrid algorithm, ensemble approach does

not combine the algorithms to produce a new algorithms. Ensemble approach can be

applied in motif discovery by using multiple de novo motif discovery tools to discover the

candidate motifs. Hence, each individual motif discovery tool or individual classifier can

retain its strength. Ensemble approaches have been employed in many previous works and

demonstrated excellent performances (Hu et al., 2005; Hu, Yang, & Kihara, 2006; Jin,

Apostolos, Nagisetty, & Farnham, 2009; Kuttippurathu et al., 2011; Romer, Kayombya,

& Fraenkel, 2007; Wijaya, Yiu, Son, Kanagasabai, & Sung, 2008; Yanover, Singh, &

Zaslavsky, 2009). In ensemble approaches, the results from each classifier are combined

to produce better results discovered by individual classifier. This allows ensemble learning

superior to a single de novo motif discovery tool. Furthermore, the ensemble approach is

flexible to employ different de novo motif discovery tools.

1.2 Problem statements and motivation

1.2.1 Evidences

Motif discovery is a NP-hard problem, because the motifs are short and degenerated (Jin

et al., 2007). While many tools have been proposed, the ensemble approaches have shown

better overall performances (Hu et al., 2005; Jin et al., 2009; Kuttippurathu et al., 2011;

van Heeringen & Veenstra, 2011; Wijaya et al., 2008). One of the reasons is ensemble

approaches utilised multiple types of motif discovery algorithms and therefore can predict

motifs of different characteristics in dataset. They showed good performance on motif
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discovery, but existing methods are not designed for large-scale genomic datasets. In

addition, these motif discovery tools can only accept limited size of inputs with few hundreds

sequences (Zambelli, Pesole, & Pavesi, 2013). In the post ChIP sequencing (ChIP-seq) era,

the genome-wide transcription factor binding region datasets have become available. Those

datasets typically have hundreds to multiple thousands of sequences. While there are dozens

of standalone motif discovery tools have been proposed to enable motif discovery in the

large-scale datasets (Haudry, Ramialison, Paten, Wittbrodt, & Ettwiller, 2010; Kulakovskiy,

Boeva, Favorov, & Makeev, 2010; Shi et al., 2011; Bailey, 2011), it is hypothesised the

ensemble technique has an edge in term of sensitivity and specificity. There are evident in

many past studies (Hu et al., 2005, 2006; Jin et al., 2009; Kuttippurathu et al., 2011; Romer

et al., 2007; Wijaya et al., 2008; Yanover et al., 2009) that ensemble approaches performed

significantly better than any single tool alone. This owing to the fact that different tools

might be able to search for motifs with different characteristics, for example, short versus

long motifs, conserved versus weakly conserved, or dependent and non-dependent between

nucleotides in motifs. Nonetheless, there is a lack of study that demonstrates the potentiality

of ensemble approach on motif discovery towards the large-scale genomic datasets. Most

existing ensemble approaches developed pre-ChIP-seq era are deemed infeasible due to the

limitation of the individual motif discovery tools to search for motifs in the complex, large

search space, and the requirement of high memory resource.

1.2.2 Limited input size

While there have been several ensemble methods (e.g. ChIPMotifs, GimmeMotifs, and

CompleteMOTIFS) developed for the ChIP-seq dataset motif analysis, they have restricted
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the input sizes for searching to ensure the result can be completed within reasonable time.

Therefore, it is necessary to propose an ensemble method that can accept the input with large

sizes and at the same time is able to employ the pre-ChIP-seq motif discovery tools.

1.2.3 Effective merging of large number of intermediate motifs

There are two common models can be used to represent the motifs: profile and consensus.

Because of ensemble approach uses multiple tools, it is not restricted to accept only certain

motif models produced by the individual tools. This increases the technical challenge of

designing an ensemble method, because merging different motif model representation is not

a straight forward task. The merging of the motif requires common representation, which

involves conversion of one model to another. Besides that, similar or identical motifs would

be merged. A measurement is necessary to compute the similarity of the motifs. Furthermore,

merging condition needs to be defined, so that only when the condition is fulfilled, the motifs

should be merged. The merging algorithms will also determine characteristic of the final

output. For example, let merge(a, b) = (a + b)/2 as a merging function, where a and b are

two similar motifs. In order to merge a group of similar motifs, merge(a, b) will be called

repetitively until all similar motifs are merged. This indicates that the motif being merged

last has the largest weight on the final output. Contrarily, let merge(L) = (∑ l)/n as a

merging function, where L is a list of similar motifs,
∑

l is the summation of similar motifs,

and n is the number of motifs. By using this formula, every similar motif has equal weight

on the final output. Therefore, different merging algorithm will produce motifs differently.

Existing merging methods are only suitable for merging small number of motifs from the

whole input set. With large dataset, more intermediate motifs could be discovered and hence
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a more effective merging method is needed.

To address the problems identified in the existing approach, we are motivated by the use

of data partitioning approaches in clustering. Data partitioning is a promising solution as it

divides the search space into smaller search space. By partitioning the datasets, it not only

allows large-scale datasets to be scanned, but it also allows the usage of traditional motif

discovery tools on the large-scale datasets. Traditional motif discovery tools were proved

to be useful for the pre-ChIP-seq era datasets. This also implies that ensemble approach

with data partitioning is potential to solve large-scale datasets motif discovery problem by

using any individual motif discovery tools, as long as discovered motifs from the partitioned

datasets are able to be merged.

1.3 Research questions

The followings are the research questions derived from problem statements:

i. How to discover the motifs using pre-genomic era or pre-ChIP-seq individual motif

discovery tools on the large-scale datasets?

ii. What is the algorithm to combine the discovered motifs from individual motif

discovery tools regardless the difference of motif representations?

iii. Does ensemble approach based on data partitioning and multiple merging has better

performance comparing to existing ensemble approaches and genome-scale motif

discovery approaches?
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1.4 Objectives

The main goal of this thesis work is to develop an effective novel ensemble framework for

motif analysis of ChIP-seq, that has better motif discovery performance in terms of accuracy

comparing to contemporary motif discovery tools.

The specific objectives towards the goal are as follows:

i. To discover motifs by utilising pre and post ChIP-seq era motif discovery tools in the

ensemble framework.

ii. To merge similar motifs and produce new motifs without strongly diminishing the

quality by using a novel motifs merging algorithm.

iii. To develop a novel ensemble approach framework that performs better than several

contemporary ensemble-based motif discovery tools.

Identifying motifs in the genome-wide datasets involves a large search space. This thesis

work proposes a framework to partition the genome-wide datasets to smaller samples.

Consequently, motif discovery tools will be able to discover the motifs from the subsets.

Moreover, by using ensemble approach, the results from each tool will be combined to

produce new candidate motifs.

1.5 Hypotheses

This study involves three hypotheses:

i. The proposed ensemble framework that employs novel partitioning technique has

better accuracy performance than the contemporary ChIP-seq motif discovery tools.
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ii. The proposed ensemble framework that employs novel merging technique has better

accuracy performance than the contemporary ChIP-seq motif discovery tools.

iii. The proposed ensemble framework is able to perform significantly better than several

contemporary ensemble-based motif discovery tools.

1.6 Thesis contributions

In this thesis work, an ensemble framework for DNA motif discovery called Ensemble

Framework Based on Data Partitioning (ENSPART) is developed. The aim of ENSPART

is to permit motif analysis on ChIP dataset using multiple motif discovery tools — pre- or

post-ChIP era tools. Existing ensemble approaches limit the input sizes as the individual

tools employed in the ensemble cannot run on large-scale dataset which is a typical case

in the current motif analytic research. ENSPART circumvented that issue by employing a

simple data partitioning technique to enable running of classical motif discovery tools on the

ChIP dataset.

ENSPART is distinct from existing ensemble methods because each tool does multiple runs

to generate many candidate motifs. That increases the chances of finding true motifs. Another

novelty is ENSPART performs multiple merging on a big pool of candidate motifs generated

by individual tools. While most methods employed alignment method to determine similar

motifs in the candidate pool, ENSPART uses alignment free method because of its fast

computation of pair-wise motif similarity.

This thesis work also contributed to comprehensive evaluation of ENSPART using real

and simulated datasets. The evaluation results have contributed to a better method to
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design ensemble method for motif discovery. In specific, the results showed that, running

classical motif discovery tools on ChIP dataset remain practical by data partitioning approach

and effective merging of large number of redundant candidate motifs. While many new

genome-wide motif analysis tools claimed that classical motif discovery tools are no longer

applicable in the current data landscape, our method demonstrated that they are still relevant

by using the method such as in ENSPART. In our evaluation using three (3) sets of datasets

(two ChIP-seq and a simulated), ENSPART performed marked improvement in comparison

to existing ensemble approaches as well as genome scale motif discovery tools. Evaluation

results also showed ENSPART performed better in terms of sensitivity and specificity rates

than individual tools it uses. Interestingly, ENSPART performed better than the state of the

art ensemble tool MotifVoter with significant improvement.

1.7 Thesis structure

The next chapter is the Literature Review on previous studies related to DNA motif discovery.

The chapter defines motif discovery problem and motif representation using different models.

Various motif discovery tools with different approaches including ensemble approach are

discussed. Finally, evaluation methods of the motif discovery tools are explained.

Chapter 3 is the methodology of the proposed motif discovery ensemble framework.

The chapter covers the proposed ensemble framework, ENSPART, and provides detailed

explanation of the algorithm. This chapter also describes the datasets that are collected for the

experiments. Lastly, evaluation metric and tools that are used for performance comparisons

are explained.

Chapter 4 is the findings of three experiments conducted in this thesis work. The chapter
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contains three findings: (i) comparison of ENSPART to genome-wide motif discovery tools,

(ii) comparison of ENSPART to various motif discovery tools using unpartitioned datasets,

and (iii) comparison of ENSPART to ensemble-based motif discovery tools using simulated

datasets. Discussions on the major findings are also provided.

Chapter 5 concludes the thesis with thesis contributions, summary of the findings, limitations

of the thesis, and potential future works.

1.8 Conclusion

Transcription factors (TFs) play an important role in regulating gene expression. The

transcription process requires TFs to bind to a short (6–12 bps) DNA region, which is called

transcription factor binding sites (TFBSs). By studying TFBSs, the biologists are able to

verify various diseases and improve medical solutions. Discovering TFBSs is a process

known as motif discovery, is a NP-hard problem because the pattern is short and degenerated.

The problem is being exaggerated when the next generation sequencing (NGS) such as

ChIP-seq is introduced. This is because ChIP-seq produces large-scale datasets for genomic

analysis. Various de novo motif discovery tools and algorithms were developed to discover

the motifs. There are multiple approaches being employed for motif discovery. The two

major approaches for motif discovery are probabilistic and enumerative. The probabilistic

approach calculates the probabilities of DNA nucleotides occurrences and represented in a

matrix form. Enumerative approach uses word enumeration with A, C, G, and T for the

DNA nucleotides and performs exhaustive matching. Ensemble learning was introduced

to use various de novo motif discovery tools as individual classifiers to discover the motifs.

The results from the individual classifiers are combined. Previous studies have demonstrated

that using ensemble approach can improve the prediction performance. However, large-scale
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datasets are not able to be scanned by classic motif discovery tools that were developed before

NGS era. As a result, a novel ensemble approach with partitioning of the datasets is proposed.

Furthermore, ensemble approach is commonly employed with combining similarity and

clustering on the results. Hence, each ensemble-based motif discovery tool is expected to

have distinctive results and the prediction accuracies of each ensemble-based tool are able to

be compared. Moreover, the ensemble approach should perform better than or at least at the

same level as its individual classifiers (Hu et al., 2005).
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

In biology, a genome is a complete set of genetic material of an organism which consists

of deoxyribonucleic acid (DNA). DNA carries the genetic information of an organism and is

composed of nucleotides. There are four nucleotides: A (adenine), C (cytosine), G (guanine),

and T (thymine). DNA plays important role in gene expression, that is, the process to

synthesize the gene products, especially proteins. Transcription is the initial step in gene

expression. It is a process of creating a complementary ribonucleic acid (RNA) copy of a

sequence of DNA. Similar to DNA, RNA consists of four types of nucleotides: A, C, G,

and U (uridine). The transcription requires a transcription factor (TF) to bind to a region of

the DNA called promoter. Transcription factor is a protein that binds to the DNA region to

initiate the transcriptional regulation.

Transcription factors regulate the transcription of genetic information from DNA to

messenger RNA (mRNA). A short sequence segment in a DNA sequence that is bound by

TF is called transcription factor binding site (TFBS) or regulatory motifs, such as promoters.

TFBSs are the small fragments (i.e. 5–20 bp or base pair) that are statistically overrepresented

in a genome (Lihu & Holban, 2015). They are located in the gene’s upstream (5’-end) or

downstream (3’-end) closely to the transcription start site (TSS) of proximal promoter region

or further region as enhancers and silencers (Pavesi, Mauri, & Pesole, 2004). A motif is a

conserved pattern which can be found in more than one sequence of DNA. Motif can also be

known as repetitive pattern that appears in the DNA sequences (Zaslavsky & Singh, 2006).
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Over-representation of a motif indicates that the pattern of the combination of the nucleotides

(A, C, G, and T) has a frequency of occurrences significantly higher than the background set.

Because motifs are important in the gene-expression regulation, the scientists are interested

to discover these binding sites for biological research.

2.2 Motif discovery problem

Motif discovery problem can be formulated in several ways but in general the aim is to predict

candidate motifs and their locations in the input sequences. The input sequences are typically

obtained through wet-lab experiments that are believed to be enriched with binding regions

of a TF protein of interest. Nevertheless, other than the primary motifs of the TF, there

are possibly motifs of co-factors. Therefore, motif discovery tools typically return several

candidate motifs in a run.

In a more technical way, motif discovery can be defined as a problem to find the

short and similar sequence by given a set of DNA sequences with a common biological

function (Zambelli et al., 2013). The problem can be formulated as searching for motif length

k and its instances. Typically, the lengths of motifs to search are specified by the users. Once

the lengths are specified, computational motif algorithms would search for motif instances

in the input DNA sequences.

A motif can be represented as a string pattern or a matrix. String pattern is known as

consensus, while matrix is known as motif profile which can be expressed as position weight

matrix (PWM). Because motifs are conserved, their instances appear to be like each other but

not identical. The instances of a motif are usually overrepresented in the input sequences but

rarely in the background sequences that do not contain motifs. Therefore, over-representation
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of a motif can be computed by its scoring in the input sequences against the background

sequences. Following Lee’s (2018) definition, we formally define motif discovery problem

as:

Given a set of DNA sequences SF containing potential binding sites of a

transcription factor protein, predict their locations in SF to reveal the motif

patterns, described by a suitable computational model, return a list of top

scored length k motif patterns together with their instance locations.

In the definition above, the motif patterns with length k are assumed unknown and are

automatically determined by the algorithm. Due to random evolutionary events such as

the mutation, insertion, and deletion, the motif patterns are not conserved. However, this

formulation is NP-hard that large motif lengths such as k > 15 bp cannot be solved

within feasible computation time. Moreover, the search space grows exponentially when

k increases.

A TF may bind to binding site “AAATCGGG” or its degenerated form “AAATTGGG” with

only one position with distinct nucleic acid. To identify such motifs, all possible variants of

the nucleic acids need to be considered. For example, the complexity of MEME algorithm

is O(N2 · L2) where N is the number of input sequences and L is the sequence length. As a

result, the time complexity will increase exponentially with the large datasets.

Other than defining computational motif discovery as a search problem, it can be defined

as a multiple alignment problem as well (Bailey & Elkan, 1994). Alignment of genomic

sequences from orthologous or paralogous species can identify regions that are conserved.
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Through conversation analysis, the potential binding regions can be identified. Nevertheless,

alignment techniques have been shown to miss out many true binding sites (N. K. Lee et al.,

2018).

In order to search for candidate motif locations, de novo motif discovery tools have been

developed. They are used for identifying motifs without prior knowledge of their motif

appearance and locations (Z. Wei & Jensen, 2006). Motif discovery tools search through

DNA sequences and find patterns that appear frequently and evolutionary conserved. The

results from the search are candidate motifs that are most overrepresented using some

statistical scores (Sandve & Drabløs, 2006).

2.3 Motif representations

There are two common ways to represent a motif (Hashim, Mabrouk, & Al-Atabany, 2019;

Stormo, 2000): consensus (or word enumeration, or oligos) based on International Union of

Pure and Applied Chemistry (IUPAC), and profile matrix. The most prevailing profile matrix

is position weight matrix (PWM), which is also known as position specific scoring matrix

(PSSM) (Linhart, Halperin, & Shamir, 2008; Sandve & Drabløs, 2006).

The consensus representation is using the DNA nucleotides to represent the motifs as a string,

S = (s1s2s3 · · · sl) where si ∈ Σ. According to evolutionary theory, motifs are not fully

conserved because of the genetic operations such as mutation, deletion, and insertion. As

a result, motif patterns must be presented with the ambiguity of the nucleotides. These

ambiguous codes are usually based on IUPAC notation or regular expression. For instance,

a pattern can be translated to IUPAC notation (Haudry et al., 2010; Ji & Wong, 2006) as

AARGTTAT, where R is a “purine”, which can be either A or G. On the other hand, the same
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pattern can be represented using regular expression as AA[AG]GTTAT, which the third word

can be either A or G.

Table 2.1 shows the relation of IUPAC ambiguity notation to the regular expression.

Table 2.1: IUPAC Notation

IUPAC Notation Description Regular expression

W weak [AT]

S strong [CG]

M amino [AC]

K keto [GT]

R purine [AG]

Y pyrimidine [CT]

B not A [CGT]

D not C [AGT]

H not G [ACT]

V not T (and U for RNA) [ACG]

N any [ACGT]

An alternative to consensus representation is profile (Das & Dai, 2007). A profile is

constructed from multiple sequence alignment (Gribskov, McLachlan, & Eisenberg, 1987).

The sequences are aligned by similarity then the frequency of the nucleotides according to

the position is calculated. The PSSM is also known as profile (Brejová et al., 2000; Gribskov

et al., 1987; Wasserman & Sandelin, 2004). Consensus is different from profile as the
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former uses words to denote the most frequent nucleotide in each position, the latter involves

sequence alignment and building the matrix such as PSSM.

Figure 2.1 shows the sequence alignment of binding sequences for the construction of motif

profile.

												Site
											------
AACTTCCATC	ACTCCT	ACCCATCATT
ACACAGAAAA	ACTCCT	CAGGCCACCA
	CCCCAGGGC	ACTCCT	CATCTCTTTA
ACACGTTATG	ACTCCA	TAAAACACTT
AGATGGGCAA	ACTCCA	GACATTAGTG
CTTAGCATCT	ACTCCA	TGCCAGGCGT
							CAT	AGTCCT	TGCTACCTGG
AGAGTGCCAC	AGTCCT	GGACCTGAAG
CACTCGGGCC	AGTCCT	AACAATTGCC
TGCGTATGGG	AGTCCA	CAGCAGAG
AAAAGTGCTT	ACTCCC	TCTATATGGT
GTAGAAACCA	ACTACA	AAATTAACCA

Sequence

Aligned subsequence

Figure 2.1: Sequence alignment to produce a motif profile. The sequences are aligned so

that the subsequences are produce identical or similar pattern. The discovered pattern is used

to construct the profile.

After alignment and trimmed into equal length, the position frequency matrix (PFM) (Stormo,

2000) can be calculated by frequency of the nucleotides as follows:

A

C

G

T



12 0 0 1 0 5

0 8 0 11 12 1

0 4 0 0 0 0

0 0 12 0 0 6
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The PFM entries can be defined as Equation 2.1:

mk,j =
N∑

i=1
I(Xi,j = k) Equation 2.1

where i ∈ (1, . . . , N), N is the length of motif, j ∈ (1, . . . , 4), k ∈ Σ, and I(a = k) is the

indicator function.

The indicator function I(a = k) is defined as Equation 2.2:

I(x = k) =


1 if x = k,

0 if x 6= k.

Equation 2.2

The element m1,1 with the value 12 means that the frequency of nucleotide A at position 1 is

12. The element m2,2 with the value 8 means that the frequency of nucleotide C at position 2

is 8, and m3,2 means the frequency of nucleotide G at position 2 is 4. Hence, the probability

of nucleotide C to appear at position 2 of the motif is 0.67 probability, while nucleotide G is

0.33. Furthermore, fb,i can be used to denote the frequency of the nucleotide b at position i.

The PFM can be converted to the position probability matrix (PPM) by normalising the entries

in each position of the matrix in Equation 2.3:

P = 1
N

M Equation 2.3

where M is the PFM and N is the number of aligned binding sites.
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As a result, the matrix above will be converted into the following PPM:

A

C

G

T



1.00 0.00 0.00 0.08 0.00 0.42

0.00 0.67 0.00 0.92 1.00 0.08

0.00 0.33 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.50



According to Stormo (2000), the PWM is a log-scale matrix. Given W as the PWM, the

matrix entries Wi,j can be defined in Equation 2.4.

Wi,j = log2
p(b, i)
p(b) Equation 2.4

where p(b) is the background probability of nucleotide b and p(b, i) is the corrected probability

of base b in position i of the alignment of binding sites. p(b, i) is defined in Equation 2.5,

p(b, i) = fb,i + s(b)
N + 1 Equation 2.5

where the s(b) is a pseudocount function, and N is the total number of nucleotides at

the binding site. If the frequency of a nucleotide is 0, this will produce undefined result

when applying logarithm to the value. Therefore, a pseudocount is used in the formula to

compensate the zero occurrences of the nucleotides (Wasserman & Sandelin, 2004). The

pseudocount function is defined in Equation 2.6,

s(b) = 1
4

√
N Equation 2.6

where the value 1/4 is used by assuming that the background probability of each nucleotide

20



Σ is equal.

The consensus representation can be converted into PWM (Sumazin et al., 2005) and vice

versa (Gao, Liu, & Ruan, 2017). PWM is the most widely used representation (Nishida, Frith,

& Nakai, 2009; Sinha, 2006) method due to its preservation of the motif variations. The

consensus representation causes information loss because it only captures the information of

the most dominant nucleotide(s) in each position of a motif (Wasserman & Sandelin, 2004).

For instance, in the case of “AA[AC]GTTAT”, it only depicts the most frequent nucleotide(s)

but failed to indicate the relative frequency of all nucleotides. In actual fact, some of the less

frequent nucleotides are important for TF protein binding as well. As a result, consensus

representation fails to describe the quantitative information of the binding sites (Schneider,

2002).

The motif profile can often be visualised using a sequence logo (Schneider & Stephens, 1990).

It is the most widely used visual representation for TFBSs in the past 20 years (Gao et al.,

2017; N. K. Lee & Oon, 2013). Figure 2.2 shows an example of a sequence logo visualisation.

Figure 2.2: Example of sequence logo.
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The height of the letter is calculated by using Equation 2.7,

height = fb,i × Ri Equation 2.7

where Ri is the amount of information presented at position i. Ri is defined in Equation 2.8,

Ri = 2 − (Hi + en) Equation 2.8

where Hi is the uncertainty of position i and en is the correction factor for n letters. Hi is

defined in Equation 2.9,

Hi = −
t∑

b=a

fb,i × log2 fb,i Equation 2.9

en is defined in Equation 2.10 according to MEME,

en = 1
ln 2 × 3

2n
Equation 2.10

A sequence logo depicts two important conservation information of a motif. Firstly, the

sequence logo depicts the conservation level in each multiple-alignment of a motif in bits.

A nucleotide with 2 bits indicates the maximum conservation of the DNA sequence. For

example, the fifth and the eighth positions of “C” in Figure 2.2 are 2-bit height, which

indicates that letter “C” has full conservation in fifth and eighth positions. Besides that,

the total height of the stacked letters indicates the conservation level measured by using

information content concept at the specific position (N. K. Lee & Oon, 2013). Secondly,

the sequence logo also illustrates the relative frequency, fb,i in Equation 2.9, of the four

nucleotides Σ represented by each height. Sequence logo, while is useful for analysis of
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the characteristics of a motif, it is inappropriate to be used as evaluation metric because it

does not provide quantitative information that is necessary for accurate comparison between

motifs (N. K. Lee & Oon, 2013).

2.4 Datasets for computational motif discovery

Besides the algorithms involved in the motif discovery, different types of datasets are also

concerned by the researchers. Decades ago, there were limitations in the technology used

to sequence the whole genome. Hence, the datasets involved are usually small eukaryotic

datasets. The earliest motif discovery tools targeted these datasets. For instance, MEME

command-line tool by default only reads the small size datasets which are less than 100,000

bp, and GAPWM by default only reads 5,000 sequences.

With the advancements of the immunoprecipitation technology, chromatin

immunoprecipitation (ChIP), ChIP with paired end tags (ChIP-PET), ChIP-on-chip

(or ChIP-Chip) which is coupled with microarray, and ChIP-seq (ChIP sequencing) which

the ChIP is combined with massively parallel DNA sequencing have been proposed.

ChIP-on-chip and ChIP-seq are next generation sequencing (NGS) methods used by

researchers to produce genome-wide datasets with the regions bound in vivo by a selected

TF as several thousands of bp down to 300 bp long (Zambelli, Ré, & Pavesi, 2009; Zambelli

et al., 2013). Classic de novo motif discovery tools were designed to input a few hundred

sequences of co-regulated genes only. However, with the NGS techniques, the input

sequences become shorter and centred on the actual TFBS around 50–200 bp around the

peak. The regions of interested that are larger than actual TFBSs are the perfect case study

for motif discovery, because by using genomic regions, it is able to lead to the better results

using promoter analysis (Zambelli et al., 2013). As a result, NGS like ChIP-seq have rapidly
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become the standard in motif discovery.

There are several annotated motif databases available online. One of the most commonly

used DNA databases is JASPAR which contains the TFBSs data in PWM format (Sandelin,

Alkema, Engström, Wasserman, & Lenhard, 2004). JASPAR provides an API for users

and developers so that they can use their tools to check the results by comparing to the

JASPAR database to identify true motifs. Similarly, TRANSFAC (Wingender, 2008)

database contains the transcription factors and the profile information for both DNA and

protein. JASPAR and TRANSFAC databases are the well-known databases to be used for

comparing the true motifs with the discovered candidate motifs to evaluate the performance

of the algorithm.

ChIPBase (K. R. Zhou et al., 2017; Yang, Li, Jiang, Zhou, & Qu, 2013) is another database

that provides the thorough annotation and discovery of the transcription factor binding

maps from ChIP-seq data. The source of human datasets of ChIPBase are collected from

Encyclopedia of DNA Elements (ENCODE) (Consortium, 2012) and Gene Expression

Omnibus (GEO) (Barrett et al., 2009). ENCODE project organises the mapped regions of

transcription and the transcription factor association. On the other hand, GEO is a public

repository for high-throughput gene expression data. It contains functional genomic data

including transcription factor binding. By using the database, we are able to access curated

ChIP-seq datasets and download them for the experiments.
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2.5 Motif discovery approaches

2.5.1 Probabilistic approach

Expectation Maximization (EM)

Probabilistic approach motif discovery uses stochastic methods for sequence alignment. The

goal of “local multiple alignment” (Smith & Waterman, 1981) is to locate short patterns

of local segment of sequences that are conserved sequences. Examples of probabilistic

algorithms proposed to solve the local alignment include Expectation Maximization

(EM) (C. E. Lawrence & Reilly, 1990) and Gibbs sampling (C. Lawrence et al., 1993).

Multiple EM for Motif Elicitation (MEME) (Bailey & Elkan, 1995) is an unsupervised

learning based on the expectation maximization (EM) (C. E. Lawrence & Reilly, 1990).

According to Bailey and Elkan (1995), identifying the motifs can be expressed as given a

dataset of sequences by assuming that it contains a single motif, then locating the starting

position of the motif in each sequence and describing the motif. EM is able to solve this

problem as when given the length of the motif, it estimates the probability Pi,j of the motif

starts in position j of the sequence i. The Pi,j is then used to estimate the frequency f of the

nucleotides A, C, G, and T, in each column of the motif. The estimation is repeated until the

changes of f is very small. There are two limitations of EM. Firstly, the difficulty of choosing

the initial value of the f . Secondly, EM assumes that each sequence of the dataset contains

exactly one motif. MEME algorithm solves the two limitations. MEME runs repetitively with

different starting points derived from the subsequence. The starting point which produces

the highest likelihood will be chosen as the motif. The steps are repeated several times

to discover further motifs. Finally, motifs are probabilistically removed after they are

found to ensure that other motifs can be discovered in the same set of sequences. MEME
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algorithm assumes that each discovered motif nearly forms by at least one subsequence in

the dataset. Compared to other algorithms, MEME can estimate the motif width by itself,

without providing motif width as a parameter (Hu et al., 2006). Third order Markov model

is used as model for the background sequences. There are three types of sequence models

supported by MEME: one occurrence per sequence (OOPS); zero or one occurrence per

sequence (ZOOPS); and two-component mixture (TCM). The OOPS model assumes that

there is exactly one occurrence of a motif in a sequence. ZOOPS is a generalised OOPS

that assumes zero or one occurrence of a motif in a sequence. Lastly, TCM model assumes

that there are zero or more non-overlapping candidate motifs occurred in each sequence.

According to Bailey, Williams, Misleh, and Li (2006), in order to successfully discover the

motifs using MEME, the input sequences have to be prepared. The sequences should be

less than 1000 bp long and contains only a few background sequences. It is not suitable for

genome-wide motif discovery. Additionally, it suffers computational problems on ChIP-chip

or ChIP-seq datasets because these datasets have thousands of binding regions for a single

TF (Ma et al., 2012; Shi et al., 2011).

MEME Suite is a web service to offer a unified portal for online motif discovery (Bailey et

al., 2009). GLAM2 is a generalised gapless Gibbs sampling algorithm (Frith, Saunders,

Kobe, & Bailey, 2008). MEME Suite integrates three motif scanning tools: MAST

sequence homology search (Bailey & Gribskov, 1998), Find Individual Motif Occurrences

(FIMO) (Grant, Bailey, & Noble, 2011), and GLAM2SCAN (Frith et al., 2008). The MEME

algorithm is enhanced with the Gapped Local Alignment of Motifs (GLAM2) algorithm

to solve the gap problem of the motifs. In addition, Discriminative Regular Expression

Motif Elicitation (DREME) (Bailey, 2011) discovers short motifs without gap for large-scale

datasets and Tomtom (Gupta, Stamatoyannopoulos, Bailey, & Noble, 2007) which is used for
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comparing similarities between the motifs using E value to the databases of the motifs. FIMO

is a tool that scans DNA or protein sequences according to the motifs in PWM or PFM format.

The tool calculates log-likelihood ratio score for each motif. The log-likelihood scores are

converted to the p-values and estimate the false discovery rates (FDRs). FIMO is able to

show the locations of the top-scoring occurrences of the target motif. Hence, it is able to be

used for precision and recall calculation.

MEME-ChIP (Machanick & Bailey, 2011) that targets for ChIP datasets is also a part of

MEME Suite. MEME-ChIP is a computational pipeline that trims the sequences to 100

bp, then uses DREME to discover short motifs and 600 randomly selected sequences are

scanned by MEME. MEME-ChIP also runs AME (McLeay & Bailey, 2010) on all trimmed

sequences to calculate the statistical enrichment using known motifs in the JASPAR database.

MEME-ChIP is a script that utilises the MEME program with the parameters that can scan the

input datasets in a faster manner. Firstly, MEME-ChIP generates the Markov model from the

FastA file. Then it invokes the other utilities such as fasta-most, fasta-dinucleotide-shuffle,

fasta-subsample, and psp-gen, to calculate the parameters from the file and shuffle the

sequences in the FastA file. Next, MEME is invoked to perform the motif discovery with the

re-ordered data sequences. Finally, DREME is also invoked from MEME-ChIP to discover

short motifs which cannot be found by MEME (Machanick & Bailey, 2011).

ChIPMunk (Kulakovskiy et al., 2010) is developed to target on ChIP-Seq datasets. It

employs a greedy optimisation strategy combined with EM (Lihu & Holban, 2015;

Zambelli et al., 2013). The basic algorithm of ChIPMunk calculates the discrete analog of

Kullback-Leibler divergence as the discrete information content (KDIC). It also implements

zero-or-one-occurrence-per-sequence (ZOOPS) mode to search the local alignment that has
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maximum KDIC and constructs the PWM. The weights of each sequence position forming

the sequence profiles are assigned to the initial sequence data. The PWM is optimised by

rebuilding the alignment from the words of maximal PWM scores and from new motif

occurrences. The convergence is achieved after the profile values are substituted by their

maxima within a sliding window, while the window length is equal to the motif length. The

advantage of ChIPMunk is that it can process tens of thousands of data sequences without

truncating long DNA segments. According to Kulakovskiy et al. (2010), ChIPMunk can

identify the true motifs with same or even better quality as MEME and the study also showed

that it is faster than MEME in motif discovering.

Gibbs sampling

Other than EM, Gibbs sampling (C. Lawrence et al., 1993) is another commonly used

stochastic search technique. Gibbs sampling uses iterative sampling for “local multiple

alignment”. It employs the Markov Chain Monte Carlo (MCMC) approach so that every

step is based on random sampling and the results are depending on the results of the previous

steps like EM. The main difference of Gibbs sampling and EM is that Gibbs sampling takes

a weighted sample from the subsequences, while EM takes a weighted average across all

subsequences (D’haeseleer, 2006). Gibbs sampling searches a relatively small amount of

ungapped patterns from each input sequences with specified width. There are two evolving

data structures are maintained. First, a set of probabilistic model variables [qi,1, . . . , qi,n] is

used to describe the residue frequencies at each position of a single pattern. The variables

are also accompanied by background frequencies [p1, . . . , pn]. Second, a set of variables is

used to describe the probabilistically inferred position of the patterns ak of each sequence.

The algorithm is initialised using a random starting position of a single sequence. Then, it
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iteratively updates the pattern for qi,j and pj . Next, it calculates the probabilities Qx from qi,j

and Px from pj . Consequently, it can calculate the weight for the segment x in Equation 2.11

as follows:

Ax = Qx/Px Equation 2.11

Finally, the new ak can be obtained. The fundamental concept iteratively constructing

accurate pattern then the locations.

One tool that uses Gibbs sampling is Aligns Nucleic Acid Conserved Elements

(AlignACE) (Hughes, Estep, Tavazoie, & Church, 2000; Roth, Hughes, Estep, & Church,

1998). AlignACE allows multiple types of motifs to be found because it uses iterative

masking of the discovered TFBSs in the positive sequences. The maximum a posteriori

(MAP) score is used to measure the over-representation motif relative to the random

occurrence in background sequences. Furthermore, AlignACE automatically clusters

similar motifs together. W-AlignACE was proposed with improved Gibbs sampling

algorithm (X. Chen, Guo, Fan, & Jiang, 2008) in order to handle ChIP datasets. Therefore,

W-AlignACE employs a sequence weighting scheme on AlignACE algorithm to find the

PWM. The sequence weighting scheme assigns a weight proportional to the logarithm fold

change of the mRNA expression of downstream gene. Consequently, the maximization of

the combination of the binding sites and the expression data can be observed and the PWM

is discovered.

MotifSampler (Thijs et al., 2001) is another tool that uses Gibbs sampling method. It

improves the Gibbs sampling with two modifications. It uses a higher-order Markov chain

background model to estimate the number of motifs in a sequence. The probability generated
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by background model is denoted as P = P (S|Bm), where S is the site sequence and Bm

is the background model. The probability of a binding site x with length l is denoted as

Qx = P (S|θ) where θ is a position probability matrix of nucleotides of the binding site x.

Consequently, a weight Ax can be calculated as in Equation 2.11. The distribution of the

normalized weights Ax is updated to find the alignment vector that maximizes the ratio of

the target binding site to the background probability.

BioProspector (X. Liu, Brutlag, & Liu, 2001) uses the Monte Carlo method, which involves

repeated random sampling to identify the significance of the discovered motif from the score

distribution. Furthermore, Gibbs sampling has been improved to allow discovering gapped

motifs. BioProspector implements two thresholds, TH and TL, to the threshold sampler

process. All the non-overlapping segments of the sequence s with score θ > TH are added

to the motif and also the positions added to alignment as. The segments with the score

TL ≤ θ ≤ TH , one segment will be chosen with probability proportional to Ax − TL where

Ax is calculated in Equation 2.11. This allows the motif discovery to achieve convergence

quicker when sampling only the segments with the score within [TL, TH ].

GibbsST (Shida, 2006) is another tool incorporating the Gibbs sampling method. In addition,

GibbsST improved the motif discovery performance by combining thermodynamic method,

namely simulated tempering, with Gibbs sampling. Simulated tempering is an algorithm

related to simulated annealing but uses dynamic temperatures (Marinari & Parisi, 1992).

Simulated tempering is proposed because Gibbs sampling is prone to trap in the local optima.

By using simulated tempering, the Gibbs sampling efficiency is improved. Simulated

tempering is a robust solution which can be applied to bioinformatics problems to escape

from local optima. GibbsST was compared with classic Gibbs sampling. Results have
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shown that the performance coefficient of GibbsST is significantly superior to classic Gibbs

sampling. Moreover, classic Gibbs sampling achieved extremely poor convergence to the

global optimum as the initial values are randomly selected.

In probabilistic approach, methods such as EM, stochastic Gibbs sampling, and Hidden

Markov Models are commonly used. However, they have limitations due to sensitivity to

the initial setting of the parameters. Moreover, these methods may be trapped in the local

optima because they are local search (Chan, Leung, & Lee, 2007).

2.5.2 Enumerative approach

The enumerative method (Das & Dai, 2007; Sinha & Tompa, 2003) is also known as

the deterministic method (Brazma et al., 1998; Sandve & Drabløs, 2006), word-based

method (Ichinose, Yada, & Gotoh, 2012), or consensus-based method (Pavesi, Mauri,

& Pesole, 2004). Enumerative methods are more scalable compare to probabilistic

approach (Das & Dai, 2007), such as expectation maximization (EM) (Bailey & Elkan,

1994) and Gibbs sampling (C. Lawrence et al., 1993). This is because enumerative

method guarantees global optimum by exhaustively counting all the patterns in a given

set of sequences to detect the ones that are overrepresented from the background

frequencies (Ettwiller, Paten, Ramialison, Birney, & Wittbrodt, 2007; Ichinose et al., 2012).

This method identifies the motifs in the form of oligos, regular expressions, or mismatch

expressions (Sandve & Drabløs, 2006). Oligo or oligonucleotide is a string of a certain length

of permutation on a set of alphabets. Oligo can be represented as words or strings (Rombauts,

Florquin, Lescot, & Van de Peer, 2003). According to Defrance, Janky, Sand, and van
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Helden (2008), oligo can be represented by a 4-letter alphabet Σ or 15-letter alphabet as

IUPAC code in Table 2.1, for instance AANNGAATTGK. On the other hand, regular

expression is a pattern describes a set of strings of characters. Regular expression allows

wildcards but not variable length gaps (Bailey, 2011). An example of regular expression is

[AT][AT]C{2,3}GC, which means the first and second words be either A or T, then C can

occur two or three times, followed by G and C. Mismatch expression can be denoted as (l, d)

where l is the l-mer and d is the number of mismatch. The mismatch of the words can be

evaluated by using Hamming distance such as AACCGT and ACCCGA has two mismatches

on the second word and the last word.

The enumerative method typically relies on exhaustive enumeration of the words to guarantee

global optimum by covering the space of all possible motifs for a specific motif model

description (D’haeseleer, 2006). It is possible to discover the best solution. However,

when the length of the pattern increases, the running time grows exponentially (Brejová

et al., 2000). Enumeration of the solution space for all possible oligo combination is

computationally impractical (Zambelli et al., 2013), for example DREME limits the motif

search to maximum 8 bp (Bailey, 2011) and Weeder limits to 12 bp (Pavesi, Mereghetti,

Mauri, & Pesole, 2004; Ichinose et al., 2012). Though different heuristic methods are used

to prune the search space or using the mismatches restriction, they do not solve the problem

in general (Pavesi, Mauri, & Pesole, 2001). Besides that, it can only identify short patterns

and less degenerated (Pavesi et al., 2001).

Mismatch Tree Algorithm (MITRA) (Eskin & Pevzner, 2002) is one of the tools that uses

mismatch expression. It uses a mismatch tree data structure to split the pattern space

into disjoint subspaces with a given prefix. It reduces the pattern discovery into smaller
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sub-problems. The pairwise similarities are used to build a graph where the vertices

are the l-mers, while the edges are the connection of two similar l-mers. Based on

WINNOWER (Pevzner & Sze, 2000) approach, MITRA prunes the non-signals edges from

the graph so that the signals are remained. MITRA uses trie (prefix tree) traversal to discover

the motifs in the input strings. It is able to discover both monad and composite pattern in the

DNA sequences. Monad pattern is a unit of the word in DNA and composite patterns are a

group of monad patterns relatively close to each other. Monad pattern can be expressed as

a single continuous block of sequence with the form of (l, d) − k where l is the length of

the pattern, d is the maximum number of the mismatch, and the k is the minimum number

of times the pattern repeated (Satya & Mukherjee, 2004). On the other hand, dyads are two

units of the pattern and the spaced dyads for the gapped motifs. MITRA can be extended with

insertion and deletion operations. MITRA has been tested with monad motifs from Buhler

and Tompa (2002), dyad signals from Gelfand, Koonin, and Mironov (2000), and composite

regulatory signals from GuhaThakurta and Stormo (2001). The results showed that MTIRA

was able to recover the dyad signal and the composite pattern which are not able to be found

by CONSENSUS, MEME, GibbsSampler, and ANN-Spec.

A motif algorithm for detecting enrichment in multiple species (Amadeus) was developed

for genome-wide de novo motif discovery (Linhart et al., 2008). Amadeus is a pipeline of

filters where each phase refines the list of candidate motifs from the previous phase. There

are several phases in the algorithm: preprocess, mismatch, merge, greedy, postprocess, and

pairs analysis. The preprocess phase evaluates all the k-mers to determine the most promising

motifs. The mismatch phase changes a k-mer to a list of k-mers by introducing degenerate

positions into the k-mers. The merge phase combines two similar motifs together recursively

so that no new high-scoring similar pairs exist. The greedy phase involves calculation of a
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PWM from every motif, then optimises the PWM using an iterative process similar to greedy

EM. The process is repeated until the score does not improve any more. The final phase,

postprocess, removes all the redundant motifs. Human datasets (CREB, E2F, NANOG,

NRF1, TP53, SOX2, and SRF) and mouse datasets (Foxp3, Mef2, Myod, and Myog) were

tested. Amadeus was compared with AlignACE, MEME, YMF, Trawler, and Weeder by

using Tompa’s (2005) benchmark study. The results showed that Amadeus significantly

outperformed other tools with 62% success in terms of motif recovery rate on the known

motifs. Amadeus also discovered two novel motifs ACTACAWYTC and CTCGCGAGAT.

It was also demonstrated that Amadeus is the fastest tool among the other tools while

AlignACE and MEME are extremely slow with the large datasets.

Seed-driven algorithm is also used in enumerative motif discovery. It evaluates the seeds

from a very simple pattern, then grows possible seeds to full motifs (Sandve & Drabløs,

2006). For instance, TEIRESIAS (Rigoutsos & Floratos, 1998) is a seed-driven exhaustive

algorithm. TEIRESIAS has two operation phases. They are scanning and convolution. The

scanning phase will scan for the patterns which will be used in convolution phase. During the

scanning phase, the patterns are broken into multiple non-maximal and overlapping pieces.

Therefore, in the convolution phase, the pieces are convolved together to recover the original

patterns. The phases are repeated as the patterns gradually grow larger until all maximal

patterns are generated.

Motif Discovery scan (MDscan) (X. S. Liu, Brutlag, & Liu, 2002) is an enumerative

deterministic greedy algorithm targets on genome-wide ChIP-array datasets. MDscan

algorithm combines the advantage of word enumeration and PWMs. MDscan uses the

words sampled from the input sequences as seed pattern to scan for their occurrences with
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mismatch in subset of the input sequences. Those matches words of a seed pattern are used

to form PWM and then it is scored by using the MAP function with third order Markov

chain background model. The 10–50 candidate motifs from the highest scores are used for

the next iteration, in which each PWM of a motif is used to scan for matching words in the

remaining input subset. A matched word is added to the PWM if it improves the MAP score.

MDscan performance was compared to BioProspector, AlignACE, and CONSENSUS (Hertz

& Stormo, 1999) on the yeast datasets Ste12, Gal4, Rap1, Mbp1, Swi4, Swi6, Fkh1, Fkh2,

Ndd1, Mcm1, Ace2, and Swi5. The study showed that MDscan was able to predict motifs

that failed to discovered by BioProspector, AlignACE, and CONSENSUS. For instance,

SCB motif from Swi4 and Swi6, SFF motif from Fkh1, MCM1 motif from Fkh2, MBF motif

from Swi6. Due to the heuristic nature of the algorithm, MDscan is approximately 35 times

faster than BioProspector and 400 times faster than AlignACE.

A suffix tree is a data structure that represents a string in a tree structure. A suffix tree T

for a string with length n, S = s1, s2, . . . , sn has exactly n leaves numbered from 1 to n.

Each internal node has minimal two children except the root node. Each edge is labelled

with non-empty substring of S. Two edges leaving from the same node have different first

characters in the substring. The concatenation of the substring according to the path from the

root to any leave spells out the suffix Si, . . . , Sn. The following is an example of a suffix tree

of word enumeration,

35



Figure 2.3: Suffix tree for ACCG

Figure 2.3 uses the “$” as termination character to denote the end of the string. Furthermore,

a generalised suffix tree is constructed by a set of words instead of single word. And each

word uses different terminator.
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Figure 2.4: Generalised suffix tree for ACCG$ and ACTG#

For instance, Figure 2.4 shows a generalised suffix tree for both ACCG and ACTG, yet

ACCG has the terminator character “$” and ACTG has the terminator character “#”. After the

generalised suffix tree is constructed based on the data sequences, the algorithm can search

through the path for the mismatches.

Weeder (Pavesi et al., 2001) uses suffix tree structure for fast counting match hits of a

candidate motif represents as a string. The algorithm does not require the input of the exact

length of the patterns. The Weeder algorithm starts from the root node by expanding the

path recursively. If the number of pattern has mismatch value greater than e (such as 4),

then the algorithm will “weed out” the path. The algorithm is sped up by enforcing some

restrictions on the positions in which mutations are allowed. Weeder was evaluated by using

Pevzner and Sze (2000) challenge to find a signal in a sample of 20 sequences of the fixed
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length. The samples are selected from independent and identically distributed sequences.

The results were compared to CONSENSUS, Gibbs sampler, MEME, WINNOWER and

SP-STAR (Pevzner & Sze, 2000). Weeder showed that it has the highest probability of

finding a signal (0.89–0.95) of length 15 with 4 mismatches compared to other algorithms.

Suffix tree is also used in RISOTTO to maximize the extensibility information (Pisanti,

Carvalho, Marsan, & Sagot, 2006). The algorithm is written in C language and it implements

the maximal extensibility information to RISO (Carvalho, Freitas, Oliveira, & Sagot, 2005).

The algorithm is to improve the pattern enumeration for searching the long motifs. RISOTTO

uses depth-first search to traverse through the motif tree. Maximal extensibility performance

was evaluated using randomly generated uniform distribution of the DNA letters with planted

structured motifs.

Trawler is a tool that uses suffix tree approach to examine the large pattern sets (Ettwiller

et al., 2007). The standard normal approximation to the binomial distribution is used for

evaluation and z-score is used for statistical significance. It evaluates the z-score for a

random set of sequence obtained from the background compared to the z-score for the sample

sequences. Trawler does not have any expectation on the number of motifs to be discovered.

It clusters the similar motifs together to form degenerated traits of the binding sites. The

benchmarking datasets used by Trawler are Tompa’s (2005) 52 datasets, E2F1 and E2F4,

SOX2, OCT4, NANOG, NOTCH1, CREB1, 203 yeast datasets, and so forth. Trawler was

compared to AlignACE, MDscan, MEME, Weeder, and some other tools. The results showed

that none of the tools were able to the discover the correct motif of NOTCH1 except Trawler

and Weeder.
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Trawler_standalone (Haudry et al., 2010) was designed and optimised to analyse chromatin

immunoprecipitation (ChIP) datasets. To discover the motifs, it firstly searches for the

overrepresented motifs. Then, the motifs are clustered into families using either strongly

connected component, SOM or k-means clustering. The motifs are mapped to the sample

sequence. Finally, the results are presented with a user-friendly interface.

Enumerative method is able to discover both ungapped and gapped motifs. However,

discovering gapped motifs is complicated due to the highly degenerate positions in a motif

which increases the search space (C. Y. Chen et al., 2008). Regulatory Sequence Analysis

Tools (RSAT) (Defrance et al., 2008; Thomas-Chollier et al., 2008) are used to detect

over-representation or under-representation of the oligonucleotides or dyads (spaced pairs).

A space dyad consists of two words that are separated by spacers (H. Li, Rhodius, Gross,

& Siggia, 2002). RSAT is able to predict the motifs in the cis-regulatory modules and also

discover phylogenetic footprints in promoters of orthologous genes.

C. Y. Chen et al. (2008) developed a method for both gapped and ungapped motif discovery.

The method uses a ranking system which assesses preferential occurrence of the motif, the

number of positions, and the degree of evolutionary conservation of the potential motifs. A

position based ranking algorithm and a conservation-based ranking algorithm are proposed to

join the information from intermediate motif patterns. The position concurrence is the source

of signal density on the true transcription factor binding sites. This is because the true motifs

can evolve into different forms through evolution.

AMD (Shi et al., 2011) is another enumeration-based method. AMD is successful in

identifying both gapped and ungapped motifs and fast. The tools such as MEME and Weeder
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are computational intensive with the ChIP-chip or ChIP-seq datasets. Thus, AMD solves

running time problem for the large datasets. AMD can efficiently determine the long motifs

in large datasets. Moreover, the motif discovery performance was similar to Amadeus, as

Amadeus is outperformed than MEME, AlignACE, YMF, Weeder, and Trawler. AMD uses

step-wise motif discovery method. There are five processes involved: (1) core motif filtering;

(2) degeneration; (3) extension; (4) refinement; and (5) redundancy removal. AMD has the

high success rates on yeast and metazoan data, which includes mouse, human, fly, and worm,

with 38–45% and 44–50% respectively. It also achieves the highest success rate (79%) in

terms of all motifs tested by using 0.75 cut-off score, where Amadeus, Weeder, MEME,

and MDscan achieves success rates 69%, 43%, 7%, and 0% respectively. This research

discovered that AMD is a very fast algorithm compared to MEME, AlignACE, and Weeder.

Nevertheless, the outputs of AMD do not show the location of the binding sites, only the

consensus and the PWM.

An efficient combinatorial algorithm was developed to solve the search complexity problem

which is independent of the size of the alphabet (Kuksa & Pavlovic, 2010). Firstly, it

finds a set of candidate motifs. Then, the intersections of the candidate neighbourhoods

are constructed. The set is represented with “stems” or patterns with wildcards. Common

patterns are discovered by pruning the stems that does not appear in all input sequences. This

is to construct a set of candidates that contains motifs. After the candidates are constructed,

selection algorithm based on the Hamming distance between pairs of patterns is used. The

sort is used so that same k-mers are grouped together. Then the algorithm will scan to create

a list of sequences which the motifs appear. Finally, the algorithm will generate the stem,

which is independent of the alphabet size. This is done by considering the distance between

the pair of k-mers. The algorithm reduces computational complexity comparing to MITRA.
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Furthermore, there is an enumerative method used with bipartite graph for motif discovery in

yeast (Kellis, Patterson, Birren, Berger, & Lander, 2004). A bipartite graph is built to connect

annotated candidates with the predicted candidates based on the similarity of the sequence.

The algorithm was developed based on graph theoretic framework. The similarities between

the genes are represented as a bipartite graph connecting genes of two species. The edges

connecting two genes are weighted. Then, the graph is separated iteratively to construct

subgraphs. The edges which are less than 80% of the maximum weight edge are removed.

The algorithm is based on exhaustive enumeration and testing the short sequence patterns to

discover strongly conserved motifs. As opposed to Bipad, Kellis et al. (2004) uses bipartite

graph for motif discovery, yet Bipad is discovering the bipartite pattern using greedy methods

to discover the bipartite alignment (Bi & Rogan, 2004).

Hegma (Ichinose et al., 2012) proposed to solve the large-scale motif discovery by applying

DNA Gray code and equiprobable oligomers to solve the clustering problem and oligomer

bias. A Gray code is a binary number coding system that the adjacent numbers differ by one

single bit. The Gray code is applied to DNA sequence using quaternary numbers instead

of binary numbers. Using the DNA Gray code, it will produce an ordered tree structure.

As a result, a depth-first search algorithm can be used to search through the Gray code.

Equiprobable oligomers are the oligomers which have an approximately equal background

probability so that they can be combined naturally with DNA Gray code. The benchmark

tests showed that Hegma outperformed Weeder Web (Pavesi, Mereghetti, et al., 2004).

2.6 Other machine learning approaches

DNA motif discovery is considered a machine learning task because it consists of extracting a

general rule from the training set which contains both positive and negative datasets (Brazma
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et al., 1998). DNA motif discovery involves two problems: classification problem and

conservation problem. The purpose of a classifier is to identify the “true” sequences from the

“false” sequences. Machine learning can generally be divided into two categories: supervised

and unsupervised. Supervised learning requires the training data that contains the labelled

output. The labelled output is the known true positive of the data. The supervised learning

algorithm is used to train the machine so that it can be given the input and infers or predicts

the output accurately after the training. On the other hand, unsupervised learning uses the

unlabelled training data which has no desired output. Therefore, unsupervised learning will

train the machine so that it is able to cluster the data into groups by similarity.

In bioinformatics, one unsupervised learning algorithm is the self-organizing map

(SOM) (Kohonen, 1998) neural network. SOM is able to be used in motif discovery

because it clusters the similar sequences together. The sequences are represented in PWMs.

The purpose of the SOM training is to adapt the weights vector of every node to form a

topological map which has the spatial locations of the nodes correspond to the intrinsic

features. Compared to unsupervised learning, supervised learning algorithms are more

widely used in bioinformatics. For instance, Time-Delay Neural Network (TDNN), Support

Vector Machine (SVM), and Deep Learning. Deep Learning is the state-of-the-art machine

learning in motif discovery, because it is able to handle genome-wide datasets and perform

high accuracy prediction.

2.6.1 Unsupervised learning

SOMBRERO (Mahony et al., 2006) uses self-organizing map (SOM) neural networks for

motif discovery. SOMBRERO uses PWM to represent the motif. A log-likelihood ratio of
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a DNA string is used to evaluate the string similarity to a motif. Since general structure

of an SOM is a 2D-network of interconnected nodes, SOMBRERO uses a PWM at each

node to represent the features in the input sequences. During training, each motif evolves

to depict a distinct feature of the data. The nodes will influence each other and produce

similarity in the adjacent nodes. The PWM is updated iteratively at each node. SOMBRERO

is able to discover multiple distinct motifs in a single dataset and distinguish the weak

motif signals from the large or noisy datasets. SOMBRERO has been compared with

MEME and AlignACE using ten yeast genomic sequence sets from Promoter Database of

S. cerevisiae. Each sequence length is minimal 500 bp and contains at least one instance of

certain motif. The results showed that SOMBRERO has the best performance with the lower

false positive rate. The datasets of Drosophila were also tested. The datasets contain five

TFBSs. SOMBRERO showed superior performance, with the lowest false negative rate on

three out of five motifs.

SOMBRERO node models are unable to represent the motif and the background sequences

simultaneously, because the PWM is designed to represent motif only. This limitation is

overcome by SOM based Extraction Algorithm (SOMEA) (N. K. Lee & Wang, 2011).

SOMEA uses a hybrid node model which is composed of PFM and static Markov chain to

enhance the two types of sequence signal. Markov chain is used to represent the background

because the background noises are considered as generated by Markov process (N. K. Lee &

Choong, 2013). The two models are weighted to reflect the distribution of foreground and

background k-mers assigned to a node. SOMEA was compared to SOMBRERO, MEME,

AlignACE, and Weeder with eight datasets (one TF fromE. colli, six TFs fromHomo sapiens,

and one TF from S. cerevisiae). SOMEA performs significantly better than SOMBRERO in

terms of recall rates, F-measure values, and discrimination ability. However, MEME is better
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than SOMEA in terms of average F-measure values in four out of five of the datasets.

Due to the randomness of the background sequences in DNA datasets, SOM has limitations in

forming dense clusters. N. K. Lee and Choong (2013) proposed preprocessing step to filter

the noise before using SOM for motif discovery. Firstly, a threshold value is obtained by

using mismatch filtering function. Secondly, k-mers from the input are used as seeds to group

the potential patterns. Some patterns cannot be grouped are assumed as noises, hence they

are filtered. Another strategy is using a subset of the input sequences to generate the gapped

motifs instead of using k-mers as seeds. The preprocessing filtering on the background

sequences showed a promising result and it improves the prediction accuracy.

2.6.2 Supervised learning

Chromatin Signature Identification by Artificial Neural Network (CSI-ANN) (Firpi, Ucar,

& Tan, 2010) is a framework that performs classification on enhancers using histone

modification datasets. It applies Fisher discriminant analysis (FDA) to extract features which

separate the two classes. Then time-delay neural network (TDNN) is used for classification.

The traditional back propagation algorithm is very slow and prone to be trapped in the local

minima. Thus, CSI-ANN implements the Particle Swarm Optimization (PSO) on the TDNN

training. PSO deploys a population of solutions to explore the search space of optimal fitness

values for the TDNN. Through PSO, the optimal architecture for the TDNN can be found

and used for the classification. CSI-ANN was tested with histone modification data from

ENCODE. The study showed that CSI-ANN achieved a 66.3% positive prediction value, or

11.6% more than HMM method (Won, Chepelev, Ren, & Wang, 2008).
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SVM (Cortes & Vapnik, 1995) has been used in various biological applications (Furey et

al., 2000; Hirose, Shimizu, Kanai, Kuroda, & Noguchi, 2007; Y. Zhang et al., 2011). It is

widely used in bioinformatics because of its good performances, the ability to handle the

high-dimensional and large datasets, and flexibility to model the diverse source of biological

data (Ben-Hur, Ong, Sonnenburg, Schölkopf, & Rätsch, 2008). SVM adopts the concept

that the input vectors are non-linearly mapped to high-dimensional feature space (Cortes &

Vapnik, 1995). The decision surface is constructed in the feature space. The goal of the

SVM is to find the decision boundary that maximally distinguishes the positive and negative

training data. A larger margin of separation of the positive and negative classes can reduce

generalisation errors (Ben-Hur et al., 2008).

The k-mers based approach has an advantage over PWM based approach (Ichinose et al.,

2012). PWM requires large amount of data for optimisation. This approach is simpler as it

determines whether the feature is present or absent. The kmer-SVM was developed (D. Lee,

Karchin, & Beer, 2011) to predict the enhancers in the genome-wide EP3000 and CREBP

datasets. It implements the k-mer frequency vector then uses inner product as the kernel

function for two normalized frequency vectors. The results showed that kmer-SVM produced

AUC above 0.9 regardless its types of kernel, types of tissue, or length of k-mers. However,

when the k-mers length increases, the training will be more vulnerable to the noise (Ghandi

et al., 2014). Therefore, gapped k-mers solution is proposed and gkm-SVM is developed.

The gkm-SVM uses two parameters for gapped k-mers: l as the whole word length including

gaps and k as then length of non-gapped word. Hence, l − k is the number of gaps. The

kernel function is the similarity score of the l-mer pairs. The gkm-SVM method applies a

tree data structure to count mismatch between two l-mer pairs for the kernel matrix. The

results showed that gkm-SVM is able to predict enhancers with higher accuracy consistently

45



compared to its predecessor, kmer-SVM, which is strictly overfitted when the length of the

k-mer is greater than 10, yet gkm-SVM is not influenced by the length of l-mers. However,

gkm-SVM achieved accuracy in terms of AUC 0.967 with l = 14 and k = 6, which is

significantly higher than kmer-SVM (AUC 0.912 with k = 10).

Nonetheless, D. Lee (2016) stated that larger genomic datasets cause gkm-SVM scarcely to

be trained because computing full kernel matrix requires memory resources proportional to

n2. An improved SVM called LS-GKM which can deal with large-scale dataset has been

proposed. LS-GKM uses LIBSVM framework (Chang & Lin, 2011) for the integration of

kernel functions. While gkm-SVM uses tree data structure and stores the list of pointers to

the same matched nodes during tree traversal. LS-GKM improves this by maintaining the

list of pointers to the matched bases of the sequence. Furthermore, multi-threading is used to

speed up the tree traversal. The improvement of LS-GKM involves software implementation

instead of algorithm improvement. Moreover, a radial basis function is employed in the space

of the gapped k-mer frequency vectors to improve prediction accuracy.

EnhancerFinder (Erwin et al., 2014) is a tissue-specific enhancer predictor based on SVM.

It employs a supervised learning technique, namely multiple kernel learning (MKL) (Kloft,

Brefeld, Sonnenburg, & Zien, 2011), which is based on SVM. MKL allows EnhancerFinder

to integrate multiple data types into a single discrimination function. The training data is

labelled as enhancers and non-enhancers. Hence, the first step of EnhancerFinder is using

the classifier to separate the enhancers in the context of interest from non-enhancers. In the

second step, EnhancerFinder trains several classifiers to distinguish the candidate enhancers

from the previous step. Consequently, the enhancers are classified into heart, limb, forebrain,

midbrain, hindbrain, and neural tube. The training data is generated from VISTA Enhancer
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Browser (Visel, Minovitsky, Dubchak, & Pennacchio, 2007). The results showed that

prediction on H3K27ac, H3K4mel histone marks and p300 datasets achieved AUC 0.61,

0.72, and 0.68 respectively.

DEEP (Kleftogiannis, Kalnis, & Bajic, 2015) is a machine learning framework that employs

ensemble of SVMs together with a simple ANN for the final prediction. The training data

is gathered from ENCODE repository, FANTOM5 consortium (Andersson et al., 2014), and

VISTA Enhancer Browser. As in the ensemble approach, the data are partitioned. Each

partition is used to train an SVM model with Gaussian kernel function. The ensemble of

SVMs are trained to classify the instances according to cell-lines and tissues. The predictions

of the SVM models are finally passed to the simple ANN model derived from CSI-ANN

to determine whether the candidate is an enhancer. Various histone marks and cell lines

including p300 were used in the study. The findings showed that DEEP was able to achieve

90.2% accuracy based on FANTOM5 (Andersson et al., 2014) consortium datasets and

89.64% accuracy based on VISTA Enhancer Browser datasets (Leslie, Eskin, & Noble,

2002). According to Kleftogiannis et al. (2015), DEEP achieved better performance than

CSI-ANN.

EnhancerPred (Jia & He, 2016) was developed for enhancer prediction. It uses bi-profile

Bayes and pseudo-nucleotide composition (PseNC) to extract the features from the

sequences. Bi-profile Bayes is used because it reflects both positive and negative samples.

PseNC is based on pseudo amino acid composition (PseAAC) model (Chou, 2001). The

fundamental concept of PseAAC it to avoid losing hidden information in the protein when

extracting the features. Hence, PseAAC is in fact a set of discrete numbers derived from

the sequence which is able to preserve the pattern information. In EnhancerPred, the PseNC
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consists of trinucleotide composition. The radial basis function kernel is used for the SVM

to perform the training on the extracted features. EnhancerPred uses a jackknife test to

compare the accuracy with another algorithm, iEnhancer-2L (B. Liu, Fang, Long, Lan, &

Chou, 2016). Findings have shown that EnhancerPred has better accuracy. To identify the

enhancers and non-enhancers, EnhancerPred achieved accuracy of 77.39% and iEnhancer-2L

achieved 76.89%. Moreover, to identify strong enhancers and weak enhancers, EnahcerPred

achieved accuracy of 68.19% while iEnhancer-2L achieved 61.93%.

Convolutional Neural Network (CNN) is currently most widely used deep learning technique

in machine learning and increases the performance of bioinformatics (Alipanahi et al.,

2015; Kelley et al., 2015; Zeng, Edwards, Liu, & Gifford, 2016; J. Zhou & Troyanskaya,

2015). According to Min, Lee, and Yoon (2016), CNN can be used to discover useful

recurring patterns in one-dimensional genomic sequences and two-dimensional data such as

time-frequency matrices of biomedical signals. CNN is appropriate for application in DNA

motif discovery, because (1) DNA sequences contain recurrence sequence patterns that are

binding sites of TF proteins; and (2) CNN with GPGPU is able to learn large-scale datasets

such as genome-wide data sequences more efficiently than traditional machine learning

algorithms. For instance, DeepBind (Alipanahi et al., 2015) was proposed to predict sequence

specificities of DNA- and RNA-binding proteins using CNN. The sequence specificities

of DNA- and RNA-binding proteins are important to identify disease variants. Similar

to DeepBind, DeepSEA (J. Zhou & Troyanskaya, 2015) learns DNA sequences from the

large-scale chromatin-profiling data including TF binding to predict noncoding variants from

the sequence. Besides that, Basset is an open source CNN learning application to learn

functional activities of DNA sequences (Kelley et al., 2015). It targets on the genomic cell

type datasets.
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2.6.3 Genetic Algorithm

Genetic algorithm (GA) (Goldberg, 1989) is a search optimisation that simulates the process

of natural evolution based on the evolutionary theory. GA is also being applied in motif

discovery (Chan et al., 2007; Chan, Leung, & Lee, 2008; L. Li et al., 2007; L. Li, 2009;

Z. Wei & Jensen, 2006).

Genetic Algorithm for Motif Elicitation (GAME) (Z. Wei & Jensen, 2006) is a motif

optimisation tool. Nevertheless, GAME utilises numerous randomly generated PWMs as the

starting points to discover the motifs. Therefore, GAME does not require the motifs from de

novo motif discovery tools like BioOptimizer (Jensen & Liu, 2004). GAME uses tournament

selection to select the parents for generating new offspring. Furthermore, two operations,

ADJUST and SHIFT, are also used to alleviate the problem of premature convergence to

local optima. GAME is slower than MEME and BioProspector in the computational speed.

However, the performance of the motif site prediction result of GAME is far better than

MEME and BioProspector in terms of F-score. For instance, GAME scores 0.77 yet MEME

and BioProspector score 0.58 and 0.56 on average of all tested datasets.

GAPWM (L. Li et al., 2007) was proposed to improve the quality of existing PWM by using

ChIP dataset. According to L. Li et al. (2007), PWMs in TRANSFAC and JASPAR have

many PWMs but identified TFBSs are relatively small. Therefore, maximum-likelihood

estimates may be poor because of insufficient data. GAPWM employs scoring function of a

motif based on Match (Kel et al., 2003) as defined in Equation 2.12,

s(x1, x2, x3, . . . , xw) =
∑w

i=1 I(i) · fb,i −∑w
i=1 I(i) · fmin

i∑w
i=1 I(i) · fmax

i −∑w
i=1 I(i) · fmin

i

Equation 2.12
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where xi is the base Σ at the position i, w is the motif length, fmin
i = min(fb,i) and fmax

i =

max(fb,i) are the minimal and maximal frequency of the base at position i; and I(i) is the

information vector as defined in Equation 2.13,

I(i) = 1
log10 4

(
t∑

b=a

fb,i · log10(fb,i) + log10 4
)

Equation 2.13

Moreover, Roulette wheel-based selection of the parent is implemented. GAPWM performs

mutation on all PWM except the best individual. GAPWM does not apply crossover among

the individuals. It sets 0.05 probability of mutation on the first 100 generations to explore

larger sampling space. Then, 0.02 probability of mutation on the following generations

to find the maximum in the local space. Interestingly, GAPWM adopts area under ROC

curve (AUC) as the fitness function. Therefore, by optimising the motifs iteratively is also

increasing the AUC value. Human Oct4, mouse Oct4, and human p53 datasets were selected

for GAPWM experiment. Among the three datasets, p53 dataset produced steep curve and

quickly achieved AUC 0.9. The existing PWMs were optimised and improved on sensitivity

and specificity. GAPWM was compared with MEME and found that GAPWM has higher

AUC than MEME for all three datasets.

GADEM (L. Li, 2009) is a de novo motif discovery tool for search optimisation based

on spaced dyads with the EM on ChIP datasets. Space dyads are the two contact sites

in cis-regulatory elements spaced by non-conserved fixed length (van Helden, Rios, &

Collado-Vides, 2000). GADEM uses combination of word enumeration and probabilistic

techniques. However, enumerating all the spaced dyads from large datasets for EM algorithm

is computationally impractical. Hence, GADEM only uses the overrepresented words such

as tri-, tetra-, penta-, and hexamers to reduce search space in the large datasets. The word
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enumeration does not count the frequencies but convert the spaced dyads in the data into

probability matrices like MEME. Then the matrices are used as the initial models for a

probabilistic algorithm as an EM. GADEM uses GA to “evolve” the spaced dyads from

which the starting PWMs are obtained. Logarithm of the E-value is used as the fitness score

in GADEM. Six genome-wide datasets were experimented: Oct4, p53, two different ERE

datasets, CTCF, and STAT1. The result showed that GADEM is able to identify 15–30 motifs

with different lengths.

2.6.4 Summary of tools developed for motif discovery

Table 2.2 shows the summary of various tools mentioned above that uses different techniques

for motif discovery.

Table 2.2: Summary table of tools developed for motif discovery.

Tool Description Authors

MEME Probabilistic approach. Solves two

limitations of EM in motif discovery.

Bailey and Elkan (1995)

MEME Suite Web service of MEME with extra

tools such as GLAM2 and Tomtom.

Bailey et al. (2009)

MEME-ChIP Improves MEME targets on ChIP

datasets.

Machanick and Bailey (2011)

ChIPMunk Probabilistic approach. Employs

greedy optimisation with EM.

Kulakovskiy et al. (2010)

AlignACE Probabilistic approach. Uses Gibbs

sampling algorithm.

Hughes et al. (2000)

W-AlignACE Improves AlignACE for ChIP datasets. X. Chen, Guo, et al. (2008)

MotifSampler Improves Gibbs sampling with

high-order Markov chain background

model.

Thijs et al. (2001)

BioProspector Gibbs sampling with Monte Carlo

method.

X. Liu et al. (2001)
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Table 2.2 continued

GibbsST Gibbs sampling with simulated

tempering.

Shida (2006)

MITRA Enumerative approach. Uses

mismatch tree data structure to

reduce the problem into

sub-problems.

Eskin and Pevzner (2002)

Amadeus Genome-wide motif discovery

using mismatch algorithm.

Linhart et al. (2008)

TEIRESIAS Enumerative approach. Uses

seed-driven exhaustive algorithm.

Rigoutsos and Floratos (1998)

MDscan Enumerative deterministic greedy

algorithm on ChIP datasets.

Combines both advantage of word

enumeration and PWMs. Uses

MAP scoring function.

X. S. Liu et al. (2002)

Weeder Enumerative approach. Uses suffix

tree.

Pavesi et al. (2001)

Weeder2 Improved Weeder to handle ChIP

datasets.

Zambelli and Pavesi (2011)

RISOTTO Enumerative approach. Uses suffix

tree and implements the maximal

extensibility information to RISO.

Pisanti et al. (2006)

Trawler Enumerative approach. Uses suffix

tree with standard normal

approximation to the binomial

distribution and z-score.

Ettwiller et al. (2007)

Trawler_standalone Improves Trawler for ChIP datasets. Haudry et al. (2010)

RSAT Enumerative approach. Discovers

for both gapped and ungapped

motifs.

Defrance et al. (2008);

Thomas-Chollier et al. (2008)

AMD Enumerative approach. Also able to

discover both gapped and ungapped

motifs on ChIP datasets.

Shi et al. (2011)

Hegma Enumerative approach. Solves

large-scale motif discovery using

DNA Gray code and equiprobable

oligomers to solve clustering

problem and oligomer bias.

Ichinose et al. (2012)

SOMBRERO Uses SOM neural network. PWM is

used as the node model.

Mahony et al. (2006)

SOMEA Uses SOM neural network. Uses

hybrid node model composed of

PFM and static Markov chain.

N. K. Lee and Wang (2011)
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Table 2.2 continued

CSI-ANN Supervised learning. Uses TDNN for

classification and PSO on the training.

Firpi et al. (2010)

kmer-SVM SVM approach. Uses word model

instead of PWM model.

D. Lee et al. (2011)

gkm-SVM SVM approach. Allows gapped

k-mers prediction.

Ghandi et al. (2014)

LS-GKM SVM approach. Improves gkm-SVM

with large scale datasets.

D. Lee (2016)

EnhancerFinder SVM approach. Enhancer prediction

using multiple kernel learning.

Erwin et al. (2014)

DEEP SVM approach. Uses simple ANN for

the final prediction.

Kleftogiannis et al. (2015)

EnhancerPred Enhancer prediction uses bi-profile

Bayes and pseudo-nucleotide

composition.

Jia and He (2016)

DeepBind CNN approach. Predicts sequence

specificities.

Alipanahi et al. (2015)

DeepSEA CNN approach. Predicts noncoding

variants from the sequences.

J. Zhou and Troyanskaya (2015)

Basset CNN approach. Predicts functional

activities of DNA sequences.

Kelley et al. (2015)

GAME GA approach. Optimises random

generated PWMs to discover the

motifs. It is slow but performs better

than MEME and BioProspector.

Z. Wei and Jensen (2006)

GAPWM GA approach. Optimises the PWM of

ChIP dataset. Employs Match scoring

function.

L. Li et al. (2007)

GADEM GA approach. Uses EM for initial

model then optimised with GA.

L. Li (2009)

Among the tools as shown in Table 2.2, MEME-ChIP, AlignACE, W-AlignACE,

MotifSampler, BioProspector, MDscan, and Weeder2 were to be the individual tools in the

proposed ensemble approach. The decision to choose these tools was based on the availability

of the tools as well as their reliability. Most of the selected tools were also used in existing

ensemble-based motif discovery tools. MEME-ChIP is chosen instead of MEME because

using MEME to scan large datasets will be very slow (Linhart et al., 2008). Besides that, the
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chosen motif discovery tools consists of probabilistic approach (MEME-ChIP, AlignACE,

W-AlignACE, MotifSampler, and BioProspector) and enumerative approach (MDscan and

Weeder2). Among the chosen tools, MEME-ChIP, W-AlignACE, and Weeder2 are designed

for ChIP-seq datasets, while others are not. However, though they are designed for

ChIP-seq datasets, the size of the dataset input file is limited. Because of the limitations

of the individual motif discovery tools, ensemble approach is a promising solution that can

overcome the limitations.

2.7 Ensemble approach

Ensemble learning consists of different classifiers to produce a new classifier which performs

better than those classifiers (Opitz & Maclin, 1999; Rokach, 2010). In addition, combining

the results from the multiple classifiers via averaging will reduce the uncertainty from the

poor performance classifiers (Polikar, 2006). Additionally, in some cases, the data is too

large for a classifier for analysis, such as genome-wide data sequences in motif discovery.

An ensemble approach combines multiple algorithms to improve the prediction accuracy,

which is analogous to making decision by asking advice from multiple experts (Lihu &

Holban, 2015). Each algorithm used by ensemble approach is a classifier. Each classifier

is possible produce different prediction results. Therefore, combining the prediction results

from multiple classifiers is able to reduce the risk poor prediction from a classifier (Polikar,

2006). The outputs of the classifiers are combined using a combination rule. Ensemble

approach is also suitable to solve the problem with insufficient amount of data by resampling

techniques to draw overlapping random subsets for training different classifiers (Polikar,

2006).

Different motif discovery tools have their own strengths and weaknesses. For example,
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Yeast Motif Finder (YMF) (Sinha & Tompa, 2003) is outperformed in yeast dataset motif

discovery, while MEME and BioProspector presume that each input sequence has a motif

and draw to premature local optima. DREME (Bailey, 2011) limits the search to maximum 8

bp. Researchers combine these motif discovery tools together as an ensemble approach (Hu

et al., 2005, 2006; Kuttippurathu et al., 2011; Romer et al., 2007; van Heeringen & Veenstra,

2011).

Figure 2.5: Stages involved in ensemble learning on motif discovery. The whole datasets

are used for motif discovery by the individual classifiers.

Figure 2.5 shows general stages involved in ensemble learning based on Lihu and Holban

(2015), Opitz and Maclin (1999), Polikar (2006), and Rokach (2010) in the motif discovery

context. The whole dataset is searched by each tool to discover candidate motifs. All

candidate motifs are finally combined to produce the final outputs. Tools that use the

framework similar to Figure 2.5 include EMD (Hu et al., 2006), GimmeMotifs (van

Heeringen & Veenstra, 2011), MotifVoter (Wijaya et al., 2008), and WebMOTIFS (Romer

et al., 2007). There is a drawback of this general framework, when the large-scale datasets
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being used, the individual classifiers will be affected by the datasets because the individual

classifiers may not able to process large amount of data. EMD is one of the ensemble-based

motif discovery tools that uses subsets sampled from the input for each individual tool. The

proposed ensemble approach in this study will be different from this framework as described

in Chapter 3 Section 3.3.

According to Hu et al. (2005), the benchmark experiments using AlignACE, MEME,

BioProspector, MDscan, and MotifSampler were low with 25–35% accuracy for the

sequences of 400 nt long, but had at least one TFBS was correctly predicted more than

90% of the time. Consensus Ensemble Algorithm (CEA) (Hu et al., 2005) was proposed

by combining the results of multiple predictions from multiple runs of the base algorithms:

AlignACE, MEME, BioProspector, MDscan, and MotifSampler. It uses random seeds to

run any base motif discovery algorithm several times. The candidate with the highest

scores are collected and aligned on the sequence. Next, the number of times the position is

estimated will be counted and normalized to calculate the consensus score. Then, positions

with consensus scores less than the threshold value are abandoned so that the highest score

are remained. Finally, the binding site width of each candidate is adjusted and combined.

Escherichia coli datasets from RegulonDB were used for the experiment. CEA was compared

with AlignACE, BioProspector and MotifSampler. The results showed that AlignACE,

BioProspector, and MotifSampler produced very stable prediction accuracy with multiple

runs. CEA achieved 6–45% improvement over its base algorithms. Nevertheless, the

nucleotide level and binding site level prediction accuracies of CEA remain very low,

especially when sequence length increases.

EMD (Hu et al., 2006) is a novel clustering-based ensemble algorithm based on CEA. Five
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base algorithms are used as in CEA: AlignACE, MEME, BioProspector, MDscan, and

MotifSampler. The differences of CEA and EMD is that the former only combines the

multiple runs of the same algorithm instead and only one dataset with short sequence size

was experimented. The latter combines the results from prediction systematically across

the algorithms. The combination of the results employs a consensus function. Then the

consensus function groups the results by their score for the individual algorithm, then groups

the results across the different algorithms. The voting is cast to the sequence positions of the

predicted sites to preserve the diversity. EMD is tested with two datasets, Escherichia coli

dataset and the input with additional margins of 800 bp added to both sides of the known

sites. Additional margins are added to test scalability of EMD. Projection (Buhler & Tompa,

2002) is used to improve the scalability of EMD. The EMD algorithm involves five stages:

(1) It collects the results from individual algorithm; (2) sorts the predicted binding sites by

algorithm’s statistical score then the sites are grouped based on the equal number; (3) votes

are cast to the sequences with the predicted sites; (4) votes are smoothed by using a sliding

window with a specific width as parameter; (5) the local peaks of the smoothed voting curve

are selected as final binding sites. The findings showed that EMD always performed better

than stand-alone motif discovery tools, or at least had the same level of performance as the

stand-alone tools. EMD achieved an improvement of 22.4% nucleotide level performance

coefficient over the best single algorithm BioProspector.

WebMOTIFS (Romer et al., 2007) is designed for identification of motifs using multiple

motif discovery algorithms. It incorporates MEME, AlignACE, MDscan, and Weeder as

ensemble approach. It provides web interface for automate motif discovery and analysing

DNA sequence. The default parameters for the individual algorithms are used. To avoid

reporting discovered motifs that are similar, a clustering algorithm from Harbison et al.
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(2004) is implemented. WebMOTIFS also offers an option for the users to use a Bayesian

motif discovery tool, THEME (MacIsaac et al., 2006), which is powerful in motif discovery

on mammalian species. WebMOTIFS focuses more on the web interface to provide the

information to the users and improve the ease of use of the individual algorithms through

the web interface.

The CompleteMOTIFs (cMOTIFs) (Kuttippurathu et al., 2011) is a motif analysis pipeline

that accepts DNA sequences or genomic coordinates of the region of interest in genomes.

It employed three individual motif discovery tools for motif discovery: CUDA-MEME,

Weeder, and ChIPMunk. CUDA-MEME is MEME algorithm extended with Compute

Unified Device Architecture (CUDA) programming model on graphical processing unit

(GPU) which speeds up motif discovery. cMOTIFS also accepts motif profiles in JASPAR

or TRANSFAC format for scanning potential binding site locations in input sequences.

cMOTIFs was demonstrated on 13 TFs of embryonic stem cell (X. Chen, Xu, et al., 2008) to

identify the TFs. The results showed that it was successful identifying the motifs from 12 of

13 TFs from the dataset as the top ranked.

W-ChIPMotifs (Jin et al., 2009) is a web application for motif discovery which is based on

ChIPMotifs (Jin et al., 2007). ChIPMotifs uses MEME and Weeder for motif discovery.

ChIPMotifs inputs a set of 154 OTC4-binding sequences into MEME and Weeder and get 10

potential motifs with the length of 8–12 bp. Furthermore, 154 sequences are randomised 100

times to generate 15,400 negative control sets. The negative control sets were scanned by

Weeder and MEME to get the core scores and PWM scores. A modified bootstrap resampling

method was used to infer the optimised PWM scores. Instead of merging, ChIPMotifs uses

Fisher test and P-value to define cut-off threshold for the core scores and PWM scores.
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Finally, the candidate motifs were screened against TRANSFAC database to get the known

and novel motifs. In W-ChIPMotifs, it refines P-value with a Bonferroni correction by

multiplying by the number of input sequences. W-ChIPMotifs also adds MaMF (Hon & Jain,

2006) as another individual algorithm for motif discovery. MaMF is a deterministic search

algorithm relies on indexing to speed up the search. Besides that, STAMP (Mahony & Benos,

2007) is used to perform phylogenetic footprinting evaluation to determine the discovered

motifs. STAMP is able to construct phylogenetic tree and iteratively refine the alignment

of the similar motifs until each leaf node contains a single PWM. Furthermore, STAMP is

able to match the similar motifs against TRANSFAC and JASPAR databases. This allows

W-ChIPMotifs to discover the known motifs. Unfortunately, there is no benchmarking on

the performance of W-ChIPMotifs compared with other tools.

MotifVoter (Wijaya et al., 2008) proposed a novel similarity metric to merge motifs

discovered by multiple motif discovery tools. Wijaya et al. (2008) claimed that the

ensemble-based motif discovery such as WebMOTIFS and EMD though improve the

performance of motif discovery, the improvement is insignificant according to Tompa’s

benchmark. This is because the average sensitivity is only increased by 62% but the

average precision is decreased by 15%. MotifVoter incorporates multiple tools: AlignACE,

ANN-Spec (Workman & Stormo, 1999), BioProspector, Improbizer (Ao, Gaudet, Kent,

Muttumu, & Mango, 2004), MDscan, MEME, MotifSampler, MITRA, SPACE (Wijaya,

Rajaraman, Yiu, & Sung, 2007), and Weeder. It consists of two steps: motif filtering and

sites extraction. From the results of several individual motif discovery tools, motif filtering

will remove the false positive motifs to produce the cluster of high conformity motifs based

on motif similarity measure. The similarity measure sim(x, y) is expressed in Equation 2.14,
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sim(x, y) = |I(x) ∩ I(y)|
|I(x) ∪ I(y)| Equation 2.14

where I(x) is the set of binding sites defined by motif x. Thus, two identical motifs will

produce sim(x, x) = 1 and others produce 0 ≤ sim(x, y) < 1. Next, sites extraction will

extract the motifs that have high confidence to be real from the step one. From the extracted

sites, MotifVoter uses multiple sequence comparison by log-expectation (MUSCLE) (Edgar,

2004) to generate a PWM to model the motif. MUSCLE is a tool that uses progressive

alignment creates multiple alignments of DNA or protein sequences. It is claimed that the

alignment speed is faster than alignment tools like CLUSTALW and FFTNS1. MotifVoter

is different from EMD on discriminative and consensus criteria. MotifVoter’s discriminative

criterion requires the selected cluster of motifs shares as much as possible and motifs outside

the cluster share none or few binding sites, so that not only similar motifs within the cluster

but the motifs outside the cluster also selected to yield higher precision. The consensus

criterion requires the cluster to be contributed by each individual tool as much as possible

to increase the confidence that the cluster contains good binding sites. MotifVoter was

tested on Tompa’s benchmark datasets, E. coli dataset, and ChIP-Chip datasets (CREB, E2F,

HNF4/HNF6, MYOD/MOG, NFKB, NOTCH, and SOX) and compared to three ensemble

algorithm: SCOPE (Carlson, Chakravarty, DeZiel, & Gross, 2007), BEST (Che, Jensen, Cai,

& Liu, 2005), and EMD. For Tompa’s benchmark datasets, MotifVoter outperformed BEST

in sensitivity by 54.1% and SCOPE in precision by 226.2%. For the E. coli, MotifVoter

outperformed EMD in sensitivity by 130.2% and SCOPE in precision by 45.9%. For

ChIP-Chip datasets, MotifVoter was able to identify 56 out of 65 motifs.

GimmeMotifs (van Heeringen & Veenstra, 2011) is a motif prediction pipeline using
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an ensemble of existing motif discovery tools. It was proposed to predict TFBSs

from ChIP-seq data. It employs BioProspector, GADEM, Improbizer (Ao et al., 2004),

MDmodule (X. S. Liu et al., 2002), MEME (L. Li, 2009), MoAn (Valen, Sandelin,

Winther, & Krogh, 2009), MotifSampler, Trawler, and Weeder. GimmeMotifs uses weighted

information content (WIC) similarity metric to cluster the output from these individual tools.

The maximum WIC score of motifs pair are calculated. Similar motifs are clustered using

an iterative process by comparing all the scores. Two most similar motifs are merged by

averaging. Since the process is repeated iteratively, the motif that occurs frequently will

have higher influence on the new averaged motif. The process is repeated until the best

scoring alignment has the WIC p-value > 0.05. Besides that, the individual algorithms are

run in parallel using inter process communication. It was tested on the (i) mouse datasets

from X. Chen, Xu, et al. (2008), (ii) another mouse datasets from Valouev et al. (2008), and

(iii) human datasets from Jothi, Cuddapah, Barski, Cui, and Zhao (2008). GimmeMotifs

outperformed SCOPE and W-ChIPMotifs with AUCs 0.830, 0.613, and 0.824 respectively.

Table 2.3 summarises the different ensemble methods for DNA motif prediction.
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2.7.1 Summary on ensemble approaches

According to Lihu and Holban (2015), W-ChIPMotifs and CompleteMOTIFs are restricted

by the user input less than 20 megabytes. This limits the potentiality of the large-scale

analysis. Furthermore, W-ChIPMotifs is limited to the mouse and human genome, yet the

other ensemble-based tools such as GimmeMotifs, cMOTIFs, and RSAT peak-motifs can be

used on any genome.

Due to the limitation of the classic tools, it is necessary to restrict the input size by

ensemble-based motif discovery tools such as W-ChIPMotifs. This is to avoid the individual

tools fail to search the motifs from the large search space. Though large-scale input is useful

and theoretically is able to produce the global optimum, it is infeasible as the classic motif

discovery tools were not designed for NGS datasets. However, if the datasets are able to be

partitioned into smaller subsets, then each individual tool will be able to discover the motifs

that are overrepresented in the subsets.

In addition, ensemble approach has an advantage on the performance evaluation according

to Hu et al. (2006), as the performance is at least at the same level of the individual tool

that is being used. For example, if there are three individual motif discovery tools are used,

namely Algorithm A, Algorithm B, and Algorithm C. The discovered motifs are evaluated

with the performance score 0.75, 0.8, and 0.95 respectively. If the final score is calculated

by averaging, we will not get the score less than 0.75. However, this also indicates that the

performance score may not be able to exceed 0.95, unless the discovered motifs are able to

be optimised to produce higher evaluation score than from individual motif discovery tools.
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Ensemble approach requires sequences as the inputs for the individual tools. With the

restriction of the input size, sampling is necessary to reduce the input size and to avoid biased

results. Assuming that a dataset, dataset = {a, b, c, d, e, f, g}, where the {a, b, c, d, g} are the

true motifs or true positives, and three existing algorithms can find the candidates as {a, b, c},

{a, b, c, e}, and {a, b, c, d, e, f} respectively. Because of each algorithm has its own strength,

each can discover different set of candidates. However, using the ensemble approach, it

is possible to find redundant candidates or similar candidates. The similar candidates will

increase the accuracy, since they are approximately redundant.

Figure 2.6: Results of ensemble approach.

In the Figure 2.6, it shows the result of ensemble approach. The red crosses represent the

negative patterns or candidates, and the blue tiny circles represent the positive patterns.

By using ensemble approach, that is using multiple algorithms, they will produce different

results. The figure above uses three large circles to represent three different algorithms,

namely A, B, and C. Though the algorithms are able to improve the prediction results,

by increasing the ratio of positive patterns to the negative patterns, they will cover large

overlapped area. Therefore, merging the discovered results and remove the redundancies is
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necessary.

The genomic large-scale ChIP-seq datasets are interested to be studied (Zambelli et al., 2013).

Nevertheless, most existing approaches employ tools that are developed before the NGS era.

Furthermore, large-scale datasets requires longer time to be searched because the search space

is exponentially increased. Partitioning is a promising approach on the large-scale datasets

so that the problem can be divided into smaller search space. The next challenge is merging

or combining the candidate motifs to produce the final outputs. For example, W-ChIPMotifs

uses bootstrap re-sampling and Fisher test to get the optimal cut-off of the discovered motifs.

MotifVoter uses MUSCLE on the extracted sites to produce the PWM model. GimmeMotifs,

WebMOTIFS, and cMOTIFs use clustering on candidate motifs discovered by individual

tool. However, cMOTIFs only reports the clustering result. Only GimmeMotifs implements

merging on the clustered result to produce new motifs. According to Romer et al. (2007),

it is difficult to merge the results from different tools. This is because each individual tool

reports the output differently.

2.8 Performance metrics for motif discovery tools

Over-representation of a motif is defined as statistical significance of the motif is

assessed from a background model (Zambelli et al., 2013). In enumerative approach,

over-representation is measured by comparing actual number of occurrences of a word to

the expected number of occurrences (Thijs et al., 2001). While in probabilistic approach,

over-representation is measured by comparing the profile model to random expectation from

the background model or random model (Hughes et al., 2000).

Though there are many versions of motifs from databases such as JASPAR and TRANSFAC,
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the lack of standardised assessment technique causes difficulty for the researchers to

benchmark and test the discovered motifs (Kibet & Machanick, 2016). Moreover, there is

no reference benchmark set for ChIP-seq datasets (Zambelli et al., 2013). This becomes a

challenge for motif discovery on the large datasets with unknown motifs. Tompa et al. (2005)

performed the prediction by inserting real motifs into the sequences, but failed to capture

the biological condition of TF binding. Similarly, Hu et al. (2005) uses RegulonDB but

motif discovery results had low accuracy (15-25%) because of the poor quality annotations in

RegulonDB. Unless the TF binding sites are well annotated, motif assessment by predicting

binding sites that are inserted or known, cannot be confidently utilised. Nevertheless, novel

motifs can be assessed by comparison to “reference motifs” using Euclidean distance or

other statistics that measure divergence between two profiles (Kibet & Machanick, 2016).

For instance, Thomas-Chollier et al. (2012) proposed motif comparison that uses Pearson’s

correlation and sum of squared distances. However, the definition of “reference motifs”

remains largely subjective (Kibet & Machanick, 2016).

Another motif assessment approach is using scoring function to identify the motifs from

the negative background sequences, without known binding sites. compare observed

motif scores with the expected scores from the background model. The background

model is normally a higher order Markov model. The expected scores are statistics

p-value (Takusagawa & Gifford, 2004) or z-score (Sinha & Tompa, 2000). Alternatively,

information content (IC) or relative entropy of discovered PWMs (Bailey & Elkan, 1995) can

be used for significance measurement. A log-likelihood scoring scheme is also considered

as information content (Hertz & Stormo, 1999). In enumerative approach, the evaluation

involves calculating two separate values when evaluating motifs, one is the support of

a motif and the other one is unexpectedness of a motif (Rigoutsos & Floratos, 1998).
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Moreover, hypergeometric (HG) over-representation score (Barash, Bejerano, & Friedman,

2001) is used in Amadeus as the default scoring function (Linhart et al., 2008). Nonetheless,

ChIP-seq datasets with different sequence length and different choice of negative background

sequences will produce greatly different scoring results. Consequently, these differences lead

to variations in results comparison (Kibet & Machanick, 2016).

A good scoring function is important to distinguish real binding sites from background

noise (N. K. Lee & Choong, 2013). There are many scoring functions proposed. However,

they are applied in different software tools and using different methods and representations.

Maximum a posteriori probability (MAP) is a scoring function which is used by Gibbs

Sampler, BioProspector, AMD, MDscan, AlignACE (and W-AlignACE), and SOMEA. This

scoring function combines the negative entropy of the PWM and the rareness of the PWM

based on third order Markov model calculated from all intergenic regions of a genome. MAP

is defined in Equation 2.15 as follows:

MAP = log(xm)
w

(
w∑

i=1

T∑
b=A

fb,i log fb,i − 1
xm

∑
alls

log(p0(s))
)

Equation 2.15

where w is the width of the motif, xm is the number of candidate words (m-matches) in the

PWM, and p0(s) is the probability of generating the candidate words from the background

model (Friberg, von Rohr, & Gonnet, 2005). The value is important because it takes into

account the occurrences of the candidate words from the dataset. Without this value, the score

will depend only on the background Markov model, which is not appropriate to determine

the motif.
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2.8.1 Receiver operating characteristics (ROC)

Receiver operating characteristics (ROC) analysis (Fawcett, 2006) is commonly used in

machine learning as a diagnostic method to determine the discrimination of a classifier

towards different classes by varying the threshold settings. The discrimination is determined

by computing the sensitivity and specificity rates for bins of threshold values in [0, 1]. The

fundamental usage of ROC analysis is its application in binary classification problems. The

two classes are positive and negative classes. A classifier is usually trained and tested with the

samples to classify to which class they belong. A discrete classifier will produce four possible

outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

Conversely, a probabilistic classifier will produce scores that represent the degree to which

class a sample belongs to. A decision threshold value can be applied to the score so that the

value above the threshold is labelled as positive, and otherwise negative. Using the threshold,

the probabilistic classifier can be changed into a discrete classifier.

A ROC curve is plotted with true positive rate (TPR) along the vertical axis and false positive

rate (FPR) along the horizontal axis. The plot indicates sensitivity and specificity of the

prediction. Therefore, the predicted outcomes must be compared with the actual outcomes

with the calculation of TPR and FPR.

The followings are the formulae for sensitivity and specificity calculation.

sensitivity = TPR = TP

TP + FN
= TP

P
Equation 2.16
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specificity = TNR = FN

TN + FP
= TN

N
Equation 2.17

Furthermore, the FPR can be also be calculated as,

FPR = 1 − TNR = FP

TN + FP
= FP

N
Equation 2.18

Accuracy is calculated as,

accuracy = TP + TN

TP + TN + FP + FN
Equation 2.19

An accuracy of 100% indicates that the prediction sensitivity is 100% and specificity is 100%.

Thus, TPR is equal to 1 and FPR is equal to 0. As a result, when plotting the graph, the

coordinate (0, 1) is marked in the plot. A discrete classifier will only produce a single point

in the ROC space (Fawcett, 2006); thus a discrete classifier cannot produce a curve. However,

a ranking or scoring classifier can be used with a threshold to produce continuous points. By

connecting the points, the ROC curve can be plotted. ROC provides a visual and numeric

summary of a predictions and becomes a primary measurement method in bioinformatics

applications (Sonego, Kocsor, & Pongor, 2008). According to Lihu and Holban (2015),

ROC can illustrate the problem of de novo motif discovery performance that being affected

by false positive motifs.

The Area Under Curve (AUC) of the ROC indicates the degree of the separability of a
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classification model between classes. AUC has value between 0–1 with larger value indicates

better discriminative ability of the model (L. Li et al., 2007; Su, Teichmann, & Down, 2010).

The AUC of a classifier is equal to the probability of a classifier to rank a randomly chosen

positive instance higher than a randomly chosen negative instance (Fawcett, 2006). AUC

is commonly used to measure the quality of extracted motifs (Orenstein & Shamir, 2014;

Weirauch et al., 2013). It is used to discriminate foreground that contains the motif from the

background (Yao et al., 2014). In motif discovery, the usage of AUC is to evaluate the PFM

or PWM models obtained, rather than evaluating the motif discovery tools. It is an indirect

inference of the quality of the motif discovery tools based on the quality of the motif models

discovered. In contrast to machine learning classifiers, a classifier is able to classify an input

as positive or negative, while motif discovery tools are discovering the matrix models that

are able to label a given input as positive or negative. Therefore, it is necessary to evaluate a

motif discovery tools through the discovered motifs.

In order to plot ROC curve, the foreground dataset can be a dataset with known motifs. For

example, Yao et al. (2014) used ENCODE ChIP-seq datasets. The discovered motifs with

the best PWM scores of each sequence were measured against the annotated motifs from

JASPAR. The background dataset is consists of the randomly chosen sequences from the

edge of the peak. The PWM score was used as the threshold for plotting the ROC curve.

Similarly, Deep Motif Dashboard (DeMo Dashboard) (Lanchantin et al., 2016) uses 108

ChIP-seq TF datasets from ENCODE. The negative datasets are generated by shuffling the

nucleotides of the positive datasets but preserving dinucleotide frequencies. It compares

the discovered motifs to JASPAR motif of the TFs of interest (57 out of 108 TF datasets).

Tomtom is used to match the similar motifs that are ranked by p-value. The AUC is computed
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by TFBS classification of the discovered motifs.

The above examples (Lanchantin et al., 2016; Yao et al., 2014) construct the ROC by using

PWM z-score or p-value, based on the annotated motifs through database such as JASPAR

and a background dataset. On the other hand, Energy Matrix Quality Improvement Tool

(EMQIT) (Smolinska & Pacholczyk, 2017) uses ROC curves and 10-fold cross-validation

to improve motif prediction. Smolinska and Pacholczyk (2017) selected datasets from

TRANSFAC as positive datasets, and randomly selected promoters from human genes as

the negative datasets. EMQIT counts the number of properly detected motifs in the positive

dataset as TP, and the number of motifs detected in the negative dataset as FP for every PWM.

By using 10-fold cross-validation method, nine of ten subsets were used as training set, and

the remaining was used as test set. A ROC curve is constructed for each PWM. The PWM

with the largest AUC is selected and used to scan the test set using Match.

GimmeMotifs also evaluates the discovered motifs using AUC of the ROC. GimmeMotifs

computes the ROC of the discovered motifs by comparing the validation set and a background

set. The validation set contains the sequences that are not used for motif prediction. There

are two types of background sets being used: (i) randomly generated sequences with similar

dinucleotide frequencies from first order Hidden Markov model of the input data, and (ii)

randomly selected genomic sequences by considering the position of the peaks relative to the

transcription start site (TSS). Z-score is used for the best match of the motif to the sequences

of the input set. Consequently, the ROC can be plotted and the AUC can be computed.

GAPWM adopts ROC as part of the motif discovery algorithm. GAPWM calculates two sets

of Match scores (Equation 2.12) of the discovered PWM by using two datasets. The two
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datasets are a positive dataset which contains the motif and negative dataset as a background.

Let Spos denotes a set of scores from positive dataset, and Sneg as a set of scores from negative

dataset. Thus, S = (s1, s2, s3, . . . , sn), where si is a Match score for sequence i. By using

positive dataset, TPR can be calculated with TP
P

, where P is the total number of sequences in

the positive dataset, and TP is the number of sequences with the score greater than a cut-off

value, si >= cut-off. Similarly, FPR is calculated by using negative dataset. The cut-off

values are 5000 values generated by using linear decrement from max(Sneg) to min(Sneg).

Therefore, as the cut-off values decreased gradually, the TPR and FPR can be computed and

the ROC curve is plotted. GAPWM uses AUC of the ROC as the fitness score for motif

discovery. Besides that, choosing a negative dataset is challenging because the background

should be similar to real background of the actual motifs (L. Li et al., 2007). Hence, L. Li et

al. (2007) randomly selected 1500 sequences from coding regions of the human and mouse

as the negative datasets. The advantage of GAPWM is the computation of ROC can be

performed without known motifs or annotated motifs.

Figure 2.7 shows a comparison of ROC generation for classifier and unsupervised motif

discovery tools. The key difference is a classifier’s ROC is generated through the test dataset;

while for a motif discovery tool, its performance is evaluated through the motif models,

represented as PWM or PFM, its predicted. Furthermore, the ROC for the motif models

obtained require the input (positive) and the negative dataset. In DNA motif discovery,

since the locations of the binding sites are unknown, it is infeasible to utilise conventional

performance metrics that utilise class labels. Hence the sensitivity and specificity rates can

only be estimated through positive and negative datasets (D. Wang & Lee, 2009).
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Figure 2.7: Comparison of ROC generation in machine learning classifier and ROC

generation in ensemble-based motif discovery.

2.9 Conclusion

Motif discovery can commonly be divided into probabilistic and enumerative approaches.

Probabilistic approach uses stochastic methods such as EM and Gibbs sampling to discover

motifs. Profile model such as PWM is the most commonly used model in probabilistic

approach (Sandve & Drabløs, 2006). For instance, EM involves expectation step to estimate

the scores of the PWM, and maximisation step to refine the PWM to maximise the scores

over several iterations. MEME is the most popular motif discovery tool that employs
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EM. Similarly, Gibbs sampling randomly initialises motif positions in the input sequences.

Then, one sequence is randomly selected and PWM for all the other sequences by using

the positions that were initialised is computed. Next, the probability of every position of

the selected sequence is calculated by using the PWM. The best position will be used

for the next iteration. The iterations will be stopped when the PWM cannot be improved.

AlignACE, MotifSampler, and BioProspector are the example motif discovery tools based

on Gibbs sampling. Though probabilistic motif model such as PWM is more expressive

than consensus, probabilistic approach does not guarantee global optimal motifs (Das & Dai,

2007).

Enumerative approach uses consensus model to represent motifs Theoretically, enumerative

is able to discover global optimal motifs, yet it is infeasible in large dataset motif discovery,

because it is time-consuming (Hashim et al., 2019). Enumerative approach is a word-based

approach, that exhaustively enumerates all possible motifs. Suffix tree is a notable algorithm

in enumerative approach. It can enumerate all patterns by using O(N) time and O(N)

space where N is the length of a sequence. The goal of the algorithm is to discover the

longest commonly repeat pattern in the suffix tree, which is the motif. Weeder, RISOTTO,

and Trawler are example motif discovery tools that employ suffix tree. Enumerating all

possible motifs by using suffix tree is time-consuming, thus Weeder speeds up the algorithm

by narrowing down the valid patterns. However, this leads to low efficiency for the long

motifs. On the other hand, MDscan combines the advantage of enumerative approach for

search strategy and matrix model for scoring.

GA is also being used in motif discovery. The advantage of GA is the design of solution

domain can focus on how potential motifs being encoded into GA chromosomes, because
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the GA is able to explore the search space according to the defined fitness function. GA

is able to optimise PWM with higher sensitivity, but it is not able to fully solve the local

minimum problem because lack of understanding about binding sites specificity (N. K. Lee

et al., 2018). GAME, GAPWM, and GADEM are the motif discovery tools that employs

GA.

SVM is commonly applied in enhancer prediction instead of de novo motif discovery.

Enhancers are cis-regulatory modules (CRMs) consists of a set of TFBSs (motifs) which

works together. SVM is a supervised learning. Hence, enhancer prediction requires training

by using positive and negative datasets for the training (Ghandi et al., 2014; D. Lee et

al., 2011; D. Lee, 2016). Besides that, deep learning such as CNN is also a supervised

learning. CNN has demonstrated good performance in bioinformatics. Deep learning is a

representation learning that allows the machine to discover the representations in the raw

input without the needs to explicitly provide engineered input features (LeCun, Bengio,

& Hinton, 2015). Unlike SVM which requires internal representation or feature vector of

the input data for the training purpose, deep learning overcomes the requirement of internal

representation by learning the features automatically. Though CNN is able to discover motifs

with 4 × m matrix similar to PWM (Alipanahi et al., 2015), it may be problematic to adopt

CNN as motif learning methods (Zhu, Zhang, & Huang, 2017). This is because CNN is not

able to differentiate two sets of different matrices, as long as the matrices are able to lead to

same decision function (Zhu et al., 2017).

The review found that the ensemble approaches outperformed single tool in DNA motif

discovery. They have the advantage of discovering more motifs with different characteristics.

The owing to that each individual tool employed in ensemble has distinct design strengths
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that can enlarge the success of discovering true motifs in a dataset. The development of

ensemble algorithm for motif discovery has two key components: (i) the merging of the

results from multiple individual tools; (ii) the selection of candidate motifs in the final results.

First issue is on how to merge motifs produced by different tools. These motifs might have

different representations and lengths. The technical challenge is these motifs might only

be partially matched a sub-motifs of the true motifs. In addition, there might be hundreds

of those motifs, matching them in which order is a challenge and what is the similarity or

dissimilarity function should be used. The second challenge is during the merging process,

how many levels of merging is needed. In addition, after the merging, which scoring function

can be used to select the true motifs. The scoring function clearly involve a discriminative

function that can distinguish random motifs from the true ones.

Furthermore, existing ensemble approaches are not able to cope the large-scale datasets,

because each individual classifier has the limitation on the large-scale datasets. The

traditional motif discovery tools were developed before the NGS era. Therefore, they are not

able to effectively handle large-scale genomic datasets by default. A solution is necessary

to overcome the limitation of the input size, so that the traditional motif discovery tools are

able to be applied in ensemble approach for large-scale datasets.

In this work, the data partitioning and novel motif merging algorithm are proposed to solve the

two main issues in existing ensemble approaches. The data partitioning method can reduce

the input dataset size for each individual tools in ensemble approach. Moreover, the merging

algorithm can merge hundreds of motifs return by individual tools through multiple merging.

77



CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents a novel ensemble framework known as, ENSPART, which employs

several existing de novo motif discovery tools to discover certain motifs. Because of NGS

techniques, the genome-wide large-scale datasets are available. Furthermore, it is important

to predict the transcription factors such as enhancers in order to study various diseases using

genome-wide datasets. However, the time complexity increases dramatically with the large

dataset size. ENSPART employs the data partitioning technique so that the search space size

can be efficiently explored by any motif discovery tools within a reasonable computational

time. For example, a full size dataset that is scanned by a motif discovery tool requires eight

to ten hours to complete, while using partitioned dataset, the scanning process is able to

complete in one to two hours.

This study is not focusing on the computational time, but rather using traditional motif

discovery tools in ensemble approach, to solve motif discovery problem from the large-scale

datasets. Hence, the computational time is not part of the study. This study illustrates the

potentiality of ensemble approach employing the traditional classifiers to solve the DNA

motif discovery problem. As the key to the design of ENSPART is how to combine the results

produced by multiple tools, the novel multiple stages motif merging algorithm utilising the

alignment free method for effective motif comparison is being introduced.

Firstly, this chapter briefly describes the method of ENSPART. Secondly, the datasets and

partitioning of the datasets are explained. Next, the motif discovery tools used in ENSPART
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are discussed. Finally, the comparison of the motifs, grouping and merging of the similar

motifs are also explained.

3.2 Motivation

Most existing ensemble methods (see Section 2.7) employ multiple classical motif discovery

tools for DNA motif discovery. Classical tools are those proposed mainly in the 1990s before

the ChIP and ChIP motif analysis era (simply ChIP era). Motif analysis before the ChIP era

mainly targeted a small number of genes from the prokaryotic species or eukaryotic species.

The algorithms thus were not designed to scale with dataset sizes in terms of computational

speed and performance. Hence, the classical tools have limited use for motif analysis of

ChIP dataset which usually have hundreds of thousands of DNA sequences. For examples,

MEME only allows maximum of 100,000 bp input sequences; Weeder 5,000 sequences; and

AlignACE approximately 50,000 bp input sequences. The massive amounts of data causes

the traditional tools to produce too many positives and long execution times (Lihu & Holban,

2015). Kulakovskiy et al. (2010) tested MEME with ChIP-seq datasets and proved to be

inefficient due to the large datasets.

Due to the limitation on input sizes of classical tools, existing ensemble approaches such

as ChIPMotifs and CompleteMOTIFs limit the input data sizes. Traditional de novo motif

discovery tools like MEME, BioProspector, MDscan, and AlignACE were developed before

the ChIP era, it is impractical for using these tools to discover the motifs from the ChIP

datasets. Therefore, an improved method is needed to make use of these tools for discovering

motifs in the ChIP datasets.

While there are tools that are meant for analysing ChIP datasets, most employ heuristic
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methods and enumeration techniques are used in the search algorithms. That is, subset of

the input dataset is used to generate seeds k-mers that guide the enumeration search. Those

methods rely heavily on the quality of the seed generated and selected. In addition, the seeds

obtained are determined by the subset used and ranking functions for the selection.

In order reduce the large search space due to large dataset sizes of ChIP datasets,

ensemble learning is a promising approach. For example, W-ChIPMotifs, GimmeMotifs,

and CompleteMOTIFs are the ensemble-based motif discovery tools developed for the

ChIP-seq. However, these tools do not demonstrate the solution on the search space

problem. W-ChIPMotifs restricts the input size and this limits the analysis of the large

scale datasets. Similarly, CompleteMOTIFs and GimmeMotifs do not pre-process the

inputs for the individual tools. This indicates that, if a very large input dataset is given to

CompleteMOTIFs and GimmeMotifs, the search time is still increasing because it depends

on the employed individual tools.

Because ensemble learning adopts the divide-and-conquer approach and it is workable with

the insufficient amount of data (Polikar, 2006), partitioning the input data to the smaller

subsets is possible to reduce the search space. Consequently, by using the partitioned datasets,

the traditional tools are assumed to be more efficient to discover the motifs comparing to using

the whole amount of data.

The discovered candidate motifs represent the local optima because the datasets are

partitioned. Hence, the discovered candidate motifs from the subsets need to be combined

to produce the final output. However, each motif discovery tool produces different outputs,

combining the results require a common model for the discovered motifs. PWM is more
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expressive than consensus because PWM contains the probability of the occurrences of each

nucleotide. The final discovered motifs should produce higher prediction performance than

candidate motifs from individual tools. This is because the features of the candidate motifs

are combined to produce the final outputs.

3.3 Method

This study proposes a novel ensemble method ENSPART using a data partitioning technique

coupled with classical motif discovery tools. The data partitioning technique partitions the

input data set into different non-overlapping partitions, which are then tackled separately by

different classical motif discovery tools. Since ChIP-seq dataset is high confidence sequences

that are enriched with binding sites of TF of interest, it is reasonable to assume each DNA

sequence has one or multiple occurrences of binding sites. Therefore, sampling the dataset

into several subsets, the primary motif will remain overrepresented in the subsets. This

indicates that, sampling the dataset will not strongly affect occurrences of the motifs. Hence,

after partitioning the dataset to smaller subsets, we can assume that the primary motifs remain

high frequency of occurrences in distinct subsets. The same motifs that appear across the

subsets should be merged according to the similarity of the pattern. Therefore, the key

to our method is how to merge these similar motifs obtained from different input subsets.

ENSPART employs an alignment-free method to compute the similarity between candidate

motifs obtained from different subsets for merging. Alignment-free sequence comparison

is defined as any sequence comparison method that do not use or produce alignment at any

step of algorithm (Zielezinski, Vinga, Almeida, & Karlowski, 2017). It has the advantage

of fast computation and does not have difficulty to merge motifs with different length.

Pair-wise alignment method like basic local alignment search tool (BLAST) (Altschul et al.,
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1997) requires window shifting between two motifs to obtain the best alignment positions.

Hence, comparing to alignment-based method, alignment-free method is computationally

less expensive. An alignment-free method is desired as it is computational efficient and

remove the difficulty of finding optimal alignment between two motifs of different lengths.

Figure 3.1 shows the framework of ENSPART, which consists of several consecutive steps.

Firstly, the datasets are partitioned into non-redundant subsets randomly. Each subset is

scanned for motifs by using several classical motif discovery tools. Each tool run three (3)

times with different set of parameters. The description is covered in 3.3.1. Running the

tools more than three times and gathering more candidate motifs not necessary producing

better results. This is because the same tools will produce similar or same candidate motifs.

This will only increase more redundant candidate motifs. Table A1 in Appendix shows the

parameters being used for each tool. The discovered candidate motifs are pair-wise compared

to produce a similarity matrix. The alignment-free method is used for similarity function

between any pair of motifs. Then, elements in a matrix are sorted according to their similarity

values. The elements are labelled for grouping. The grouped elements are merged to produce

new motif. All the new motifs are collected and repeat the comparison, sorting, labelling, and

merging steps for three times to reduce the redundant or similar motifs. Finally, the merged

motifs are evaluated by using AUCs. The explanation of the parameter to merge the similar

motifs is covered in Section 3.3.3 and Section 3.3.4.
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Figure 3.1: ENSPART framework. Datasets are partitioned into three (3) non-overlapping

subsets. Seven motif discovery tools are used as individual classifiers. Each tool runs three

(3) times for motif scanning with different set of parameters as shown in Appendix 1. The

discovered candidates are compared using KFV values. The threshold of the k-mer frequency

vector (KFV) similarity is using the empirical value 0.27, which was discovered through

observation on a preliminary experiment. Similar motifs are merged by averaging to reduce

the redundancy. The steps of merging process is repeated three (3) times to produce the final

output. Finally, the final candidate motifs are being evaluated using ROC and AUC.
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3.3.1 Partitioning

Existing ensemble methods are employing whole input set for motif discovery tools and

merge the results obtained. In contrast, ENSPART employs data partitioning which partitions

the collected datasets in FastA format into non-overlapping subsets before each is searched

for candidate motifs by set of selected motif discovery tools. The rationale of this method

is to reduce the size of the datasets so that each partition can be searched for the motifs

by the individual classical motif discovery tools. Partitioning the datasets in data mining

is a common method as it reduces the training set sizes for the available memory of the

machine (Chawla, Eschrich, & Hall, 2001). However, the fundamental difference between

partitioning datasets for data mining and partitioning datasets for motif discovery is that the

former is for training, the latter is for motif discovery. This is because the motif discovery

tools uses the dataset as the input to discover the motifs as the output. The number of

output depends on the individual motif discovery tools, which is covered in Chapter 4

(Section 4.2.1).

The ChIP dataset consists of high-confidence sequences that are potentially enriched with

primary motifs instances. Thus, after partitioning, the primary motifs are expected to be

abundance in the subsets. In the implementation, 10% of the input sequences were selected

randomly without replacement. Three (3) partitions were generated with 10% of sequences

each. While more partitions are possible, we limit it to three partitions. The 10% is an

arbitrary value and it can be adjusted based on the total sequences available. According to Zia

and Moses (2012), adding more sequences does not reduce false positive rate significantly.

Moreover, Hu et al. (2005) also stated that, increasing the number of sequences does not

certainly improve the prediction accuracy, and using fewer number of sequences allows
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to reduce the running time significantly when scanning with the time-consuming motif

discovery tool. Therefore, 30% of the whole dataset is chosen as a heuristic decision for

this study, and the motif discovery works well with the 30% of the dataset. Theoretically,

larger size of partitions can yield better result because the partition size is closer to population

size of the dataset. However, further empirical study is necessary to test the significance of

the result by using parameter with larger partition size.

The partitioning is performed by shuffling the DNA sequences to guarantee that the order of

the sequences are randomised. Each partition (i.e. 10% of the total) is sampled randomly

without replacement.

3.3.2 Motif discovery

Each partition is searched for candidate motifs with different algorithms. Each tool is run with

three (3) different sets of parameters (Appendix 1) on each partition to increase the possibility

to discover wider range of motifs. Different sets of parameters will produce different results.

The parameters such as length of the discovered motifs, iterations of the tool (MDscan),

minimum gap (BioProspector), and seed value (MEME-ChIP) can be adjusted. The decision

of running the tools three times and how to define the parameters are based on heuristic

because we have no prior information regarding the candidate motifs in the dataset. Running

the tool multiple times increases the chances of obtaining more true motifs but at the same

time would increase the number of redundant motifs. All discovered motifs obtained by each

tool are saved for the next step.

In the ENSPART, seven (7) motif discovery tools are chosen: MDscan, BioProspector,
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MEME (MEME-ChIP), Weeder, AlignACE, AMD, and MotifSampler. These are the

most popular tools used in previous ensemble tools as well as individual tools. They are

consisted of a good mix of tools using probabilistic technique (BioProspector, MEME-ChIP,

AlignACE, MotifSampler) and enumeration technique (MDscan, AMD, Weeder2). The tools

were downloaded form the source shown in Table 3.1.

Table 3.1: List of motif discovery tools.

Tool URL

MDscan http://motif.stanford.edu/distributions/mdscan/

BioProspector http://motif.stanford.edu/distributions/bioprospector/

MEME Suite http://meme-suite.org/

Weeder 2 http://159.149.160.51/modtools/downloads/weeder2.html

AlignACE http://arep.med.harvard.edu/mrnadata/mrnasoft.html

W-AlignACE http://www.ntu.edu.sg/home/ChenXin/Gibbs (not available)

AMD http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal

.pone.0024576

MotifSampler http://bioinformatics.intec.ugent.be/MotifSuite/motifsampler.php

The motifs returned by each tool is validated through their respective scoring function.

Table 3.2 shows what scoring functions that are used to select the candidate motifs. While

the scoring functions do not ruled out completely false positives, running multiple times of

every tool on the same dataset and merging would ensure only the true motifs are prevailed

due to the over-representation property. That is, primary motifs will appear more frequently

amongst the produced results.

While ENSPART framework is relying on the results of other tools, the key is how to merge

and filter the discovered candidate motifs. After the merging, the merged motifs are scored

using a scoring function for ranking purpose. This will ensure the true motifs are selected in
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the final results.

Table 3.2: List of scoring functions.

Tool Score function

MDscan, AMD MAP score (Equation 2.15)

BioProspector n × exp{[∑i

∑
j qi,j × log(qi,j/pj)]/w}, where n is the

number of aligned segments in the motif, qi,j is the

probability of nucleotide j at the position i, pj is the

probability of the nucleotide j at the background, w is the

length of the motif

Weeder |P | · · · NP − 2∑k
i=1 d(P, Pi)I(P, i), where P is the pattern,

Pi is the best instance of P in the sequence i, d is the

distance, I(P, i) is 1 if P appears in sequence, else 0, Np

is the total number of sequences P

AlignACE Group specificity score

MEME, MotifSampler Log-likelihood score

MEME was chosen as it is one of the popular tools been used in many existing ensemble

approach (Hu et al., 2005, 2006; Jin et al., 2009; Kuttippurathu et al., 2011; Romer et al.,

2007; Wijaya et al., 2007). MEME Suite (Bailey et al., 2009) is a software toolkit that offers

motif discovery, motif-motif database, motif-sequence database searching, and assignment

of function. MEME-ChIP is one of the tools available in MEME Suite (Machanick & Bailey,

2011). In this study, it was found that MEME is too slow for a personal computer to run on

the partitioned. As an alternative, MEME-ChIP is used instead because it is faster. Weeder

and AMD were chosen because both tools are fast. AMD is also able to discover gapped

motifs. AlignACE and MotifSampler were selected because they implement Gibbs sampling.

Therefore, the selected tools cover probabilistic approach (EM and Gibbs sampling) and
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enumerative approach (suffix tree and greedy algorithm).

Table A1 in Appendix shows the invocation of each individual tool with different parameters

that were being applied in ENSPART. A script was written to parse the outputs of these motif

discovery tools with the same format which contains some information especially PWM and

the consensus discovered. The purpose of the parsers was to convert the output format from

the individual motif discovery tools become compatible to each other. Once all outputs are

parsed by the script, the parsed putative motif information were saved in one large file.

3.3.3 Candidate motifs comparison and sorting

K-mer frequency vector (KFV) (M. Xu & Su, 2010) is a alignment-free method to compare

TFBS motifs. KFV is used in ENSPART to make comparisons among the discovered motifs.

KFVs can compare the similarity of motifs with different lengths using either their PWM or

PFM representation. The use of profile-based representation ensures maximum information

of the motifs are utilised for the comparison purpose. The KFV generates a vector for each

motif which in turn can be used to compute the similarity distance between motifs. KFVs

can be used as a distance measure using suitable similarity metric function that satisfies the

positivity, symmetry, and triangle inequality.

Some similarity functions are Euclidean distance, Pearson correlation coefficient (PCC),

Mahalanobis distance, Kullback-Leibler (KL) discrepancy, and angle metrics. The Euclidean

distance would produce a value in the range of [0, ∞], while the others are in the range of

[0, 1].
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The following describes how the KFV of a motif is constructed. To generate the KFV of a

motif, the length of k-mers is required. The k-mers are short sequences of segments of length

k bp (Choong & Lee, 2017). The larger the k-mers, the slower that the conversion from

PWM or PFM to KFV. In order to construct KFV, firstly, given a positive integer k > 0, a

set of words from the permutation of a set of Σ is generated. For instance, if k = 2, the set

is S = {AA, AC, AG, AT, CA, CC, CG, . . . , TT}. Each of the element of the set S will be

converted to a matrix. For instance:

MAA =



1 1

0 0

0 0

0 0



where the first row of the matrix is for the word A, followed by C, G, an T. Then, likelihood

that describes the k-mer is calculated as Equation 3.20 (M. Xu & Su, 2010):

PK =
l−k+1∑

i=1

k∏
j=1

colj(B)T · rowi+j−1(M) Equation 3.20

where M is the PFM of the motif M = {fij}4×l
, fij is the count of nucleotide i ∈ Σ at

position j = 1..l; k is the length of the k-mers; l is the motif length; M is the normalized

PFM, M = {f 4×l
ij \N}, N is the total number of aligned sites in the motif; B is the binary

matrix B = {bij}4×k
. bij = 1 is nucleotide i is at the position j of the k-mer, otherwise i = 0.
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For example, if a candidate motif has a PFM

MAAACGT =



7 5 8 0 1 0

1 2 0 7 0 0

0 1 0 0 6 0

0 0 0 1 1 8


,

then for each column of the matrix of the set S, for instance MAA, the column is transposed. It

is then multiplied by the column from MAAACGT , and a matrix with the size 1×1 is calculated.

The value of the matrix is divided by total number of aligned sites. The calculation is repeated

and finally the sum of product of these columns is calculated. The result is a likelihood of

k-mer AA described by MAAACGT .

The KFV is constructed by using the likelihood as Equation 3.21 (M. Xu & Su, 2010):

VM = (PK1 , PK2 , . . . , PK4k
) Equation 3.21

where K1 is the AA for k = 2, K2 is AC, K3 is AG, …. Hence, if k = 2, a vector with 16

elements will be produced.
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Figure 3.2: Steps to calculate KFV from given PWM or PFM.

Figure 3.2 summarises the steps involved to construct a KFV from PWM or PFM.

Both PWM and PFM can be converted to KFV with the same result. The distance score used

by this study is Pearson correlation coefficient distance (PCC) as shown in Equation 3.22:

dP CC = 1 − PCC(a, b) = 1 −
∑(ai − a)(bi − b)√∑ (ai − a)2∑ (bi − b)2

Equation 3.22

where a and b are the KFVs. When distance score is 0, that means the two motifs are identical.

The advantage of KFV is the calculation of the similarity ignoring the different lengths of

the PWMs. When the distance of the two KFVs is within a threshold, the PFMs are assumed

to match. The matched pair of TFs are assumed true positive, while the mismatched pair are

assumed true negative. Using this, similar PFMs can be grouped together.

Because the orientation of the motifs is unknown, the distance score of a pair of motifs has to

consider both the forward strand and reverse complement. That is important because it will

effectively reduce the redundant motifs that produced by different tools in a different strand.

The two distance scores are computed as d(a, b) and d(a, b′) where d is the distance function,

91



a and b are the KFVs and the b′ is the KFV based on the reverse complement of b. The final

score for a pair of motifs is given by Equation 3.23.

d(a, b) = min(distance(a, b), distance(a, b∗)) Equation 3.23

ENSPART is different from the previous studies as it involves partitioning of the datasets.

In order to merge the results from individual motif discovery tool, there are two possible

approaches. The first approach assumes that each result is an individual result ignoring the

tool used; then these results are merged as the result of ensemble approach. The second

approach is to merge the results based on the algorithm, then only merge these results as the

results of ensemble approach.

However, either approach has a problem, namely how to merge the results together. We

need to define a threshold value for the similarity of a pair of motifs so that both motifs can be

merged. For example, the motifs found by an algorithm “AACCGGTT” and “AACCGGGT”

can be considered as one potential motif, as they are similar with only one nucleotide (the 7th

nucleotide) is different. On the other hand, if there is another motif as “ATATCGCT”, this

motif should not be merged with the previous ones, as they are very different. This should be

considered as another potential motif. Nonetheless, it is difficult to define whether two motifs

are similar, for instance “AAAACCCC” and “AGAGCTCT”, because 50% of the nucleotides

are matched and 50% are mis-matched. There is no definitive way to determine a pair of

patterns is same motif or distinctive motif. Besides that, by adopting the first approach of

merging, it indicates that every discovered candidate motif has same weight for the merging.

Consequently, the number of discovered motifs from an individual tool will influence the
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final result. For example, Tool A discovered 10 motifs and Tool B discovered 1 motif. After

the merging of the motifs, it can be assumed that the final result mostly comes from Tool A.

On the other hand, the second approach that performs the merging of the motifs according to

each tool will produce the final result evenly according to the tool. Nevertheless, the second

approach requires two levels of merging: (i) merging the motifs according to each tool, and

(ii) merging the motifs from step (i) to produce the final motifs.

In this study, the first approach mentioned above is used in which all the results from obtained

by different tools from different partitions are merged at once. Before merging, all the

produced motifs are labelled with a unique positive integer. These motifs are compared

using their KFV to produce a square symmetric matrix. Then, the elements of matrix are

sorted by the sum of KFV distance score of the elements in the row. Each row is calculated

with the sum of the KFV distance score, then the rows are sorted according to the sum in

the ascending order. Consequently, the least difference candidate motifs are sorted on the

top row of the matrix. The matrix is transposed and sorted again. As a result, the matrix

maintains symmetric. The motifs that are more similar are sorted at the left-top of the matrix;

the motifs which are more distinct from each other are at the right-bottom. The purpose of the

sorting is to make sure that similarity of the motif pairs are arranged in the ascending order,

so that left-top elements in the matrix have higher precedence when labelling and grouping
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are performed. An unsorted comparison matrix can be expressed as Equation 3.24.



0 d(1, 2) d(1, 3) · · · d(1, n)

d(1, 2) 0 d(2, 3) · · · d(2, n)

d(1, 3) d(2, 3) . . .
...

...
... 0 d(n − 1, n)

d(1, n) d(2, n) · · · d(n − 1, n) 0



Equation 3.24

where d(i, j) is KFV distance of motif i and motif j. d(i, i) will produce 0 because they are

identical motifs.

Algorithm 1 Algorithm to create KFV distance comparison matrix.

1: Represent the KFV results in a distance matrix

2: For each row of the matrix, calculate the sum of KFV distance score

3: Re-order (sort) the rows according to the sum of KFV score

4: Transpose the matrix

5: Re-order (sort) the rows according to the sum of KFV score

Algorithm 1 shows the steps of creating KFV distance comparison matrix.

Table 3.3: Example of KFV distance score comparison matrix after sorting using E2F4

dataset. The first row and the first column are the motif labels. 0 indicates that the two

compared motifs are identical.

0 1 2 3 4 5 6

1 0.0000 0.0000 0.1176 0.1176 0.1176 0.7140

2 0.0000 0.0000 0.1176 0.1176 0.1176 0.7140

3 0.1176 0.1176 0.0000 0.0000 0.0000 0.7493

4 0.1176 0.1176 0.0000 0.0000 0.0000 0.7493

5 0.1176 0.1176 0.0000 0.0000 0.0000 0.7493

6 0.7140 0.7140 0.7493 0.7493 0.7493 0.0000

Table 3.3 shows an example of comparison matrix with six (6) motifs.
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Table 3.4: Comparison of KFV distance of k=2, k=3, and k=4 after sorting. The distance

values are taken from the first column of the matrix.

k=2 k=3 k=4

Motif label Compared to M. 645 Motif label Compared to M. 181 Motif label Compared to M. 181

645 0 181 0 181 0

675 0.0225 416 0.0486 618 0.0856

445 0.0170 645 0.0478 416 0.0826

684 0.0250 658 0.0281 471 0.1050

236 0.0291 236 0.0899 167 0.1046

644 0.0168 445 0.0388 420 0.0944

591 0.0325 618 0.0562 651 0.0889

471 0.0243 219 0.0673 658 0.0730

219 0.0223 471 0.0690 644 0.0757

651 0.0120 212 0.0601 645 0.0945

618 0.0379 656 0.0379 184 0.0657

241 0.0142 644 0.0433 176 0.0845

181 0.0168 185 0.0671 212 0.1028

624 0.0409 420 0.0609 694 0.0871

218 0.0327 473 0.0764 473 0.1020

641 0.0249 694 0.0475 236 0.1345

185 0.0213 651 0.0482 208 0.0972

662 0.0219 184 0.0457 206 0.0889

171 0.0293 218 0.0509 445 0.0898

164 0.0177 214 0.0816 222 0.0914

The KFV distances of the motifs obtained from E2F4 dataset for k = 2 to 3 were computed.

According to M. Xu and Su (2010), the accuracy of the similarity gained discriminative

performance starting from k = 2 and achieved the maximal overall accuracy when k = 4.

However, the goal of the merging to merge according to the threshold value rather than

merging most similar motifs, therefore larger k is not necessary. Table 3.4 shows the

comparison of KFV distance of k = 2, k = 3, and k = 4 after comparison matrices are

sorted. The columns “Motif label” refer to the candidate motifs that have been discovered by

the tools used by ENSPART. The columns “Compared to Motif n” refer to the PCC distances

that are calculated when comparing Motif m of the row to the Motif n. Therefore, from the

table we can see that the Motif 645 compares to Motif 185, it produces distance 0.0213 when

k = 2 was used; 0.0478 when k = 3 was used; and 0.0945 when k = 4 was used. However,
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the sorting order showed that the Motif 645 and Motif 181 are on the top. Motif 236 and

Motif 236 are at the same position for both k = 2 and k = 3. Furthermore, motifs such as

471 and 219 appear in proximity.

KFV of E2F4 dataset with 128 sequences and average length 543 bp wad computed on a

computer with 2.5GHz Intel Core i7-6500U CPU and 8GB memory. In terms of computation

time, computing KFV for k = 2 requires approximately 22 seconds, while k = 3 and

k = 4 requires 106 seconds and 497 seconds respectively. The time used for calculating

is exponential when using k = 4. Thus, it is infeasible for the experiment by using k = 3

and k = 4. Similarly, M. Xu and Su (2010) uses different computer specifications, with the

dataset 124 sequences and average length 10.6 bp, the computation time used were 2 seconds,

7 seconds, and 21 seconds for k = 3, k = 4, and k = 5 respectively. The result showed that

computation time for k = 4 is 350% slower than k = 3, while our result showed that k = 4

is 460% slower than k = 3.

In this study, k = 2 is used for the KFV because as it is shown, it is sufficient to discover the

similarity between the motifs.

An observation was performed on the results taken from E2F4 dataset to decide the similarity

threshold value. Table 3.5 shows part of the results taken from E2F4 dataset. The motifs

in Table 3.5 are shown as consensus but the calculations of KFV are based on their

PWMs. Based on the observation on the E2F4 dataset, the first pair, GGTGGACCTC and

GGTGGACCTC have exactly the same consensus pattern, their PCC value is not 0 since their

PWMs are not identical. For merging of motif pairs, the similarity threshold is heuristically

set at 0.27. This value is chosen because based on the observation on the E2F4 dataset results,
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the difference of the consensus can be clearly noticed when the PCC distance is greater

than 0.27 as shown in Rows 8, 9, and 10. This value works well in all of our experimental

evaluations.

Table 3.5: KFVs of the pair of motifs using k=2 from E2F4 dataset.

No. Motif 1 Motif 2 PCC distance

1 GGTGGACCTC GGTGGACCTC 0.001588087

2 GGTGTCCGCCGA GGTGTCCGCTGA 0.018972666

3 CCCAGGAGGAGGCAATGCC GGAGGCAGAG 0.114541419

4 GGGGGGTGAG GTTGGT 0.230132783

5 GGTCCAGGCA CTGAGTCCCA 0.245219499

6 CAGTGCTGAG GGAGGCAGAG 0.254222876

7 GGAGACAAGG GCCAGGGGACAGAGGAGCCCTG 0.266092136

8 GAAGGAAAGA CCTGAAGA 0.271311867

9 GGAGGGTCCA CGGAGGAGGA 0.280612390

10 GGTGTGGGCCCT GGGCTACAGGGGATCTCAGCAG 0.298690672

3.3.4 Labelling and grouping

Once the comparison matrix is produced, the candidate motifs are labelled for the grouping.

Each motif is assumed to be a member of one of the groups. Labelling is applied before

the grouping. This is because a candidate motif can be similar to multiple candidate motifs.

Hence, each motif needs to be grouped to the most similar candidate. In order to find the

most similar candidate, each motif is labelled and updated incrementally.

Since the comparison of the KFV produces square symmetric matrix, the labelling process

only works on the lower triangular of the matrix. The first stage of the labelling traverses the

matrix row by row and labels the position with 1 if the PCC value is less than the threshold

value 0.27. The second stage traverses the matrix column by column, to mark any position
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with the PCC value greater than the smallest value in the column to 0. This is to make sure

that each column will have only one “1”. An example of zero-one-matrix produced after

labelling of four motifs is shown below.



0 0 0 0

0 0 0 0

1 0 0 0

0 1 1 0



In the example above, the fourth motif will be grouped twice with the motif in the second

and third column. That is undesired; therefore, in the next step, it requires some pruning to

ensure each motif is only assigned to a group. The pruning step begins by traversing by row

starting from the bottom-right of the matrix. For each position marked with 1, namely d(i, j),

will compare to the KFV distance values of each position, namely d(j, k), which is 1. The

position that has less value will be marked with 0, so that there will remain only one position

marked as 1. Algorithm 2 shows the steps for labelling by marking the similarity as 1.

Algorithm 2 Algorithm of labelling the motif for grouping (Part 1).

1: initialise all values in the matrix to 0

2: // Mark similarity as 1

3: for all rows do

4: for all columns do

5: if kfv ≤ threshold then

6: mark 1

7: end if

8: end for

9: end for
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Algorithm 3 shows the pseudocode to mark the label as 0 by rows.

Algorithm 3 Algorithm of labelling the motif for grouping (Part 2).

10: // Unmark the similarity to get only 1 pair most similar in the row

11: for all columns do

12: get the smallest distance value

13: for all rows do

14: if the value > the smallest distance value then

15: mark 0

16: end if

17: end for

18: end for

The third part of the algorithm (Algorithm 4) marks the label as 0 by columns.

Algorithm 4 Algorithm of labelling the motif for grouping (Part 3).

19: // Unmark similarity by comparing the pairs in column

20: declare cursor Ai,j

21: for i start from bottom dotop row

22: for j start from right doleft column

23: if cursor A = 1 then

24: declare cursor Bj,k

25: for k = j − 1 doleft column

26: if B = 1 then

27: compare A and B

28: if B distance value > A distance value then

29: B=0

30: else

31: A=0

32: break

33: end if

34: end if

35: end for

36: end if

37: end for

38: end for

Once labelling is completed, a square matrix is produced which contains binary data. The

matrix is then converted to a list of groups, where each group contains similar motifs that
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have the PCC distance value less than 0.27. The similar motifs in each group will be merged

and produce new motifs. Algorithm 5 shows the steps to convert the labelled square matrix

into a list of groups.

Algorithm 5 Algorithm to convert labelled square matrix to groups.

1: declare List to store the list of groups of IDs

2: declare Loners to store standalone motif IDs

3: for each row of matrix (where matrix is the square labelled matrix) do

4: if there is no label with 1 then

5: // Store to loner when the label appears first time in the loop

6: store to Loners

7: else

8: // Store at the group and remove from loner

9: declare temporary Group

10: store current row ID to the Group

11: for each column of the current row do

12: if the label is 1 then

13: if the column ID appears in Loners then

14: delete the ID in Loners

15: end if

16: store the column ID to the Group

17: end if

18: end for

19: store the Group to List

20: end if

21: // Make all loners as single element lists

22: for all Loners do

23: store each Loner to List

24: end for

25: end forreturn List

3.3.5 Motifs merging

Similar motifs will be merged to produce new motifs. The aim of the merging is to remove

redundant results as they do not contribute to the performance. Moreover, each group is

assumed to represent a new motif.
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To merge the motifs, their PWMs are aligned by window shifting method. Window shifting

refers to moving one of the PWMs from left to right, which is also used by N. K. Lee and

Wang (2011). Then for each position, sum-of-square error is calculated. Hence, two PWMs

are shifted one position at a time and the position with smallest sum-of-square error will be

selected.

Figure 3.3: Alignment process of two PWMs. cn is the column n of the PWM. Motif 2 is

window shifted from left to right.

Figure 3.3 illustrates the alignment process. For the extended positions during the alignment,

the value 0 is used for the PWM. Value 0 is more appropriate by assuming no word exists at

the left and right of X. Thus, after spanning the extra columns to the X, a new matrix with a

longer length L is produced. The new motif length is calculated as Equation 3.25.

L = Lx + (Ly − 1) × 2 Equation 3.25
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where x and y are the motifs. The left side and the right side length is Ly − 1 each.

The sum of squared error (SSE) is used for computing the similarity score of two aligned

PWM positions. SSE of each shifted position between two PWMs is computed. Supposing

that A and B are two PWMs of two distinct motifs, Equation 3.26 shows the SSE formula:

SSE =
l∑

i=1

4∑
j=1

(Aij − Bij)2
Equation 3.26

where i is the PWM column, j is the position of nucleotide, Σ, of the PWM, and l is the

min(LA, LB), L is the motif length. The shifted position with the least SSE is the best aligned

position for the merging.

A group possibly contains more than two motifs. Because the KFV distance comparison

matrix is sorted, the upper motifs are used as the base for the merging. After the alignment

process, the aligned PWMs will be merged to produce a new motif. Figure 3.4 shows an

example of the group.

Figure 3.4: A multiple alignment of five PWMs.
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The merging of these PWMs involves averaging of the matrices. The merging can be applied

to both PWM or PFM.

By using this merging method, similar or redundant PWMs will be combined and the number

of candidate motifs is reduced. Because the labelling and grouping assume the candidate

motifs existed in one group only, after merging they may still similar motifs that potentially

can be merged. Hence, the steps for labelling, grouping, and merging are repeated for three

times to reduce the redundant candidate motifs.

3.4 Datasets

Three (3) sets of datasets were collected for motif discovery. In this study, the three sets of

datasets are named as Datasets 1, Datasets 2, and Datasets 3.

3.4.1 Datasets 1

Datasets 1 were collected for ENSPART to compare with genome-wide motif discovery tools.

Several datasets were collected from http://compbio.uthscsa.edu/ChIPMotifs/examples

.shtml. They included mammalian ChIP datasets used by W-ChipMotifs. E2F4 (X. Xu,

Bieda, & Jin, 2007), OCT4 Ntera (Jin et al., 2007), forkhead box protein (FOXA1) (Y. Zhang

et al., 2008), and NRSF (Valouev et al., 2008). E2F4 is one of the binding pattern members of

E2F family. E2F family is involved in regulating a number of critical cellular and organismal

functions (X. Xu et al., 2007). Neuron-restrictive silencer factor (NRSF) (Jin et al., 2009) is

also known as repressor element-1 silencing transcription factor (REST). MEME was used

in motif discovery of the NRSF (Johnson, Mortazavi, Myers, & Wold, 2007).
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Besides that, the following datasets were also collected: p53 (C. L. Wei et al., 2006),

SOX2 (Boyer et al., 2005), Oct4 (X. Chen, Xu, et al., 2008), CREB (X. Zhang et al.,

2005), forkhead box protein A2 (FoxA2) (Tuteja, White, Schug, & Kaestner, 2009),

CCCTC-binding factor (CTCF) (Kim et al., 2007), and signal transducer and activator of

transcription protein 1 (STAT1) (Jothi et al., 2008). Oct4 and SOX2 work with other

transcription factors to active or repress cell (Pesce & Schöler, 2001). Both Oct4 and

SOX2 were evaluated in GAPWM, GADEM, and CompleteMOTIFS. The cyclic-AMP

response element-binding protein (CREB) family stimulates gene expression, responding to

the cyclic-AMP (cAMP). Besides that, a background dataset of human is also collected from

Amadeus website (http://acgt.cs.tau.ac.il/allegro/download.html) in FastA format.

Table 3.6: Information of the datasets.

Dataset Number of sequences Average length of sequence File size

CREB 2342 1141 3.3M

CTCF 13804 816 12.7M

E2F4 128 543 76K

FOXA1 2119 357 828K

FOXA2 4051 218 1.3M

NRSF 1657 283 528K

NTERA 154 553 92K

OCT4 7776 461 4.7M

P53 542 1186 669.9K

STAT1 27470 246 8.1M

Table 3.6 shows the number of sequences, average length of sequence, and the file size of

datasets.
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3.4.2 Datasets 2

Datasets 2 were used for ENSPART to compare with other tools without partitioning.

Table 3.7 shows the sources of the datasets for the experiment.

Table 3.7: TF datasets and the source collected for the experiment without partitioning.

Name Source URL

CEBPA ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=CEBPA&sample_id=HUMHG01588
GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM678395

NRSF ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=REST&sample_id=HUMHG05279
ENCODE https://www.encodeproject.org/files/ENCFF107EWI/

CTCF ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=CTCF&sample_id=HUMHG03289
GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1354438

E2F4 ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=E2F4&sample_id=HUMHG05520
ENCODE https://www.encodeproject.org/files/ENCFF000XDD/

FOXA1 ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=FOXA1&sample_id=HUMHG05243
ENCODE https://www.encodeproject.org/files/ENCFF167BKY/

P53 ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=TP53&sample_id=HUMHG03164
GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1294876

STAT1 ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=STAT1&sample_id=HUMHG04175
ENCODE https://www.encodeproject.org/files/ENCFF000XLM/

CREB1 ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=CREB1&sample_id=HUMHG05801
ENCODE https://www.encodeproject.org/files/ENCFF000PGL/

KLF4 ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=KLF4&sample_id=HUMHG03393
GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1387028

MYCN ChIPBase http://rna.sysu.edu.cn/chipbase/motif_browse.php?organism=

human&assembly=hg38&protein=MYC&sample_id=HUMHG05835
ENCODE https://www.encodeproject.org/files/ENCFF542GMN/
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The datasets collected from ENCODE and GEO are usually BED format. BED format is

required to be converted into FastA file as the input for ENSPART. BED is a text file format

that contains genomic locations (van Heeringen & Veenstra, 2011). An example of the BED

content is as follows:

chr1 132263342 132263582

chr1 132309626 132309866

chr2 132315060 132315680

Firstly, one can use RSAT web service (http://rsat.sb-roscoff.fr/retrieve-seq-bed_form

.cgi) to convert the BED file to FastA directly. Secondly, one can download the

chromosome FastA files from UCSC Genome Bioinformatics website (http://hgdownload

.soe.ucsc.edu/downloads.html#human), then uses “fastaFromBed” (or getfasta) utility from

BEDTools (Quinlan & Hall, 2010) to extract the FastA data based on the BED file.

All the selected datasets were homo sapiens TFs. The TFs were randomly selected. Each

dataset was sampled to 500 sequences to reduce the search space. This will also reduce the

search time when running with different algorithms.

Table 3.8 shows the information of the collected datasets.

Table 3.8: The average sequence length, total bp count, number of sequences, and the

percentages of each nucleotide of the collected TF datasets.

TF
Average

length

Total bp

count

Number of

sequences
% of A % of C % of G % of T

CEBPA 474.1 27412895 57818 29.5 20.4 20.5 29.6
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Table 3.8 continued

CREB1 1205.3 11987432 9946 26.9 22.9 23 27.1

CTCF 196.9 6064340 30806 28.2 21.6 21.8 28.4

E2F4 868.2 908089 1046 27.3 22.6 22.7 27.3

FOXA1 267.6 2355219 8802 29.5 20.5 20.6 29.4

KLF4 766.2 13698041 17879 28.1 21.8 21.8 28.2

MYCN 372.9 3517871 9434 19.6 30.4 30.5 19.5

NRSF 455.4 8815536 19358 23.2 26.7 26.9 23.2

P53 484.7 562688 1161 29.8 20.1 20.2 29.9

STAT1 880.5 4938045 5608 28.4 21.6 21.6 28.4

3.4.3 Datasets 3

Datasets 3 were collected for ENSPART to compare with two other ensemble based motif

discovery tools: GimmeMotifs and MotifVoter. Datasets 3 were simulated datasets created

by “rMotifGen” (Rouchka & Hardin, 2007). The advantage of using simulated datasets is

that the actual binding sites locations of each sequence are already known. rMotifGen is

a tool to generate random DNA and protein sequences. It can generate the sequences with

various properties and levels of conservation of the target motif. Users are able to define

the motifs according to the PWM. Moreover, rMotifGen can also simulate the mutation

of the DNA sequences. The tool is able to help the researchers to test the performance of

motif discovery algorithms. In this study, rMotifGen is used to generate the simulated DNA

sequences based on true motifs from JASPAR database. Nevertheless, the generated datasets

do not contain exact motif from the input. Five (5) known TFs were chosen to generate the

simulated sequences. They were CTCF, E2F4, FOXA1, NRSF, and P53. The TFBS matrix

were retrieved from JASPAR database. Table 3.9 shows the source of the TFs collected for

the experiment.
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Table 3.9: TF and the source of known motif matrices from JASPAR database.

Name URL

CTCF http://jaspar.genereg.net/matrix/MA0139.1/

E2F4 http://jaspar.genereg.net/matrix/MA0470.1/

FOXA1 http://jaspar.genereg.net/matrix/MA0148.1/

NRSF http://jaspar.genereg.net/matrix/MA0138.2/

P53 http://jaspar.genereg.net/matrix/MA0106.2/

The parameters for rMotifGen to generate the simulated datasets were

i. Number of sequence = 100

ii. Sequence length = 200

iii. Percentage of nucleotide A, C, G, T = 25%, 25%, 25%, 25%

iv. Percentage of a sequence to contain a motif = 100%

As a result, for each sequence of a TF, it is expected to contain a motif as positive strand.

This allows us to use the discovered motifs to locate the binding site and to identify whether

it hits the location of the known location. If a motif hits the binding site location, then the

motif is the true positive. Example of a sequence header of a generated FastA file,

>rMotifGen_RandSeq_1 1 57

The header denotes that the generated sequence is named as “rMotifGen_RandSeq_1”, and

the true motif is located at position 57 of the sequence. Hence, once a motif is discovered,

FIMO can be used to locate the motif on the given FastA file. Then, discovered motif can be

identified whether it hits the position of the actual motif.
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Table 3.10 shows the information of the simulated datasets.

Table 3.10: The average sequence length, total bp count, number of sequences, and the

percentages of each nucleotide of the simulated TF datasets.

TF Average length Total bp count Number of sequences % of A % of C % of G % of T

CTCF 213.07 21307 100 26.1 25 23.9 25

E2F4 205.09 20509 100 24.7 25.6 25.8 23.9

FOXA1 205.09 20509 100 25.7 25.2 25 24.1

NRSF 215.07 21507 100 24.7 25.6 24.5 25.2

P53 209.07 20907 100 24.5 25.5 25.2 24.8

3.5 Evaluation metric and tools for comparisons

The quality of motifs obtained is evaluated by using the ROC and AUC as presented

in Section 2.8.1. ROC and AUC are common evaluation metrics being used in motif

discovery (D. Lee et al., 2015; D. Lee, 2016; Min et al., 2016; van Heeringen & Veenstra,

2011).

“Rocpwm” is used to generate ROC and AUC of candidate motifs. The tool is bundled with

GAPWM (L. Li et al., 2007). Rocpwm is chosen because it is able to calculate the ROC by

using the PWM model. Rocpwm employs scoring function of a motif based on Match (Kel

et al., 2003). By default, rocpwm can only handle 500 sequences of foreground dataset. For

our use, the source codes are modified to handle 30000 sequences. The command requires

dataset that contains the true motifs (that is the dataset has been searched for the motifs) and

a dataset that contains the background sequences.

In addition, “fasta-dinucleotide-shuffle” is a tool from MEME Suite (Bailey et al., 2009)

that is able to shuffle the nucleotides that the dinucleotide frequencies are explicitly
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preserved. It is able to create background dataset from foreground dataset. It is part of

the MEME-ChIP (Machanick & Bailey, 2011) algorithm. Dinucleotide shuffling from the

positive sequences is a common method for negative datasets generation (Bailey, 2011; Kibet

& Machanick, 2016; Levitsky et al., 2007; Qin & Feng, 2017). Alipanahi et al. (2015)

and Zeng et al. (2016) used “fasta-dinucleotide-shuffle” to generate the negative sets for the

experiment. Hence, the tool is also used to prepare the background sequences in this study.

By using rocpwm, each motif will generate an ROC which in turns is used to compute the

AUC. Consequently, the accuracy of the discovered motifs can be measured. The higher

AUC value implies the motif is more discriminative between the input and background

sequences. Therefore, the motifs discovered by ENSPART and other benchmarking tools

are able to be compared by using AUC. Figure 3.5 shows the process of discovered motifs

measurement using ROC and AUC.

Figure 3.5: Process of converting discovered motifs to ROC and AUC. Finally the AUCs

are used for performance comparison.
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3.6 Conclusion

ENSPART is a novel motif discovery framework employs ensemble approach. It uses various

traditional de novo motif discovery tools as its classifiers. They are MDscan, BioProspector,

Weeder2, MEME-ChIP, AMD, AlignACE, W-AlignACE, and MotifSampler. In order to

discover motifs from the large-scale datasets, ENSPART uses 30% sample of the dataset,

and partitions the samples into three subsets. This study assumes that 30% sample size

is sufficient to discover the motifs as from the whole size dataset. This is because,

ensemble approach is suited to solve the problem with incomplete amount of data. Each

individual classifier scans for each subset with different parameters. The results or candidate

motifs from each classifier are collected. Next, ENSPART uses KFV for motif similarity

comparison, with a threshold value of 0.27. The advantage of KFV is the comparison can

be performed on the motifs of any length. The similar motifs are grouped and merged by

averaging. The merging process can be performed multiple times to reduce the redundant

results. The prediction accuracy of the discovered motifs are evaluated using ROC and AUC.

Finally, the ROC is calculated according to Match (Kel et al., 2003).
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CHAPTER 4

FINDINGS AND DISCUSSION

4.1 Introduction

This chapter presents the findings of the three different experiments on ENSPART

framework. Three experiments with different datasets on ENSPART were being conducted.

i. ENSPART that employs partitioning of non-overlapping subsets from whole datasets.

ii. ENSPART that scans for the motifs from the fixed size dataset without partitioning.

iii. ENSPART that scans for the motifs of the simulated datasets with the known binding

sites location.

For each experiment, the method of the simulation is presented. The different parameters

used in ENSPART and comparative tools are presented as well. The comparison results are

analysed and discussed.

4.2 Comparison to genome-wide motif discovery tools

In this simulation, Dataset 1 as described in Section 3.4.1 is employed. The purpose

of this comparison is to compare ENSPART with genome-wide motif discovery tools,

namely MEME-ChIP, ChIPMunk, and RSAT peak-motifs. We would like to ascertain the

performances of ensemble tool in comparison to non-ensemble based tools.
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Table 4.1: The tools that were ran on different datasets.

MDscan BioPropsector MEME-ChIP Weeder2 AlignACE W-AlignACE AMD

CREB X X X X X X
CTCF X X X X X
E2F4 X X X X X X
FOXA1 X X X X X X
FOXA2 X X X X X X
NRSF X X X X *1 X X
NTERA X X X X X X X
OCT4 X X X X X
P53 X X X X X X X
STAT1 X X X X X

1 NRSF is partially scanned by AlignACE.

Table 4.1 shows the individual algorithms run on the datasets. During the experiment, it

was found that AlignACE was too slow to scan through the partitioned dataset. Thus, only

W-AlignACE was used for the following datasets as it is theoretically faster than AlignACE

since it targets on ChIP datasets. However, the CREB dataset was scanned with AlignACE

instead because W-AlignACE failed to complete the CREB scanning. It was possibly caused

by the number and the length of the sequences. Then, OCT4, CTCF, and STAT1 were

scanned without AlignACE or W-AlignACE because neither one completed the scanning.

Each run of W-AlignACE took more than one or two hours. Furthermore, NRSF was partially

scanned with AlignACE. It was only scanned for the first partition with the first run. The

other runs were terminated due to time constraints. Though motif discovery process is failed

like using AlignACE and W-AlignACE, it will not affect the result because motif discovery

results from other tools are able to support the final output. Moreover, each tool was run

three times with different parameters. The discovered candidate outputs were sufficient to

draw the final outputs in ENSPART.

All experiments were run on computer with 4x Intel (R) Core (TM) i7–3687U CPU @
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2.10GHz processors and 4GB memory. The operating system was Arch Linux, which was

chosen because of the efficient compilation of the source code of the existing motif discovery

tools.

To perform comparative studies, several tools were selected. MEME-ChIP was used as

one of the benchmarking tools because it is based on MEME and able to deal with the

large-scale datasets. Besides MEME-ChIP, RSAT peak-motifs (Thomas-Chollier et al.,

2008), ChIPMunk (Kulakovskiy et al., 2010) were also used for benchmarking because they

are able to handle the large-scale datasets like ChIP sequence.

Firstly, MEME-ChIP was used for the whole unpartitioned datasets. Then, the three

partitioned datasets were combined to produce 30% of the whole datasets. The 30% datasets

were then being searched by MEME-ChIP, RSAT peak-motifs, and ChIPMunk for candidate

motifs.

Hence, the candidate motifs of the MEME-ChIP, RSAT peak-motifs, and ChIPMunk were

parsed and converted to the Motif objects as stated previously, then converted to PWM in the

GAPWM format.

In addition to running those tools with the partitioned datasets, the whole (unpartitioned)

datasets were also used as input to MEME-ChIP for motif discovery.

This experiment responds to the two hypotheses:

i. The proposed ensemble framework that employs novel partitioning technique has

better accuracy performance than the contemporary ChIP-seq motif discovery tools.
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ii. The proposed ensemble framework that employs novel merging technique has better

accuracy performance than the contemporary ChIP-seq motif discovery tools.

This is because, this experiment uses partitioning and merging techniques to discover the

motifs, and compare the results to MEME-ChIP, ChIPMunk, and RSAT peak-motifs.

4.2.1 Findings

Firstly, the performance of ENSPART was evaluated by using the ten (10) datasets

(Table 3.6). The seven (7) selected tools were run on each of the partitioned data subsets.

Each tool was run three (3) times. The discovered motifs for each run was collected and the

numbers of motifs predicted are shown in Table 4.2.

Table 4.2: Number of motifs discovered from the partitioned datasets.

Datasets MDscan BioProspector Weeder2 MEME-ChIP AMD AlignACE W-AlignACE Total

CREB 30 45 172 45 55 0 0 347

CTCF 30 45 174 45 55 0 0 349

E2F4 30 45 161 45 55 111 262 709

FOXA1 30 45 152 45 66 0 496 834

FOXA2 30 45 165 45 42 0 325 652

NTERA 30 45 156 45 81 111 165 633

NRSF 30 45 169 45 25 3 290 607

OCT4 30 45 168 45 61 0 43 392

P53 30 45 171 45 50 28 534 903

STAT1 30 45 165 45 60 0 0 345

Noted that in Table 4.2, AlignACE produces no result for several datasets because AlignACE

cannot handle the large dataset. For instance, CREB has large number of sequences and the

average sequence length is long.

115



After obtaining the candidate motifs, next step was to merge those motifs using the KFV as

similarity measure. Table 4.3 shows the number of motifs obtained in each dataset after the

triple-merging.

Table 4.3: Comparison of number of motifs before and after merging.

Before merge Merge 1st time Merge 2nd time Merge 3rd time Reduced (%)

CREB 347 190 113 73 79.0

CTCF 349 181 109 68 80.5

E2F4 709 375 216 138 80.5

FOXA1 834 450 255 139 83.3

FOXA2 652 348 193 116 82.2

NRSF 607 322 181 107 82.4

NTERA 633 336 194 114 82.0

OCT4 392 191 109 71 81.9

P53 903 483 273 161 82.2

STAT1 345 170 102 64 81.4

After the merging of the candidate motifs, Table 4.3 shows that the number is reduced

approximately to 79–83%. This indicates that a large number of the candidate motifs are

variation of the same motifs.

The ROC of each candidate motif was computed using “rocpwm” as explained in

Section 2.8.1. Match (Kel et al., 2003) algorithm is used to compute information scores of

the discovered motifs against foreground and background datasets. By using cut-off values,

TPR and FPR can be calculated to plot the curve. The ROC represents the accuracy of the

discovered motifs. This also means that, an ideal motif is expected to have the foreground

sequences distinctive from the background sequences and produce large AUC. The ROC

curves were also plotted using the best three motifs.
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Figure 4.1: Best three ROCs from ENSPART. Each curve is generated from a discovered

PWM from ENSPART. Some of the charts show the curves that are similar. They may

indicate same motifs which can be merged again. The curves of E2F4 and Oct4 are not

overlapping, which means that they have distinctive PWMs.
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Figure 4.1 shows the best three (3) ROC curves of the discovered motifs from the ten datasets.

Each curve is plotted according to a motif predicted using Match algorithm. The larger

area under the curve (or AUC), indicates the discovered motif has higher accuracy in the

prediction. From the figure, we can notice that the curves were close to each other. This

indicates that best three motifs are possibly their different variations, which can potentially

be merged again. Notably CREB, CTCF, FoxA1, FoxA2, OCT4 Ntera, and STAT1 shows a

strong similarity of the three best motifs, because the curves are overlapping. This indicates

that the motifs are commonly discovered across the individual classifiers. On the other hand,

the curves of E2F4, NRSF, Oct4, and p53 are dispersed, but they have similar shape. This

indicates that the motifs are very different in terms of PWMs, but they possibly refer to same

motif. Moreover, the motifs are possibly degenerated, causing the individual tools to discover

motifs as different and dissimilar PWMs.

Table 4.4: Best AUCs and average AUCs of the discovered motifs with ENSPART.

Number of motifs Best AUC Average AUC

CREB 73 0.7537 0.5941

CTCF 68 0.8384 0.5642

E2F4 138 0.6191 0.5223

FOXA1 139 0.8721 0.6127

FOXA2 116 0.8643 0.6119

NRSF 107 0.7532 0.6040

NTERA 114 0.6670 0.5651

OCT4 71 0.6847 0.5290

P53 161 0.9499 0.6564

STAT1 64 0.6607 0.5654

Table 4.4 shows the best AUCs and average of AUCs from the proposed ensemble approach.

Best AUC is the highest AUC score from the discovered motifs from ENSPART. True motif
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models are expected to have many positive hits in the input dataset, but has little hits in the

negative datasets. Therefore, by identifying the best motif in terms of ROC, the quality of

the obtained motif models can be compared by different tools. These are the motifs that are

high confidence to be true motifs in the input dataset.

MEME-ChIP was used as the benchmark for the ensemble approach studied in this study.

MEME-ChIP web service scanned for three motifs by default. The entire datasets were used

for the motifs discovery using MEME-ChIP web service in order to discover the candidate

motifs globally. The scanning by using MEME-ChIP web service was performed once,

because the default parameters are used. Each discovered motif was converted to GAPWM

output format to produce the ROC. The ROC results were plotted as in the Figure 4.2.

In comparison to Figure 4.1, Figure 4.2 shows three distinctive curves for each dataset.

This indicates that three discovered motifs by MEME-ChIP have very dissimilar pattern.

MEME-ChIP discovers multiple motifs from the input datasets. Therefore, each discovered

motif will have distinctive PWMs. In contrast to MEME-ChIP, ENSPART collects outputs

from multiple classifiers. Hence, it is possible that ENSPART discovers similar motifs.

The curve that has the largest AUC resemble the curves in Figure 4.1. Each dataset shows

almost three distinct curves. This is because MEME-ChIP is run once to discover multiple

potential motifs. From Figure 4.1 and Figure 4.2, they show that ENSPART is able to

produce larger area under ROC on datasets such as E2F4, NRSF, and OCT4. This implies

that, ensemble approach that utilises different motif discovery tools by ENSPART is able

to discover the motifs that have better AUC scores, than using a single motif discovery tool

such as MEME-ChIP. In addition, ENSPART uses smaller sample from the datasets, yet it

is able to produce results that are equivalent or better than MEME-ChIP.
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Figure 4.2: ROCs from MEME-ChIP on whole datasets. Each curve is a discovered PWM

from MEME-ChIP. In contrast to ENSPART, the curves are non-overlapping because they

are discovered by one single tool, while ENSPART uses multiple tools as ensemble approach,

which will discover similar PWMs among the tools.
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30% of the datasets that were used for ensemble approach with partitioning were combined

and scanned by MEME-ChIP, ChIPMunk, and RSAT peak-motifs. The results are shown and

compared in Table 4.5. The average is calculated by averaging the AUCs from the discovered

motifs. ChIPMunk does not have average because it only discover one motif.

The best AUCs of ENSPART and the best AUCs of MEME-ChIP with whole datasets are

derived from the ROCs as shown in Figure 4.1 and Figure 4.2. For each dataset, the number

of motifs discovered by MEME-ChIP is three (3), with only one for ChIPMunk. The number

of motifs predicted by RSAT peak-motifs varies with different datasets. Table 4.5 shows

that the best AUC values of ENSPART are better than MEME-ChIP (whole set) on 8 out of

Table 4.5: Comparison of the best AUC and average AUC between ENSPART,

MEME-ChIP, ChIPMunk, and RSAT peak-motifs. MEME-ChIP was used on both whole

(100%) datasets and 30% of the datasets. Other tools were used 30% of the datasets. There are

five (5) best motifs reported by MEME-ChIP and one (1) best motif reported by ChIPMunk.

The column “No. of Motifs” under RSAT peak-motifs (30%) is the number of motifs

discovered by according to each dataset.

ENSPART (30%)
MEME-ChIP

(Whole)

MEME-ChIP

(30%)

ChIP-

Munk

(30%)

RSAT peak-motifs (30%)

Best Avg. Best Avg. Best Avg. Best Best Avg.
No. of

Motifs

CREB 0.7537 0.5941 0.7671 0.7042 0.6943 0.6656 0.8054 0.7306 0.6464 20

CTCF 0.8384 0.5642 0.8195 0.6804 0.6067 0.5694 0.8381 0.6720 0.6059 20

E2F4 0.6191 0.5223 0.6018 0.5627 0.5245 0.4813 0.6525 0.5954 0.5006 11

FOXA1 0.8721 0.6127 0.8717 0.6554 0.5966 0.5639 0.8665 0.8345 0.7390 20

FOXA2 0.8643 0.6119 0.8446 0.6666 0.5819 0.5438 0.8469 0.8308 0.7587 20

NRSF 0.7532 0.6040 0.7334 0.6610 0.5351 0.4988 0.7452 0.7653 0.6428 20

NTERA 0.6670 0.5651 0.6424 0.5791 0.6116 0.5717 0.6351 0.6026 0.5342 20

OCT4 0.6847 0.5290 0.5541 0.5181 0.6799 0.5762 0.6493 0.6011 0.5506 20

P53 0.9499 0.6564 0.9473 0.7747 0.7202 0.5639 0.9515 0.8358 0.6214 20

STAT1 0.6607 0.5654 0.6675 0.5580 0.5650 0.5420 0.6732 0.6653 0.5993 20

Average 0.7663 0.7450 0.6116 0.7664 0.7134
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10 of the input datasets, but slightly lower for the CREB and STAT1 dataset. In addition,

MEME-ChIP with 30% of the datasets has poorer AUCs in comparison to both ENSPART

and MEME-ChIP (whole set). By comparing ENSPART to ChIPMunk, the latter has better

best AUCs on CREB, E2F4, P53, and STAT1 datasets. In addition, ENSPART has better

motif AUC values than RSAT peak-motifs in 8 out of 10 of the datasets, except for NRSF

and STAT1.

The average AUC values are computed from all discovered motifs of each TF dataset.

Because of ENSPART uses partitioning, some discovered motifs may not globally appear

in the whole dataset. But during the partitioning with random selection, the pattern appeared

in the partition by chance. As a result, averaging the AUCs from these discovered motifs will

reduce the average AUC values.

In summary of Table 4.5, it shows that on average, ENSPART has a best AUC value

0.7663, which is higher than MEME-ChIP on both whole datasets and 30% of the datasets.

ENSPART also scores better than RSAT peak-motifs. However, ChIPMunk performed

slightly better than ENSPART in the average of the best AUC.

Figure 4.3 to Figure 4.12 show the sequence logos of the best motifs predicted by ENSPART

and MEME-ChIP. Sequence logo would allow us to compare the conservation characteristics

of motifs obtained.
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(a) (b)

Figure 4.3: Comparison of sequence logos obtained using CREB dataset. (a) Motif predicted

by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.4: Comparison of sequence logos obtained using CTCF dataset. (a) Motif predicted

by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.5: Comparison of sequence logos obtained using E2F4 dataset. (a) Motif predicted

by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.6: Comparison of sequence logos obtained using FOXA1 dataset. (a) Motif

predicted by ENSPART; (b) Motif predicted by MEME-ChIP.
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(a) (b)

Figure 4.7: Comparison of sequence logos obtained using FOXA2 dataset. (a) Motif

predicted by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.8: Comparison of sequence logos obtained using NRSF dataset. (a) Motif predicted

by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.9: Comparison of sequence logos obtained using NTERA dataset. (a) Motif

predicted by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.10: Comparison of sequence logos obtained using OCT4 dataset. (a) Motif

predicted by ENSPART; (b) Motif predicted by MEME-ChIP.
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(a) (b)

Figure 4.11: Comparison of sequence logos obtained using P53 dataset. (a) Motif predicted

by ENSPART; (b) Motif predicted by MEME-ChIP.

(a) (b)

Figure 4.12: Comparison of sequence logos obtained using STAT1 dataset. (a) Motif

predicted by ENSPART; (b) Motif predicted by MEME-ChIP.

The discovered motifs have also been scanned with Tomtom (Gupta et al., 2007) to match

with JASPAR 2014 database. Table 4.6 shows the best matches.

Table 4.6: ENSPART motifs match with JASPAR 2014 database using Tomtom. P-value

is the probability that the match occurred by random chance according to the null model. The

upper sequence logo of each row belongs to motif from JASPAR, while the lower sequence

logo of each row belongs to the best motif discovered by ENSPART.

Name JASPAR Name p-value Logo

CREB FOXP1 4.87e-05
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Table 4.6 continued

CTCF CTCF 8.57e-18

E2F4 EWSR1-FLI1 1.66e-04

FOXA1 FOXA1 1.79e-09

FOXA2 FOXA2 8.59e-17

NRSF REST 9.22e-08

NTERA ZNF263 3.55e-15

OCT4 FOXP1 3.19e-05
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Table 4.6 continued

P53 TP53 4.64e-10

STAT1 STAT1 2.49e-06

The results show that 6 of 10 of the datasets could match correctly to the motifs annotated in

JASPAR database. They are CTCF, FOXA1, FOXA2, NRSF, P53, and STAT1. However,

the datasets CREB, E2F4, NTERA, and OCT4 matched to different TF motifs from JASPAR

database. The best motifs from MEME-ChIP, ChIPMunk, and RSAT peak-motifs do not

match correctly to motifs in JASPAR. A reason is the datasets contain motifs that are not

annotated in the JASPAR database.

Next, paired sample t-test was used as the significance test on the means of the best AUCs.

Table 4.7 shows the p-values of the t-test.

Table 4.7: P-values of paired sample t-test on the comparison of the best AUCs of the

ENSPART and other algorithms.

Comparison p-value

ENSPART – MEME-ChIP (Whole) 0.0474

ENSPART – MEME-ChIP (30%) 0.0002

ENSPART – ChIPMunk 0.4975

ENSPART – RSAT peak-motifs 0.0037
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The p-value results show that, best AUC scores according to Match of ENSPART are

statistical significantly better than MEME-ChIP on the whole datasets, MEME-ChIP on 30%

of datasets, and RSAT peak-motifs, because the p-values are less than α (< 0.05). On the other

hand, mean of best AUC of ENSPART is less than mean of best AUC of ChIPMunk. This

indicates that ChIPMunk has better performance than ENSPART. However, the p-value of

ENSPART and ChIPMunk comparison is not statistical significant at 0.05. Thus, there is not

enough evidence to claim that accuracy of ChIPMunk is significantly better than ENSPART.

The findings of this experiment can be summarised as:

i. ENSPART has better accuracy performance than MEME-ChIP on whole dataset in

terms of AUC.

ii. ENSPART has better accuracy performance than MEME-ChIP on 30% of dataset in

terms of AUC.

iii. ENSPART has better accuracy performance than RSAT peak-motifs in terms of AUC.

Moreover, the experiment also accepts the hypothesis that, by employing novel partitioning

and merging techniques, ENSPART has better accuracy performance than the contemporary

ChIP-seq motif discovery tools.
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4.3 Comparison using unpartitioned datasets

Datasets 2 as described in Section 3.4.2 is used for the comparison of ENSPART and the other

individual motif discovery tools. Table 4.8 shows the information of the sampled datasets

from Datasets 2.

Table 4.8: The average sequence length, total bp count, number of sequences, and the

percentages of each nucleotides of the sampled datasets.

TF Average length Total bp count Number of sequences % of A % of C % of G % of T

CEBPA 486.3 243164 500 29.4 20.5 20.6 29.5

CREB1 1174.7 587370 500 27 22.8 22.9 27.3

CTCF 187.8 93897 500 29.1 21.2 21.4 28.3

E2F4 860.0 430003 500 27.5 22.4 22.9 27.2

FOXA1 267.7 133828 500 30 20.2 20.4 29.5

KLF4 760.3 380143 500 28 21.9 22 28.1

MYCN 372.3 186155 500 19.7 30.3 30.1 19.9

NRSF 449.5 224739 500 22.9 27.3 27 22.8

P53 492.0 245981 500 30.2 20 20.2 29.6

STAT1 838.6 419275 500 28.6 21.5 21.2 28.7

4.3.1 Motif discovery tools

Similar to the previous experiment, the tools that were used for motif discovery were

ENSPART, ChIPMunk, MEME-ChIP online, and RSAT peak-motifs. However, more

intermediate results were collected for the evaluation purpose. These include the results from

AMD, BioProspector, MEME-ChIP of ENSPART, MDscan, Weeder2, and MotifSampler of

the ENSPART’s individual classifiers. MEME-ChIP online is different from “MEME-ChIP

from ENSPART” in terms of parameters used. MEME-ChIP online refers web service with

default parameters, while “MEME-ChIP from ENSPART” refers to MEME-ChIP individual

classifier from ENSPART that was being invoked three times with different parameters.
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Besides that, AlignACE and W-AlignACE were dropped from ENSPART because both

algorithms were extremely slow comparing to other individual algorithms. However,

MotifSampler was added to ENSPART as a new individual classifier. The parameters for

the individual algorithms within the ENSPART were same as the previous experiment.

ENSPART involves merging of the data n times, where the n was set to three (3). In

this experiment, the results of each merging were also collected. This is to evaluate the

performance of the multiple times of merging. Comparing to the previous experiment, this

experiment uses the whole sample (size of 500 sequences) for all motif discovery tools.

Similar to the previous experiment, this experiment reponds to the hypothesis:

i. The proposed ensemble framework that employs novel merging technique has better

accuracy performance than the contemporary ChIP-seq motif discovery tools.

4.3.2 Findings

Table 4.9 shows the comparison of the best AUCs of the discovered motifs by ENSPART

and the individual tools used by ENSPART.
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ENSPART Gn denotes n times of merging. Therefore, ENSPART G1 indicates the candidate

motifs were merged once based on the KFV similarity, G2 indicates the motifs were merged

twice, and G3 indicates the motifs were merged three times. There are some AUCs showing

the same value. For instance CTCF of ENSPART G1 and MEME-ChIP are both 0.4110.

This is because the candidate motif discovered by MEME-ChIP was not merged with any

other candidate and it produces the best AUC value. As being stated by Hu et al. (2006), the

ensemble approach always performs better than individual motif discovery tools or at least

had the same level of performance as the individual tools.

CEBPA CREB1 CTCF E2F4 FOXA1 KLF4 MYCN NRSF P53 STAT1
Transcription factors
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Figure 4.13: Comparison of AUCs from ENSPART and individual tools.

Figure 4.13 shows that ENSPART has better AUC scores comparing to other individual tools.

Besides that, most motifs can achieve the AUC scores above 0.5, except CTCF. CTCF AUC

score is possible affected by the characteristic of the dataset, which has the shortest average

sequence length comparing to the other datasets. This causes the ROC based on Match

algorithm does not get good score. However, ENSPART G3 is showing the highest score

among the other tools. In addition, MDscan does not produce high AUC scores on E2F4,
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FOXA1, KLF4, NRSF, and STAT1,

Next, paired sample t-test is conducted as the significance test on the average of the AUCs.

Table 4.10 shows the p-values of the t-tests.

Table 4.10: Comparison of paired sample t-test p-values of the best AUCs from ENSPART

and individual classifiers used by ENSPART.

ENSPART G1 ENSPART G2 ENSPART G3

ENSPART G1 0.3207 0.0319

ENSPART G2 0.3207 0.0471

ENSPART G3 0.0319 0.0471

AMD 0.0008 0.0017 0.0124

BioProspector 0.0022 0.0026 0.0058

MEME-ChIP 0.0050 0.0127 0.1275

MDscan 0.0024 0.0025 0.0032

MotifSampler 0.0002 0.0000 0.0105

Weeder2 0.0052 0.0060 0.0131

The first part of the table shows the p-values by comparing the AUCs of ENSPART G1, G2,

and G3. Table 4.9 shows that the average values are decreasing when the number of merging

is increased, but the p-values show that there is no significant decreasing of the average by

comparing ENSPART G1 and G2. This is because the p-values are greater than 0.05.

The second part of the table shows the comparison of ENSPART G1, G2, and G3 to the

individual classifiers: AMD, BioPropspector, MEME-ChIP MDscan, MotifSampler, and

Weeder2. The table shows that, ENSPART G1, G2, and G3 are significantly better than

the individual classifiers, because all the p-values are less than 0.05.
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Besides that, ENSPART was also compared to contemporary ChIP-seq motif discovery

tools as in previous experiment. They are ChIPMunk, MEME-ChIP (online), and RSAT

peak-motifs. Table 4.11 shows the AUCs of the best candidate motifs discovered by the

tools.
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The results show that ChIPMunk has better AUCs on CEBPA and CTCF transcription factors,

and RSAT peak-motifs has better AUC on NRSF. Notably, MEME-ChIP web service which

uses default parameter has same AUC as ENSPART G1 and G2 on FOXA1 transaction factor.

Since ENSPART employs MEME-ChIP as one of the classifier, hence both MEME-ChIP

web service and ENSPART are able to discover the same candidate motifs.

CEBPA CREB1 CTCF E2F4 FOXA1 KLF4 MYCN NRSF P53 STAT1
Transcription factors
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Figure 4.14: Comparison of AUCs from ENSPART, ChIPMunk, MEME-ChIP, and RSAT

peak-motifs.

Figure 4.14 shows that ENSPART has higher AUC scores comparing to ChIPMunk,

MEME-ChIP, and RSAT peak-motifs in most datasets, except CEBPA, CTCF, and NRSF.

Notably, ChIPMunk does not score high AUCs on FOXA1, MYCN, and NRSF. On the other

hand, RSAT peak-motifs scores high AUC on NRSF. The figure also shows that ENSPART

results are generally higher than the ChIPMunk, MEME-ChIP, and RSAT peak-motifs.

T-test is performed on the means of ENSPART and the ChIP-seq motif discovery tools.

Table 4.12 shows the t-test result.

136



Table 4.12: Comparison of paired sample t-test p-values of the best AUCs from ENSPART,

ChIPMunk, MEME-ChIP (online), and RSAT peak-motifs.

ChIPMunk MEME-ChIP RSAT

ENSPART G1 0.0229 0.0031 0.0003

ENSPART G2 0.0257 0.0033 0.0003

ENSPART G3 0.0562 0.0058 0.0003

T-test results show that all the p-values are less than α, 0.05 value. This indicates that,

ENSPART G1, G2, and G3 are all significantly better than ChIPMunk, MEME-ChIP online,

and RSAT peak-motifs in terms of means of best candidate motifs AUCs.

Consequently, Table 4.10 summarises that, there is enough evidence to support the claim

that ENSPART has better accuracy performance than individual tools that were employed by

ENSPART. Furthermore, Table 4.12 summarises that, there is enough evidence to support

the claim ENSPART has better accuracy performance than ChIPMunk, MEME-ChIP, and

RSAT peak-motifs. Moreover, p-value of ENSPART G1 and G3 does not provide enough

evidence to support the claim that merging candidate motifs three times can improve the

AUCs. However, p-value of ENSPART G1 and G2 indicates that there is enough evidence

to support the claim that merging candidate motifs twice can improve the AUCs.

In summary, the t-tests of the experiment on the datasets without partitioning show that:

i. ENSPART has better accuracy performance than each individual classifier in terms of

AUC.

ii. ENSPART has better accuracy performance than other contemporary ChIP-seq

algorithms, namely ChIPMunk, MEME-ChIP, and RSAT peak-motifs, in terms of

AUC.

137



Hence, the experiment accepts the hypothesis that, by employing novel merging technique,

ENPART has better accuracy performance than the contemporary ChIP-seq motif discovery

tools.

4.4 Comparison using simulated datasets

In this experiment, ENSPART was compared to GimmeMotifs and MotifVoter using

Datasets 3 as described in Section 3.4.3. Table 4.13 shows a comparison of tools used by

different ensemble algorithms. In the ensemble approaches, while the individual tools played

a key role in identifying true motifs in an input dataset, merging the results obtained by

different tools would be far more important. All the three ensemble techniques: ENSPART,

GimmeMotifs, and MotifVoter employed a combination of tools from different categories:

probabilistic, enumerative, and heuristic. While it is arguable that the individual set of tools

used by those three ensemble methods are different, the aim of this study is to increase the

chances to predict true motifs by merging the results from different tools, rather than using

voting or averaging the results from individual tools. Hence, the final results does not depend

on how many tools are used, but on how these tools come to a consensus on the motifs they

produced. Having said that, it is essential to ensure diversification of the different categories

of tools, rather than the number of tools used.

The parameters of ENSPART were identical to the parameters in the previous experiment on

“datasets without partitioning”. The individual tools used by GimmeMotifs were run with

default parameters of each tool (van Heeringen & Veenstra, 2011). Similarly, MotifVoter

run the individual tools with default parameters of each tool, except MDscan and MEME. In

MotifVoter, MDscan’s motif width parameter was set to 15, and MEME was set to assume

that the motifs may appear more than once in a sequence (Wijaya et al., 2008).
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Table 4.13: Comparison of individual tools used in ensemble algorithms. The three

ensemble-based motif discovery tools use both probabilistic and enumerative individual

tools. MDmodule is a modified version of MDscan. MotifVoter uses ANNSpec which is

not categorised as probabilistic or enumerative.

Approach ENSPART GimmeMotifs MotifVoter

- - AlignACE

BioProspector BioProspector BioProspector

Probabilistic - ChIPMunk -

- Improbizer Improbizer

MEME-ChIP MEME MEME

MotifSampler MotifSampler MotifSampler

AMD AMD -

MDscan MDmodule MDscan

- - Mitra

Enumerative - Posmo -

- - SPACE

- - Trawler

Weeder2 Weeder Weeder

ANN - - ANNSpec

Table 4.13 shows the comparison of the individual tools of the ensemble approach in this

experiment. ENSPART uses six (6) tools, GimmeMotifs uses nine (9) tools, and MotifVoter

uses eleven (11) tools. ChIPMunk used by GimmeMotifs is one of tools that is compared in

previous experiments, which shows high AUC scores in several comparisons.

4.4.1 Evaluation metric

Precision and recall rates were employed to compare the performance of ENSPART,

GimmeMotifs, and MotifVoter. The motif profiles predicted by the three ensemble-based

motif discovery tools were used to scan for binding sites using different matching threshold

values. FIMO (Grant et al., 2011) from MEME Suite was used to detect the location of the

candidate binding sites in the input sequences using the PWMs obtained from the tools. FIMO
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calculates log-likelihood ratio score for each candidate site in the sequence according to the

given PWM. The higher score indicates lower p-value for the likelihood between the located

binding site and discovered motif. In the experiment, the negative strands were ignored,

because rMotifGen only generates the sequences based on positive strands. The example of

the FIMO output is shown as below,

sequence_name start stop strand score p-value q-value matched_sequence

rMotifGen_RandSeq_1 62 73 + 13.0854 2.6E-05 0.0126 CTATTAATTAAA

The “start” and “stop” columns denote the start and end positions of the sequence that matches

the motif’s PWM. Score is the log-likelihood ratio score. P-value and q-value are calculated

corresponding to the score. The “matched_sequence” is the k-mer of the sequence that is

matched to the PWM. Therefore, with the “start” and “stop”, location is able to identify

whether the matched location is a hit to the known binding site locations.

In the evaluation, we also generated artificial sequences that do not contain any true sites

with the same size of the input sequences, that is, 100 sequences each dataset (Table 3.10).

These sequences are generated by using “fasta-dinucleotide-shuffle” tool available as part of

MEME Suite. Combining the input and artificial sequences for FIMO site detection scrutinise

the discrimination ability of motifs discovered by the evaluated tools. The true positive (TP),

false positive (FP), and false negative (FN) are defined as below:

i. TP - The detected site is overlapped with at least 1 bp with a true site.

ii. FP - Detected sites that are not true sites.

iii. FN - The true sites that are failed to be detected.
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Five (5) different p-value thresholds were used on FIMO, 0.0001, 0.005, 0.01, 0.02, and 0.05.

The threshold parameter controls FIMO to display only the output that the p-value is less

than the threshold parameter. Then the precision and recall rates were calculated according

to Equation 4.27 and Equation 4.28 respectively,

Precision = TP

TP + FP
Equation 4.27

Recall = TP

TP + FN
Equation 4.28

In addition, F1 score was also calculated according to Equation 4.29,

F1 score = 2 · precision · recall

precision + recall
Equation 4.29

This experiment responds to the hypothesis:

i. The proposed ensemble framework is able to perform significantly better than several

contemporary ensemble-based motif discovery tools.
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4.4.2 Findings

Table 4.14: Sequence logos of the discovered motifs by ENSPART, GimmeMotifs, and

MotifVoter. Expected sequence logos are the true motifs based on positions of the binding

sites generated by rMotifGen.

Name Sequence logos
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Table 4.14 continued
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Table 4.14 shows the sequence logos of the best motifs discovered by ENSPART,

GimmeMotifs, and MotifVoter according to the precision and recall rates. The expected

sequence logos are the simulated motifs by using rMotifGen tool. The sequence logos help

the readers to understand the conservation characteristics of the discovered motifs of the

tools. The sequence logos produced by MotifVoter are mostly having long motif length

(CTCF, E2F4, FOXA1, and NRSF). This is because the discovered candidate motifs of the

individual tools are aligned using MUSCLE which allows gap.

Table 4.15 shows the results of the precision and recall rates of the best motifs in terms of

highest F1 score discovered by ENSPART, GimmeMotifs, and MotifVoter. It is noted that,
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when the threshold increases from 0.0005 to 0.005, ENSPART maintains level of precision

and recall rates. For examples, for CTCF, E2F4, and P53 datasets, their precision and recall

rates at (0.990, 0.990), (0.942, 0.990), (1.000, 0.981) respectively. This indicates that the

discovered motif is discriminative and high-quality. On the NRSF dataset, when the threshold

value increases, the precision and recall rates of ENSPART decrease but remain better than

GimmeMotifs and MotifVoter.

Table 4.15: Comparison of precision and recall rates of the best motifs between ENSPART,

GimmeMotifs, and MotifVoter. The column “Prec.” is precision rate.

Enspart G1 Enspart G2 Enspart G3 GimmeMotifs MotifVoter

TF Threshold Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

CTCF

0.0001 0.989 1.000 0.989 0.989 1.000 0.989 0.921 0.972 0.977 0.955

0.0005 0.990 0.990 0.971 0.990 0.925 0.934 0.875 0.894 0.944 0.883

0.001 0.990 0.990 0.971 0.990 0.868 0.911 0.800 0.838 0.875 0.802

0.002 0.990 0.990 0.971 0.990 0.847 0.870 0.732 0.721 0.748 0.688

0.005 0.990 0.990 0.971 0.990 0.847 0.870 0.602 0.513 0.643 0.549

E2F4

0.0001 0.978 1.000 0.978 0.978 1.000 0.978 1.000 1.000 0.967 0.908

0.0005 0.942 0.990 0.942 0.942 0.962 0.917 0.857 0.868 0.862 0.757

0.001 0.942 0.990 0.942 0.942 0.962 0.917 0.792 0.764 0.746 0.683

0.002 0.942 0.990 0.942 0.942 0.962 0.917 0.746 0.594 0.661 0.584

0.005 0.942 0.990 0.942 0.942 0.962 0.917 0.542 0.455 0.547 0.431

FOXA1

0.0001 0.946 0.875 0.946 0.875 0.946 0.875 0.962 0.833 0.571 0.364

0.0005 0.867 0.852 0.867 0.852 0.867 0.852 0.797 0.770 0.571 0.410

0.001 0.756 0.756 0.756 0.756 0.756 0.756 0.634 0.634 0.500 0.394

0.002 0.639 0.678 0.673 0.632 0.673 0.632 0.561 0.561 0.437 0.352

0.005 0.619 0.647 0.595 0.657 0.595 0.657 0.409 0.367 0.395 0.320

NRSF

0.0001 0.984 0.968 0.952 1.000 0.945 0.963 0.964 0.964 0.600 0.750

0.0005 0.873 0.904 0.873 0.873 0.833 0.885 0.909 0.885 0.423 0.393

0.001 0.784 0.852 0.768 0.784 0.783 0.758 0.824 0.800 0.418 0.397

0.002 0.661 0.750 0.663 0.661 0.676 0.649 0.733 0.696 0.447 0.362

0.005 0.688 0.669 0.643 0.688 0.658 0.637 0.733 0.696 0.443 0.317

P53

0.0001 1.000 0.980 0.990 1.000 0.978 1.000 0.990 0.981 - 0.000

0.0005 1.000 0.981 0.981 1.000 0.981 0.981 0.954 0.928 0.167 0.125

0.001 1.000 0.981 0.981 1.000 0.981 0.981 0.954 0.928 0.167 0.125

0.002 1.000 0.981 0.981 1.000 0.981 0.981 0.954 0.928 0.167 0.125

0.005 1.000 0.981 0.981 1.000 0.981 0.981 0.954 0.928 0.167 0.125

Average 0.917 0.899 0.913 0.888 0.879 0.872 0.808 0.781 0.560 0.472
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GimmeMotifs precision and recall rates are better than ENSPART at the threshold 0.005

on the NRSF dataset. The average of the precision and recall rates of the ENSPART are

above 0.9 whereas GimmeMotifs and MotifVoter achieved (0.808, 0.781) and (0.560, 0.472)

respectively. Hence, the table summarises that, on average ENSPART has better precision

and recall performance than GimmeMotifs and MotifVoter.

There were perfect precision and recall rates (1.0 and 1.0 respectively) discovered by

ENSPART for the FOXA1, which are not shown in the table. This is because the motif will hit

TP when there is at least 1 bp overlaps on a true site, this implies that the best motif which has

perfect precision and recall rates does not necessary perfectly resemble the expected motifs.

As a result, these motifs are excluded from the report.
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Figure 4.15: Scatter plot of the precision and recall rates for the three tools: ENSPART,

GimmeMotifs, and MotifVoter. The points represent the precision and recall rate produced

by FIMO at a certain threshold value.
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Figure 4.15 shows the scatter plot of the precision and recall rates of ENSPART,

GimmeMotifs, and MotifVoter. The plot shows that ENSPART results are more concentrated

at the upper right. ENSPART results are generally above (0.6, 0.6) of the precision and

recall. On the other hand, GimmeMotifs also produces result at the upper right of the chart.

However, GimmeMotifs’ results are more dispersed comparing to ENSPART. MotifVoter

is also dispersed across the chart. Besides that, one of the MotifVoter results is having a very

low precision and recall rates.

Table 4.16 shows the F1 score of each best motifs according to the FIMO threshold

parameters. The table is corresponding to Table 4.15. Both tables show that the precision

rates, recall rates, and F1 scores of ENSPART are decreased slightly when more merging are

performed. This implies that, more merging might have negative effect on the quality of the

motifs, and this is conform to the AUC results in the previous experiments. Nevertheless,

the merging has greatly reduced the number of redundant motifs in the output. This table

summarises that, the average of the F1 scores of ENSPART are higher than GimmeMotifs

and MotifVoter. This also means that, ENSPART has better performance in motif discovery

in terms of F1 score comparing to GimmeMotifs and MotifVoter.
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Table 4.16: Comparison of F1 scores of the best motifs between ENSPART, GimmeMotifs,

and MotifVoter.

TF Threshold Enspart G1 Enspart G2 Enspart G3 GimmeMotifs MotifVoter

CTCF

0.0001 0.9947 0.9947 0.9947 0.9459 0.9655

0.0005 0.9901 0.9806 0.9296 0.8842 0.9128

0.001 0.9901 0.9806 0.8889 0.8186 0.8370

0.002 0.9901 0.9806 0.8584 0.7266 0.7170

0.005 0.9901 0.9806 0.8584 0.5536 0.5924

E2F4

0.0001 0.9889 0.9889 0.9890 1.0000 0.9365

0.0005 0.9655 0.9655 0.9390 0.8627 0.8060

0.001 0.9655 0.9655 0.9390 0.7778 0.7132

0.002 0.9655 0.9655 0.9390 0.6615 0.6201

0.005 0.9655 0.9655 0.9390 0.4944 0.4819

FOXA1

0.0001 0.9091 0.9091 0.9091 0.8929 0.4444

0.0005 0.8595 0.8595 0.8595 0.7833 0.4776

0.001 0.7561 0.7561 0.7561 0.6341 0.4407

0.002 0.6582 0.6520 0.6520 0.5614 0.3897

0.005 0.6324 0.6244 0.6244 0.3868 0.3532

NRSF

0.0001 0.9760 0.9756 0.9541 0.9643 0.6667

0.0005 0.8879 0.8879 0.8586 0.8969 0.4074

0.001 0.8268 0.8074 0.7705 0.8120 0.4071

0.002 0.7121 0.7038 0.6621 0.7143 0.4000

0.005 0.6947 0.6556 0.6472 0.7143 0.3696

P53

0.0001 0.9951 0.9849 0.9886 0.9854 -

0.0005 0.9951 0.9806 0.9806 0.9406 0.1429

0.001 0.9951 0.9806 0.9806 0.9406 0.1429

0.002 0.9951 0.9806 0.9806 0.9406 0.1429

0.005 0.9951 0.9806 0.9806 0.9406 0.1429

Average 0.9078 0.9003 0.8752 0.7933 0.5213
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Table 4.17: Comparison of paired sample t-test p-values of precisions from ENSPART,

GimmeMotifs, and MotifVoter.

ENSPART G1 ENSPART G2 ENSPART G3

ENSPART G1 0.0684 0.0002

ENSPART G2 0.0684 0.0005

ENSPART G3 0.0002 0.0005

GimmeMotifs 0.0001 0.0002 0.0024

MotifVoter 0.0000 0.0000 0.0000

Table 4.18: Comparison of paired sample t-test p-values of recalls from ENSPART,

GimmeMotifs, and MotifVoter.

ENSPART G1 ENSPART G2 ENSPART G3

ENSPART G1 0.0004 0.0005

ENSPART G2 0.0004 0.0081

ENSPART G3 0.0005 0.0081

GimmeMotifs 0.0002 0.0007 0.0010

MotifVoter 0.0000 0.0000 0.0000

Table 4.19: Comparison of paired sample t-test p-values of F1 scores from ENSPART,

GimmeMotifs, and MotifVoter.

ENSPART G1 ENSPART G2 ENSPART G3

ENSPART G1 0.0002 0.0001

ENSPART G2 0.0002 0.0011

ENSPART G3 0.0001 0.0011

GimmeMotifs 0.0001 0.0004 0.0014

MotifVoter 0.0000 0.0000 0.0000

Table 4.17 to Table 4.19 show the p-values of the paired sample t-tests from precision, recall,

and F1 scores from the ENSPART, GimmeMotifs, and MotifVoter. The tables show that,

ENSPART algorithm is significantly better than GimmeMotifs and MotifVoter in terms of
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precision, recall, and F1 score (p-value < 0.05). Hence, the t-test results show that, there is

enough evidence to support the claim that ENSPART achieved higher precision and recall

than GimmeMotifs and MotifVoter using the five datasets.

On the other hand, when ENSPART merges the candidate motifs for n times, where n =

{1, 2, 3}, the tables show that merging three times is significantly decreasing the results of

precision rate, recall rate, and F1 score. The p-values of G1 and G3 from precision rate, recall

rate, and F1 score are less than 0.05.

The results of Table 4.17 also shows that, this experiment accepts the hypothesis ENSPART is

able to perform significantly better than some contemporary ensemble-based motif discovery

tools, for instance GimmeMotifs and MotifVoter.

4.4.3 Coverage metric

Coverage metric (Schapire & Singer, 2000) was used to evaluate the performance of the

three ensemble-based motif discovery tools: ENSPART, GimmeMotifs, and MotifVoter.

The purpose of coverage is to assess the performance of the motif discovery tools for all

possible labels of sequences, not only the top-ranked labels as ranked by FIMO. Coverage

is defined as the average distance to cover all the possible labels assigned to a sample (T. Li,

Zhang, & Zhu, 2006). It evaluates how many steps are needed, on average, to go down

the list of labels in order to cover all the proper labels of the sequence (Schapire & Singer,

2000; M. L. Zhang & Zhou, 2007; M. L. Zhang, Peña, & Robles, 2009). It is a lowest-best

metric that if the algorithm does not make any classification error, the coverage value will be

zero (Schapire & Singer, 2000).
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Let f as a function produced by a learning system, which given an instance xi and its

associated label set Yi, a successful learning system will tend to produce larger values for

labels in Yi than those not in Yi, that is, f(xi, y1) > f(xi, y2) for any y1 ∈ Yi and y2 /∈ Yi. In

motif discovery, it means that a motif m discovered by motif discovery tool, is expected to

produce larger values in positive dataset that contains the motif than background dataset that

does not contain the motif. This can be perfomed by FIMO, because FIMO computes the

score of the motif matched in a given sequence, where the larger score means better match.

Hence, coverage can be denoted as Equation 4.30

coverage(f) = 1
n

n∑
i=1

max
y∈Yi

rankf (xi, y) − 1 Equation 4.30

where rankf is a ranking function. The purpose of the ranking function is to order the

labels that the top-most labels are new instance. This implies that, y2 /∈ Yi is new instance

and should be ranked higher than y1 ∈ Yi. This also means, if f(xi, yi) > f(xi, y2),

then rankf (xi, y1) < rankf (xi, y2). Therefore, a successful motif m should produce low

coverage score.

A modified coverage metric based on D. Wang and Lee (2009) was used. The coverage score

of a motif m is denoted as Equation 4.31

coverage(m) = 1
n

n∑
i=1

rank(xi) Equation 4.31

where n is the number of motif instances, xi is an instance of m, and rank(xi) is the number

of random k-mers having the score higher than score of xi. Hence, a random background
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dataset based on Homo sapiens third order Markov model was generated by using RSAT

web tool. The background dataset contains 2500 sequences, each sequence is 1000 bp long.

The positive datasets are generated by rMotifGen in which the position of the binding sites

are known. FIMO was used to calculate the score of every sequence in the datasets by using

p-value threhold 0.0001.

Table 4.20: Coverage scores of the best motifs discovered by ENSPART, GimmeMotifs,

and MotifVoter.

TF Tool Coverage

CTCF

ENSPART 612.0438

GimmeMotifs 1205.2376

MotifVoter 1302.4882

E2F4

ENSPART 506.0537

GimmeMotifs 1225.9708

MotifVoter 589.0833

FOXA1

ENSPART 909.5909

GimmeMotifs 1467.6525

MotifVoter 2764.5747

NRSF

ENSPART 1111.3540

GimmeMotifs 749.0844

MotifVoter 1531.3830

P53

ENSPART 546.0559

GimmeMotifs 473.5612

MotifVoter 1671.6216

Table 4.20 shows the coverage scores of ENSPART, GimmeMotifs, and MotifVoter

according to each TF. The motif with the highest F1 score from each tool was selected

for the evaluation. The result shows that 3 out of 5 datasets (CTCF, E2F4, and FOXA1),

ENSPART produces lowest coverage scores. On the other hand, GimmeMotifs has lowest

coverage scores for both NRSF and P53. Moreover, MotifVoter has lower score comparing

to GimmeMotifs on E2F4 dataset. As a conclusion, ENPART has better performance
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comparing to GimmeMotifs and MotifVoter.

4.5 Discussion

There were three experiments being conducted: (i) experiment on the partitioned datasets,

(ii) experiment on the non-partitioned datasets, and (iii) experiment on the simulated datasets.

The first experiment showed that ENSPART achieved 0.766 on average AUC using 30% of

the datasets, which was significantly higher than MEME-ChIP with whole datasets (0.745),

MEME-ChIP with 30% of the datasets (0.612) and RSAT peak-motifs with 30% of the

datasets (0.713). The second experiment demonstrated that ENSPART achieved the highest

average AUC comparing to individual tools. ENSPART produced average AUC 0.661,

followed by MEME-ChIP (0.651), MotifSampler (0.650), AMD (0.649), ChIPMunk (0.633),

RSAT peak-motifs (0.627), Weeder2 (0.624), BioProspector (0.624), MEME-ChIP online

(0.615), and MDscan (0.560). The third experiment showed that ENSPART achieved the

highest average precision rates, recall rates, and F1 scores comparing to GimmeMotifs and

MotifVoter with (0.917, 0.899, 0.908), (0.808, 0.781, 0.793), and (0.560, 0.472, 0.521)

respectively.

ENSPART algorithm demonstrated significantly better performance than using single motif

discovery tools and existing state-of-the-art ensemble approaches. Though the process is

exhaustive by running multiple motif discovery tools, by using the proposed merging method,

it can improve the quality of the motif models produced. This was shown in the findings by

using AUC evaluation in the experiment of using partitioned datasets. The advantage of the

proposed merging method solves the problem with the motif length differences. It uses KFV

to gather the similar motifs with different lengths. Then, it uses the sum of square error (SSE)

to align the best position to merge the motifs. As a result, it is possible to produce longer
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motifs.

ENSPART is able to perform better than MEME-ChIP, ChIPMunk, and RSAT peak-motifs

because ensemble approach involves multiple motif discovery tools, and each motif

discovery tool has its strength. It can discover some motifs which MEME-ChIP, ChIPMunk,

and RSAT peak-motifs are not able to discover, since the three motif discovery tools

above are using single algorithm. On the other hand, the strength of each individual motif

discovery tool in ENSPART is complementary. This allows ENSPART to produce better

motifs compared to MEME-ChIP, ChIPMunk, and RSAT-peak motifs as being shown in the

findings.

By using the partitioning technique, ENSPART is able to reduce the search space so that

the individual motif discovery tools are able to search through the partitioned datasets. This

is a useful characteristic, because large datasets such as ChIP-seq datasets require different

algorithm in order to perform motif discovery, for example ChIPMunk was developed for

ChIP-seq datasets. However, by adopting ensemble approach, partitioning of the datasets

and running multiple classifiers allow ENSPART to solve the large search space problem in

the ChIP-seq datasets. This has been proved in the experiment with paritioned datasets, and

it fulfils the objective of proposing a novel method that can reduce the sequence search space

for motif discovery.

Besides that, another advantage of using KFV for motif similarity comparison is the

feasibility of the output format. This is because PWM or PFM can be used directly for

similarity comparison. Most of the de novo motif discovery tools are able to generate

discovered motifs using matrix model such as PWM. Therefore, comparing ENSPART to
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MotifVoter, ENSPART does not require to align the discovered binding sites in order to

produce the new motifs. MotifVoter requires alignment of the discovered binding sites using

MUSCLE (Edgar, 2004). This means that, the algorithm of MotifVoter is more exhaustive

comparing to ENSPART, because it requires different interpretation of the outputs for each

classifier, since the presentation of the discovered binding sites are varied across the motif

discovery tools. The merging of the motifs using KFV is being implemented in the three

experiments. The first and second experiments show that the discovered motifs through the

merging can produce better performance in terms of AUCs. The results fulfil the objective of

this study, that is, a novel merging technique being introduced in ENSPART that uses KFVs,

without affecting the quality of the produced motifs.

GimmeMotifs uses a clustering approach very similar to ENSPART. GimmeMotifs uses

WIC score (van Heeringen & Veenstra, 2011) to evaluate the similarity of the motifs in matrix

form, then merge the similar motifs by averaging. However, the experiment of simulated data

shows that ENSPART can discover the motifs that are significantly better than GimmeMotifs.

It is possible that the individual classifiers being used and the merging the motifs according

to the KFV in ENSPART are contributing to the precision and recall.

Furthermore, in the experiment of using partitioned datasets, ChIPMunk shows higher AUC

scores, though it is not significantly better than ENSPART according to the paired sample

t-test. There is a room for improvement for optimising ENSPART algorithm. Nevertheless,

in the experiment of using non-partitioned datasets, ENSPART shows the AUC scores

that are statistically significantly better than ChIPMunk. Moreover, in the experiment

of simulated datasets, ENSPART also demonstrated the capability of discovered the best

motif which has higher precision and recall comparing to GimmeMotifs, which employs
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ChIPMunk as one of the individual classifiers. This shows the potentiality of ENSPART over

ChIPMunk. Yet, further experiment may need to be conducted to identify the significance of

the results.

In the experiments of using simulated datasets, the results show that the merging discovered

motifs n times (as in ENSPART G2 and ENSPART G3), F1 scores are being reduced. This

is possibly because the averaging of the matrix during merging will smooth the motif. As

a result, the precision and recall of the best motif is slightly reduced. Nonetheless, in the

experiment of non-partitioned datasets, the AUC scores of ENSPART G2 (KLF4, MYCN,

and STAT1) and ENSPART G3 (CTCF, MYCN) are higher than ENSPART G1. This is

because after the merging operation is performed, the motifs are smoothed and are better to

categorise the foreground and background data sequences using Match algorithm.

In addition, one of the interesting findings from the experiment of partitioned datasets is

that the ENSPART is able to discover the motifs globally with the incomplete information.

This is corresponding to the characteristic of ensemble approach that it is able to solve the

problem with insufficient amount of data (Polikar, 2006). This is a useful advantage because

this implies that the traditional motif discovery tools which are not designed for large-scale

datasets are able to discover the motifs from ChIP-seq datasets through partitioning.

ENSPART partitioning and merging method is similar to divide-and-conquer algorithm.

Large-scale dataset has complex search space problem. Hence, by using partitioning, the

search space is reduced. However, because of the dataset is divided, the discovered motifs

are not definitely represent the global optimum. This explains the reason why using three sets

of 10% dataset does not produce a better prediction performance comparing to ChIPMunk
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which uses one set of 30% dataset. The advantage of using smaller sample size is that, the data

sequences can be scanned by the traditional motif discovery tools. Nevertheless, this must

involves sampling of the data with random selection. Therefore, the motifs or the patterns

that have high frequency of occurrences are appearing in each sample. Non-overlapping

partitioning is performed, this is to guarantee that 30% of the datasets are truly scanned. Each

individual tool scans for each subset with different parameters is to make sure that different

parameters are able to discover more potential motifs. Similar to GimmeMotifs, this may

result same motifs discovered multiple times. Nonetheless, ENSPART uses a novel grouping

algorithm. Each candidate motif is labelled to a group with the highest similarity based on

the empirical threshold value 0.27 of the KFV comparison. Consequently, the motifs with

higher number of occurrences will only affect to the other motifs that are within the same

group. When merging the candidate motifs by averaging, it is possible the PWM is being

smoothed. This causes the F1 scores being reduced when the number of merging increased,

as shown in the experiment with simulated data. Therefore, over merging should be avoided.

This study shows that ENSPART has better performance than MEME-ChIP and RSAT

peak-motifs by using partitioning method for ChIP-seq datasets. Moreover, the experiment

also shows that ENSPART can discover the motifs which are significantly better than

the individual classifiers that are being used. When ENSPART uses partitioning on the

datasets, ChIPMunk shows better AUC comparing to ENSPART. However, ENSPART

shows significant improvement comparing to ChIPMunk if partitioning is not being used.

Lastly, ENSPART also demonstrates statistical significant better precision and recall rates

than GimmeMotifs and MotifVoter. Morevoer, the coverage metric also shows that

ENSPART has better performance comparing to GimmeMotifs and MotifVoter. The results

of the experiment fulfil the objective of the study that, ENSPART is significantly better
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than contemporary ensemble-based motif discovery tools, for instance, GimmeMotifs and

MotifVoter.

The experiment results also summarise that the following hypotheses are accepted,

i. ENSPART has better accuracy performance than MEME-ChIP on whole dataset in

terms of AUC.

ii. ENSPART has better accuracy performance than MEME-ChIP on 30% of dataset in

terms of AUC.

iii. ENSPART has better accuracy performance than each individual classifier in terms of

AUC.

iv. Without partitioning of the datasets, ENSPART has better accuracy performance

than other contemporary ChIP-seq algorithms, namely ChIPMunk, MEME-ChIP, and

RSAT peak-motifs, in terms of AUC.

v. ENSPART has better precision and recall rates than contemporary ensemble motif

discovery algorithms, namely GimmeMotifs and MotifVoter.

4.6 Conclusion

In this study, ENSPART uses data partitioning method to reduce the search space for a

traditional motif discovery tool. Instead of using all the samples from the whole dataset,

only 30% of the dataset is actually used. Through the merging by using the KFV to measure

the similarity, the results is able to produce accuracy higher than MEME-ChIP that scans
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through the whole dataset. This is the advantage of ensemble learning that with the limited

training data, it is still able to learn for prediction.

The experiment on the partitioned datasets showed that motif discovery on 30% datasets by

ENSPART is able to achieve higher average AUC than MEME-ChIP with 100% of datasets.

Besides that, ENSPART has better performance than ChIPMunk and RSAT peak-motifs

in terms of AUC. The experiment on the non-partitioned datasets showed ENSPART is

also performed better than individual motif discovery tools such as MotifSampler, AMD,

ChIPMunk, RSAT peak-motifs, Weeder2, BioProspector, MEME-ChIP online, and MDscan.

As the MotifSampler, AMD, Weeder2, BioProspector, MEME-ChIP, and MDscan are also

used as the individual tools of ENSPART’s ensemble approach, the experiment results

demonstrated that the quality of the discovered motif is not solely contributed by a single

individual tool. Lastly, the experiment on the simulated datasets demonstrated ENPSART is

better than GimmeMotifs and MotifVoter in terms of precision rate, recall rate, and F1 score.

The findings of the study imply several important points:

i. Using ENSPART, it is able to discover the motifs from the partial datasets, that

have the performance similar to the motifs discovered by single algorithm, namely

MEME-ChIP, on the whole datasets.

ii. By using the proposed merging method, it is able to improve the accuracy of the motifs

in represents as PWM in terms of AUCs.

iii. Over merging of the similar candidate motifs will reduce the F1 scores.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

i. Data partitioning is a technically feasible approach for employing multiple pre-ChIP

era motif discovery tools for large-scale motif analysis task. The size of the partitions

should be a parameter in the algorithm. While in the current study, a partition size

of 10% is employed, the size can be adjusted according to the actual dataset size, i.e.

smaller percentages for larger dataset sizes, so that it can be tackled by the classic motif

discovery tools. The smaller size of the partition from the whole dataset indicates the

smaller search space. By using this smaller partition or subset, the traditional motif

discovery tools are able to scan and discover the candidate motifs. The results of

the algorithm has been demonstrated in the experiment that uses partitioned datasets.

Though the experiment does not measure the search space of the datasets directly,

using the partitioned dataset is definitely smaller than the size of the whole datasets.

Finally, the experiment results showed that ENSPART is able to perform better than

MEME-ChIP, ChIPMunk, and RSAT peak-motifs.

ii. The effectiveness of ensemble method lies in the design of the merging algorithm of

multiple redundant motifs. Hundreds or thousands of candidate motifs can possibly

be returned when multiple motif discovery tools with multiple runs are employed.

We found the alignment free algorithm for motif profiles comparison is effective and

computationally efficient. While in this study only KFV method is used to represent

the motifs, other alignment free methods would be likewise useful. The KFV with the

k = 2 is used in this study, as opposed to the higher values such as k = 3 or k = 4.
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Though k = 4 was reported to achieve the maximal overall accuracy for similarity

comparison (M. Xu & Su, 2010), it is not used in this study as it is 22 times slower than

k = 2. Moreover, a threshold value is introduced in ENSPART for the merging. This

implies that, using higher value of k requires re-defining the threshold value, which is

possibly producing similar result after the merging as using k = 2. Though higher k

can achieve accuracy for similarity comparison, there is no guarantee that higher k will

improve the performance of ENSPART. The hypothesis of higher k that can produce

better result in ENSPART requires further empirical study.

iii. AUC is one of the measurement metrics of this study. AUC is commonly

used in various bioinformatic studies, such as GAPWM (L. Li et al., 2007),

GimmeMotifs (van Heeringen & Veenstra, 2011), MotifLab (Klepper & Drabløs,

2013), DeMo Dashboard (Lanchantin et al., 2016), EMQIT (Smolinska & Pacholczyk,

2017), and deep learning in bioinformatics (Min et al., 2016). This study adopts the

AUC scoring function from GAPWM which uses Match (Kel et al., 2003) algorithm.

Match algorithm calculates the information content of the discovered motifs against

foreground and background data. Hence, TPR and FPR can be computed. Cut-off

values are used to plot the ROC curve. A good motif is able to classify the true positive

and true negative from the given data. Therefore, a good motif is expected to have

large AUC. By using ROC generation tool from GAPWM, namely “rocpwm”, the

discovered motifs are able to be represented as ROCs, and AUCs are computed. The

higher AUC score indicates that the information content of the discovered motif in

PWM model has better accuracy. Besides that, precision rate and recall rate are also

used in this study for the evaluation on motif discovered from the simulated datasets.

iv. The performance of ensemble versus genome-scale motif discovery tools are
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comparable or even better reflected in our comprehensive evaluation results.

Genome-scale motif discovery tools are usually heuristic in nature for speed-up

purpose and that would miss out many true binding sites. On the contrary, the multiple

runs of various individual motif discovery tools in ensemble can increase the chances

of obtaining more true binding sites. Hence, it is an advantage to employ ensemble

rather than just a single genome-scale motif discovery tool.

v. While ENSPART performances rely heavily on the reliability of individual motif

discovery tools, true positive and false positive can be distinguished through the

over-representation evaluation of the merged motifs in every iteration. Hence, false

positives would be filtered out. Furthermore, different tools are applying motif search

strategy that are complementary. That increases the likelihood of searching motifs of

different characteristics. For instance, words-based tools are effective at searching for

motifs which are long and conserved motifs, while EM and Gibbs sampling-based tools

are better for less conserved motifs.

vi. In terms of performance, motifs produced by ENSPART show significant

improvement on their discriminating property (i.e. AUC) than by its individual

classifiers. That result is consistent with existing results reported in the existing

ensemble algorithms. However, as ensemble algorithm runs multiple tools, the total

time taken if run them sequentially would be longer in comparison to the genome-scale

tools. The classical motif discovery tools such as AlignACE and MotifSampler are

poorly scale with increases of dataset size. Therefore, using them to search for

motifs from a subset of whole input dataset would be time-consuming as well. In the

ENSPART design, we have not considered the efficiency of the merging algorithm,

therefore its speed is still considerably slow.

161



As a conclusion, the research study fulfils the objectives:

i. A novel ensemble approach framework, namely ENSPART, is developed and it can

reduce the search space by using partitioning method.

ii. By using a novel merging technique, ENSPART is able to show significant

improvement of the accuracy than ChIP-seq motif discovery tools such as

MEME-ChIP, ChIPMunk, and RSAT peak-motifs.

iii. ENSPART shows significant improvement of the precision and recall comparing to

the contemporary ensemble-based motif discovery tools such as GimmeMotifs and

MotifVoter.

5.2 Limitations

i. The proposed ensemble approach with partitioning produces false positives based on

the Match (Kel et al., 2003) when plotting the ROCs. The possible reason is caused by

the motifs appeared in the partitions when scanned by the individual classifiers using

ensemble approach, yet these candidate motifs were not appeared in the whole datasets

when evaluated by Match for ROC. This limitation can be improved by pruning the

candidate motifs after calculating Match score from the whole datasets. The pruning of

these false positive motifs is impossible to work without the whole dataset information.

ii. There are various evaluation metrics of motifs, such as the ROC AUC (van Heeringen

& Veenstra, 2011; L. Li et al., 2007) and the F-score (Z. Wei & Jensen, 2006).

However, the discovered motif’s instances require further verification if they are

indeed functioning. The lack of lab verified binding sites hinders the more objective

evaluation of a novel algorithm. Tompa et al. (2005) datasets which were frequently
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used for benchmark are non-NGS datasets. Thus, they are not used in this research

study.

iii. The merging method in ENSPART can be further improved it terms of speed and

accuracy. The current implementation perform pair-wise alignment of matched motif

profiles, which is heuristic. Multiple aligning of all matched motifs can be difficult to

implement as it is a NP-hard problem. Changing the order in which how the matched

motifs is merged can produce a different final motif. While in our evaluation, the effect

of that “ordering” issue seems not concerning, further study is needed to ensure that it

does not affect negatively on the quality of the final motif.

iv. Due to the limitation of existing ensemble tools, only GimmeMotifs and MotifVoter are

selected for comparison. Most existing tools can only accept very small input dataset

sizes which is not feasible for our datasets used in this study. From our comprehensive

literature search, GimmeMotifs is the most recent and best ensemble tool for DNA

motif discovery, therefore, it is safe to conclude that ENSPART performed better than

the existing state-of-the-art ensemble approach.

5.3 Future works

Some possible future works from this study were discussed.

In this study, ENSPART applies the merging process three (3) times to reduce redundantly

discovered motifs. Future research can study the results of the motifs from different number

of merging. For example, the merging process can be done iteratively by using a validation

set so that best result can be discovered. The algorithm can also be integrated with simulated

annealing technique to avoid being trapped in local optimum. While the current threshold
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value 0.27 used for merging work reasonably well, it should be further investigated how to

properly choose this value as guideline to users.

In addition, it will be interesting to use parallel computing technique to bring ENSPART

to another level to bring the whole learning process into the pipeline. For example,

GimmeMotifs employs inter process communication (IPC) in the ensemble learning and

CUDA-MEME uses CUDA to accelerate the motif discovery process. CUDA is a parallel

computing platform introduced by NVidia. Deep learning frameworks use CUDA-enabled

GPU to speed up the learning process. These are all based on parallel computing. This will

reduce the computation time, which also implies that the larger partitions or more partitions

can be experimented.

Several motif discovery tools were implemented with web interface to ease the operations

from the biologists, such as WebMOTIFS (Romer et al., 2007), RSAT (Thomas-Chollier

et al., 2008), MotifVoter (Wijaya et al., 2008), and MEME Suite (Bailey et al., 2009).

ENSPART can also be implemented with the web interface in the future, this allows users to

study the discovered motifs in a more intuitive way. Since all the individual motif discovery

tools employed by ENSPART are command-lines, it is possible to represent the output with

more visual information for the users. This will help the biologists to analyse the discovered

motifs from ENSPART.

ENSPART is able to use any motif discovery tool as long as it supports command-line

interface. There are more motif discovery tools not being employed by ENSPART, such

Trawler, GADEM, Improbizer, and Homer. It will be interesting to study the effect of

different motif discovery tools on the result. We may discover the correlation of the
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individual motif discovery tools and the final output.

Other than changing the individual motif discovery tools of ENSPART, we can also study

the optimal parameters of ENSPART by using Genetic Algorithm (GA) or Particle Swarm

Optimisation (PSO). The parameters such as number of partitions, size of partition, number

of runs, and similarity threshold value are possible to be optimised. This may improve the

overall quality of the discovered motifs.

Genomic analysis is a broad area with numerous features can be explored and studied.

Though many algorithms show high accuracy of prediction, there is still room for

improvement to study especially human genome. This is because the function of nearly

three billion bases in human genome is unknown (Consortium, 2012). Various modern

technologies such as deep learning can be applied together with ensemble approach in

bioinformatics research.
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APPENDICES

Appendix 1: Individual classifiers used by ENSPART

Table A1 shows the invocation of different tools with different parameters used by

ENSPART.

Table A1: Command invocation on the partitioned datasets.

Name Command

MDscan MDscan -i file -o mdscan1-1/out.txt

MDscan -n 12 -w 12 -s 40 -i file -o mdscan2-1/out.txt

MDscan -n 16 -w 12 -s 60 -t 10 -i file -o mdscan3-1/out.txt

BioProspector BioProspector -i file -o biopro1-1/result1.txt -W 12

BioProspector -i file -o biopro2-1/result1.txt -W 12 -g 1

BioProspector -i file -o biopro3-1/result1.txt -W 12 -g 1 -h 1

MEME-ChIP meme-meme-chip file -oc memechip1/ -meme-nmotifs 5 -meme-maxsize 300000

meme-meme-chip file -oc memechip2/ -meme-minw 10 -seed 2 -meme-maxw 20

-meme-nmotifs 5 -meme-maxsize 300000
meme-meme-chip file -oc memechip3/ -meme-minw 10 -seed 3 -ccut 95 -meme-maxw

20 -meme-nmotifs 5 -meme-maxsize 300000

Weeder 2 weeder2 -f file -O HS -chipseq

weeder2 -f file -O HS -chipseq -em 2

weeder2 -f file -O HS -chipseq -sim 0.8

AlignACE AlignACE -i file -o align1-1/result.txt

AlignACE -i file -o align2-1/result.txt -p 0.9 -r 10

AlignACE -i file -o align3-1/result.txt -p 0.7 -r 12

W-AlignACE W-AlignACE.exe -i file > walignace1-1/result.txt

W-AlignACE.exe -i file -minpass 180 > walignace2-1/result.txt

W-AlignACE.exe -i file -gcback 0.40 > walignace3-1/result.txt

AMD AMD -F file -B background_sequence.txt

AMD -F file -B background_sequence.txt -CO 0.8 -FC 1.0

AMD -F file -B background_sequence.txt -CO 0.5 -FC 1.4

MotifSampler MotifSampler -f fasta_file -b inclusive_bg -o output.txt -m output.matrix -n 5

MotifSampler -f fasta_file -b inclusive_bg -o output.txt -m output.matrix -n 5 -w 10

-p 0.4
MotifSampler -f fasta_file -b inclusive_bg -o output.txt -m output.matrix -n 5 -w 12

-p 0.6
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Appendix 2: Invocation of rocpwm

The following is the invocation of rocpwm,

rocpwm foreground_fasta background_fasta gapwm_output roc_output

where the foreground_fasta is the FastA format foreground, which were the datasets collected

in FastA format; background_fasta is negative sequences shuffled by using foreground;

gapwm_output is the output generated from GAPWM; and roc_output is the target output

file which is written in the plain text form.

Appendix 3: GAPWM output

PWM file generated by GAPWM is described as following,

4 6

0 7 4 8 9 2

2 4 1 3 2 5

1 2 9 8 6 1

0 8 6 0 4 9

this line is anything, but not read

The first line is the dimension of the following matrix. The first line and the matrix are

separated by tab. Then after the matrix, there are text which is not used. The PWM is either

normalized or a PFM.

Therefore, each motif discovered were converted to the above format. Then, each of them is
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used to calculate the ROC. The following is the output format of ROC from rocpwm,

0.9609 0.0234 0.0001

0.9607 0.0234 0.0001

0.9605 0.0234 0.0001

0.9603 0.0234 0.0001

0.9601 0.0234 0.0001

...

...

0.0002 1.0000 0.9999

0.0000 1.0000 1.0000

There are three columns in the ROC output. The first column is the cut-off value of the ROC.

It is started from the highest background score to the lowest background score decreasing

linearly. The score value is calculated based on Match (Kel et al., 2003). The second column

is the TPR and the third column is the FPR. As a result, using the TPR and FPR, the ROC

can be plotted.
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