

Isolation and Characterisation of Bacteriophages infecting *Klebsiella pneumoniae* from Sewage Samples in Sarawak, Malaysia

Andrea Ken Paran

Master of Science 2020

Isolation and Characterisation of Bacteriophages infecting Klebsiella pneumoniae from Sewage Samples in Sarawak, Malaysia

Andrea Ken Paran

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Medical Microbiology)

Faculty of Medicine and Health Sciences UNIVERSITI MALAYSIA SARAWAK 2020

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

alm.

Signature
Name: Andrea Ken Paran
Matric No.: 17020020
Faculty of Medicine and Health Sciences
Universiti Malaysia Sarawak
Date : 20th May 2020

ACKNOWLEDGEMENT

Firstly, I would like expressed my gratitude to my supervisor Dr. Tan Cheng Siang of Faculty of Medicine and Health Sciences, UNIMAS for his continuous guidance, steering me in the right direction throughout my research and writing.

I would also like to acknowledge Graduate School of UNIMAS for awarding me the Zamalah scholarship to support me in my studies of which I am truly grateful for and this research has been funded by F05/SpGS/1564/2017 grant.

Lastly, I would like to express my profound gratitude to my parents and friends for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Thank you.

Jeremiah 29:11

"For I know the plans I have for you," declares the Lord, "plans to prosper you and not to harm you, plans to give you hope and a future.

ABSTRACT

A group of nosocomial multidrug-resistant pathogens that posed threats to immunocompromised patients have previously been referred to by the acronym ESKAPE. The ESKAPE pathogens which include Gram-negative Klebsiella pneumoniae are considered a great threat, due to the emergence of strains that are resistant to all or most available antibiotics. Misuse and extensive consumption of broad-spectrum antibiotics in hospitalised patients have allowed the evolution of drug-resistant bacterial strains by producing defense mechanisms such as extended-spectrum β-lactamases and diverse aminoglycoside-inactivating enzymes. Many of these strains are highly virulent and exhibit a strong tendency to propagate. In this study, five lytic *Klebsiella* bacteriophages namely ϕ KPaV03, ϕ KPaV04, ϕ KPaV08, ϕ KPaV10, and ϕ KPaV12 were isolated from domestic sewage at Universiti Malaysia Sarawak (UNIMAS) and characterised based on their biological properties, including bacteriophage morphology, host range, growth curve, bacteriophage multiplicity of infection (MOI) and structural protein composition. These bacteriophages have large burst size with high titer assay between $10^8 - 10^{12}$ pfu / mL and were predominantly stable under 4 °C. Two among the five bacteriophages were capable of efficiently lysing more than five Klebsiella pneumoniae strains out of 18 clinical and community-acquired isolates from Borneo Medical Centre (BMC) and students of UNIMAS, respectively. These bacteriophages exhibit several properties indicative of potential utility in phage cocktails and phage-antibiotic synergy (PAS) approach.

Keywords: *Klebsiella pneumoniae*, multidrug-resistant, sewage samples, bacteriophages, phage approaches

Pengasingan dan Pengenalpastian Bakteriofaj menjangkiti Klebsiella pneumoniae dari Sampel Kumbahan di Sarawak, Malaysia

ABSTRAK

Sekumpulan patogen nosokomial yang resisten terhadap pelbagai jenis antibiotik telah menimbulkan ancaman kepada pesakit yang lemah daya tahan. Patogen nosokomial ini telah dirujuk sebagai akronim ESKAPE. Patogen ESKAPE, termasuklah bakteria Gramnegatif Klebsiella pneumoniae yang dianggap sebagai ancaman besar, kerana resisten dengan kebanyakkan antibiotik yang sedia ada. Penyalahgunaan antibiotik spektrum luas oleh pesakit-pesakit telah menyebabkan evolusi bakteria yang resisten dengan pelbagai jenis antibiotik melalui mekanisme pertahanan seperti spektrum lanjutan β-laktamase dan enzim yang menyah-aktif aminoglikosida. Kebanyakan strain bakteria Klebsiella pneumoniae menunjukkan daya virulen yang tinggi. Kajian ini telah berjaya memencilkan lima bakteriofaj Klebsiella iaitu *¢KPaV03*, *¢KPaV04*, *¢KPaV08*, *¢KPaV10*, dan *¢KPaV12* dari sampel kumbahan domestik Universiti Malaysia Sarawak (UNIMAS) dan dikategorikan berdasarkan sifat biologi, termasuk morfologi bakteriofaj, kesan jangkitan bakteriofaj terhadap pelbagai jenis Klebsiella pneumoniae, lengkung pertumbuhan bakteriofaj, pergandaan jangkitan bakteriofaj (MOI) dan komposisi struktur protein. Kesemua bakteriofaj yang terpilih mempunyai saiz letusan besar dengan kadar titer yang tinggi antara 10^8 - 10^{12} pfu / mL dan kebanyakannya stabil di bawah suhu 4 °C. Dua daripada lima bakteriofaj mampu membasmi lebih daripada lima strain Klebsiella pneumoniae daripada 18 isolat klinikal dan komuniti dari Pusat Perubatan Borneo (BMC) dan pelajar-pelajar UNIMAS. Disamping itu, bakteriofaj ini juga telah mempamerkan beberapa sifat yang menunjukkan potensi kegunaan dalam koktel bakteriofaj dan juga secara pendekatan sinergi bakteriofaj-antibiotik (PAS).

Kata kunci: Klebsiella pneumoniae, resisten pelbagai antibiotik, sampel kumbahan, bakteriofaj, pendekatan bakteriofaj

TABLE OF CONTENTS

	Page
DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW	1
1.1 General Introduction	1
1.2 The History of Therapeutic Bacteriophages	3
1.3 Emergence of Antibiotic-Resistant Bacteria	4
1.4 <i>Klebsiella pneumoniae</i> in a Healthcare Setting	5
1.5 Antibiotic Resistance Mechanism of <i>Klebsiella pneumoniae</i>	7
1.5.1 Prevalence of Antibiotic-Resistant <i>Klebsiella pneumonaie</i> in Malaysia	9
1.6 Bacteriophage Therapy	10
1.6.1 Type of Bacteriophages	10
1.6.2 Bacteriophages Life Cycle	12

	1.6.	3]	Pros and Cons of Phages as Antimicrobials	14
	1.6.4	4	Potentials, Safety and Current Clinical Trials of Therapeutic Bacteriophages	16
	1.6.	5]	Isolated Bacteriophages Infecting Klebsiella pneumoniae	18
1.7	7	Stud	y Objectives	20
CI	HAP	TER	2: MATERIALS AND METHODS	21
2.1	l	Cultı	ure Medium Sterilisation	21
	2.1.	1	Filter Sterilisation	21
	2.1.	2	Heat Sterilisation	21
2.2	2	Cultı	ure Media and Reagents Preparation	21
	2.2.	1	Preparation of Media Broth – Luria-Bertani (LB) Broth	21
	2.2.	2	Preparation of Media Agar – Luria-Bertani (LB) Agar	21
	2.2.	3	Preparation of Media Agar – Mueller-Hinton (MH) Agar	22
	2.2.	4	Preparation of Glycerol Solution (50 % v/v)	22
	2.2.	5	Preparation of SM Buffer	22
	2.2.	6	Preparation of Phosphate Buffered Saline (PBS) Buffer	22
	2.2.	7	Preparation of 1X Tris-Acetate EDTA (TAE) Buffer	23
	2.2.	8	Preparation of 0.1M Calcium Chloride (CaCl ₂) Solution	23
2.3	3	Antil	biotic used for Antibiotic Sensitivity Testing (AST)	23
2.4	1	Bact	erial Strains	24
2.5	5	Prepa	aration of Klebsiella spp. Log-phase Culture Broth	25

2.6	6 Ver	ification of Klebsiella pneumoniae Genomic DNA	26
	2.6.1	Wizard® Genomic DNA Purification Kit by Promega	26
	2.6.2	Bacterial 16S rRNA PCR primers	26
	2.6.3	Bacterial 16S rRNA PCR Condition	27
	2.6.4	Agarose Gel Electrophoresis	27
	2.6.5	Bacterial 16S rRNA Sequencing	28
2.7	7 Ant	ibiotic Sensitivity Testing on Klebsiella pneumoniae	Community-acquired
	Isol	ates	28
2.8	8 Ноі	usekeeping Genes Sequencing of Klebsiella pneumoniae	28
	2.8.1	Housekeeping PCR primers	29
2.9	9 Bac	eteriophages Isolation, Purification, and Titration	30
	2.9.1	Bacteriophages Sample Collection	30
	2.9.2	Bacteriophages Enrichment	31
	2.9.3	Bacteriophages Serial Dilution	32
	2.9.4	Plaque Assay – Double-layer Agar Overlay Technique	32
	2.9.5	Identifying and Verifying Putative Plaques (Spot Assay)	32
	2.9.6	Bacteriophage Titration	33
2.1	10 Bac	eteriophages Characterisation	33
	2.10.1	Phage Host Range Analysis	33
	2.10.2	Step-by-Step (SBS) Phage Isolation Method	34

4	2.10.3	Single-step Growth Curve	34
4	2.10.4	Multiplicity of Infection (MOI)	35
4	2.10.5	High Titer Stock of Purified Bacteriophages	35
4	2.10.6	Bacteriophage DNA Extraction	35
4	2.10.7	Characterisation of Genes Encoding Bacteriophage Proteins	36
2.1	l Pha	ge Cocktail and Phage Antibiotic Synergistic against Antibiotic-Resist	tant
	Kle	bsiella pneumoniae	39
4	2.11.1	Phage Cocktail	39
4	2.11.2	Minimum Inhibitory Concentration (MIC) Selection	40
4	2.11.3	Phage-Antibiotic Synergy (PAS)	41
СН	APTE	R 3: RESULTS	43
3.1	Ver	ification of Klebsiella pneumoniae Genomic DNA	43
	3.1.1	DNA Fragments Visualisation by Agarose Gel Electrophoresis	43
	3.1.2	NCBI BLAST® Analysis	44
3.2	Det	ermination on Klebsiella spp. Log-phase	45
3.3	Ant	tibiotic Sensitivity Testing (AST) on Klebsiella pneumoniae Clinical Isolates	46
3.4	Но	usekeeping Genes Sequencing Analysis of Klebsiella pneumoniae	49
3.5	Bac	eteriophages Isolation, Purification and Titration	54
	3.5.1	Bacteriophages Serial Dilution	54
	3.5.2	Step-by-Step (SBS) Method	55

3.5	3.5.3Bacteriophage Host Range Analysis56		
3.5	5.4	Bacteriophage Titer	59
3.6	Bac	cteriophage Characterisation	59
3.6	5.1	Plaque Morphology	59
3.6	5.2	Multiplicity of Infection (MOI)	61
3.6	5.3	Single-Step Growth Curve	61
3.6	5.4	Bacteriophages Structural Protein Extraction	64
3.6	5.5	Bacteriophage Structural Protein Sequencing Analysis by UniProt Blast	68
3.7	Pha	age Cocktail and Phage-Antibiotic Synergy Approaches against Antibio	otic
	Res	sistant Klebsiella pneumoniae	69
3.7	7.1	Phage Cocktail	69
3.7	7.2	Minimum Inhibitory Concentration (MIC) Selection	70
3.7	7.3	Comparison of Phage Cocktail and Phage-Antibiotic Synergy Approaches	71
СНА	PTE	R 4: DISCUSSION	75
4.1	Vei	rification of Klebsiella pneumoniae	75
4.2	Ho	usekeeping Genes Sequencing Analysis	76
4.3	An	tibiotic Sensitivity Test	78
4.4	Bac	cteriophage Isolation	79
4.5	Bac	cteriophages Plaque Morphologies	80
4.6	Ho	st Range	80

APPE	ENDICES	105
REFE	REFERENCES	
CHAI	PTER 5: CONCLUSION AND FUTURE STUDIES	87
4.11	Phage-Antibiotic Synergy (PAS) Approaches	85
4.10	Phage Cocktail	84
4.9	Minimum Inhibitory Concentration (MIC)	83
4.8	Bacteriophage Structural Proteins Analysis	82
4.7	Single-step Phage Growth Curve	81

LIST OF TABLES

|--|

Table 2.1	List of antimicrobial agents used against Klebsiella pneumoniae	23
Table 2.2	Klebsiella spp. isolates used throughout the experiment	24
Table 2.3	Components of Klebsiella pneumoniae 16S rRNA PCR mixture in	27
	50 µL reaction	
Table 2.4	Universal sequencing primers for Klebsiella pneumoniae	29
	housekeeping genes	
Table 2.5	Components of Klebsiella pneumoniae housekeeping genes PCR	30
	mixture in 25 µL reaction	
Table 2.6	PCR cycle condition for 25 μ L of Klebsiella pneumoniae	30
	housekeeping genes	
Table 2.7	Specific primers used for Phage Structural Protein analysis	37
Table 2.8	Components of Klebsiella phage structural proteins PCR mixture in	37
	30 µL reaction	
Table 2.9	PCR condition for Lysin gene	38
Table 2.10	PCR condition for Viral Capsid Assembly protein gene (g20)	38
Table 2.11	PCR condition for Major Capsid protein gene (g23)	38
Table 2.12	PCR condition for Tail Fiber protein gene (T1)	39

Table 3.1	The percentage of BLAST similarity of Klebsiella spp. 16S rRNA	45
	PCR sequences	
Table 3.2	Antibiotics sensitivity testing of Klebsiella pneumoniae clinical	48
	strains (CRKP1 to KP9)	
Table 3.3	Antibiotics sensitivity testing of Klebsiella pneumoniae clinical and	49
	non-clinical strains (KP10 to ATCC KP)	
Table 3.4	Sequence query of Klebsiella locus under MLST scheme	50
Table 3.5	Bacteriophages isolated using different host strains respectively by	56
	SBS method	
Table 3.6	Assessment of phages host range by spot assay	58
Table 3.7	Average titer (pfu / mL) of phage isolates	59
Table 3.8	Plaque assay analysis of Klebsiella pneumoniae clinical strains	61
	infected with increasing doses of isolated Klebsiella phages dilution	
	(MOI)	
Table 3.9	Summary of amplification of each isolated phage structural protein	64
	genes	
Table 3.10	Characteristics of sequenced Klebsiella phages	68
Table 3.11	Minimum inhibitory concentration (MIC) of Gentamicin-resistant	71
	Klebsiella pneumoniae strains	

xiii

LIST OF FIGURES

		Page
Figure 1.1	Electron microscope images of three families of tailed phages	11
Figure 1.2	The actions of lytic phages as bacterial predators achieve several	13
	steps to attain host destruction	
Figure 2.1	Location of sampling site in Sarawak with GPS coordinates	31
Figure 3.1	Agarose gel electrophoresis of PCR product for universal primers	43
	27F and 152R	
Figure 3.2	Agarose gel electrophoresis of PCR product for universal primers	44
	27F and 152R	
Figure 3.3	Growth curve of ATCC KP within 24 h using OD600 measurements.	46
	Each point corresponds to the average of three determinations \pm	
	standard deviation	
Figure 3.4	Antibiotic sensitivity test - Different antibiotics tested on KP15	47
Figure 3.5	Phylogenetic tree resulting from Maximum Likelihood Method for	51
	Klebsiella pneumoniae rpoB gene using Mega 6 software	
Figure 3.6	Phylogenetic tree resulting from Maximum Likelihood Method for	52
	Klebsiella pneumoniae gapA gene using Mega 6 software	
Figure 3.7	Phylogenetic tree resulting from Maximum Likelihood Method for	53
	Klebsiella pneumoniae tonB gene using Mega 6 software	

Figure 3.8	Three different phage plaque morphologies (A, B and C) infecting	55
	host KP17	
Figure 3.9	Spot assay of different phages spotted on bacterial host KP10	57
Figure 3.10	Different plaque morphologies formed by isolated phages infecting	60
	Klebsiella pneumoniae strains from sewage influent	
Figure 3.11	The single-step growth curve assay for phage ϕ KPaV03 infecting	62
	ATCC KP at MOI 1. The latent period takes less than 20 mins.	
Figure 3.12	The single-step growth curve assay for phage ϕ KPaV04 infecting	62
	CRKP1 at MOI 10. The latent period takes approximately 60 mins.	
Figure 3.13	The one-step growth curve assay for phage ϕ KPaV08 infecting	63
	KP17 at MOI 0.01. The latent period takes less than 5 mins.	
Figure 3.14	The one-step growth curve assay for phage ϕ KPaV10 infecting	63
	ATCC KP at MOI 0.1. The latent period takes approximately 20	
	mins.	
Figure 3.15	The one-step growth curve assay for phage ϕ KPaV12 infecting	64
	KP15 at MOI 0.01. The latent period takes less than 10 mins.	
Figure 3.16	PCR products of Lysin gene (Lys)	65
Figure 3.17	PCR products of Major Capsid Protein gene (g23)	66
Figure 3.18	PCR products of Tail Fiber gene (T1)	67
Figure 3.19	Phage cocktail approach against single Klebsiella spp. strains	69

XV

- Figure 3.20 Time-kill curves of phage cocktail (PC), phage-antibiotic synergy 72 when treated with sub-inhibitory concentration of Gentamicin (PA) and growth control curve (GC) versus ATCC KP
- Figure 3.21 Time-kill curves of phage cocktail (PC), phage-antibiotic synergy 72 when treated with sub-inhibitory concentration of Gentamicin (PA) and growth control curve (GC) versus CRKP1
- Figure 3.22 Time-kill curves of phage cocktail (PC), phage-antibiotic synergy 73 when treated with sub-inhibitory concentration of Gentamicin (PA) and growth control curve (GC) versus ESKP2
- Figure 3.23 Time-kill curves of phage cocktail (PC), phage-antibiotic synergy 73 when treated with sub-inhibitory concentration of Gentamicin (PA) and growth control curve (GC) versus ESKP3
- Figure 3.24 Time-kill curves of phage cocktail (PC), phage-antibiotic synergy 74 when treated with sub-inhibitory concentration of Gentamicin (PA) and growth control curve (GC) versus KP5
- Figure 3.25 Time-kill curves of phage cocktail (PC), phage-antibiotic synergy 74 when treated with sub-inhibitory concentration of Gentamicin (PA) and growth control curve (GC) versus KP9

xvi

LIST OF ABBREVIATIONS

BLAST	Basic Local Alignment Search Tool
blaKPC	Klebsiella pneumoniae Carbapenemase
CAP	Community-acquired Pathogens
CO ₂	Carbon Dioxide
CFU	Colony Forming Units
DNA	Deoxyribonucleic Acid
dsDNA	Double-stranded Deoxyribonucleic Acid
g	Gram
ICTV	International Committee on Taxonomy of Viruses
kb	Kilobase
LB	Luria-Bertani
MDR	Multi-drug Resistant
mL	Milliliter
mm	Millimeter
mg	Milligram
MOI	Multiplicity of Infection
NDM	New Delhi Metallo-β-Lactamase
nm	Nanometer
OD	Optical Density
RNA	Ribonucleic Acid
rpm	Rotation per Minute
ρmol	Picomole
PCR	Polymerase Chain Reaction

PFU	Plaques per Unit
ssDNA	Single-stranded Deoxyribonucleic Acid
ssRNA	Single-stranded Ribonucleic Acid
TAE	Tris-Acetate-EDTA
TEM	Transmission Electron Microscope
V	Voltage
v/v	Volume per Volume
μL	Microlitre

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 General Introduction

The bacteriophages were independently discovered by British microbiologist Frederick Twort in 1915 and French-Canadian microbiologist Felix d'Hérelle in 1917 (Carlton, 1999). A discovery which occurred about 20 years before the practical application of penicillin, the first antibiotic (Matsuzaki et al., 2005). At the time of discovery, bacteriophages were regarded as a potential treatment for bacterial infections and have been developed to control bacterial diseases such as dysentery, cholera, and gangrene (Dublanchet & Bourne, 2007).

Regardless of the attributes and unique properties of bacteriophages being able to fight bacterial infections, it was then soon abandoned in the 1940s by the West with the arrival of the antibiotic era (Matsuzaki et al., 2005). With the rise of pharmaceutical antibiotics in the mid-20th century, along with a better understanding of diseases and sanitation, both quality of life and life expectancy in the industrialized world drastically improved (Lin et al., 2017). Antibiotics rapidly became an indispensable medical tool with millions of kilograms used globally each year in the prophylaxis and treatment of people, animal, and agriculture (Levy & Bonnie, 2004).

However, the excessive usage and prescription of antibiotics leads to the emergence of pathogenic bacteria resistant to multiple antimicrobial agents such as the ESKAPE pathogens (*Enterococcus faecium*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* spp.) (WeberDabrowska et al., 2016). Antibiotic-resistant genes encoding for resistance to common antibiotics, including β -lactams, aminoglycosides, and tetracycline, are posing a major threat to current medical treatment of common diseases, and these genes now appear to be abundant in the environment (Lin et al., 2017).

The growing of multidrug-resistant pathogens threatens to make the revolutionary achievements of modern medicine obsolete, posing a concern of re-entering the "pre-antibiotics" era (Jeney, 2012). For example, Lin et al., (2017) mentioned the lack of treatment options for hospital-acquired carbapenem-resistant *K. pneumoniae* infections caused a 40 % - 50 % mortality rate in the United States beginning of 2000. Carbapenem resistance in *K. pneumoniae*, mainly attributed to the production of *K. pneumoniae* carbapenemase (KPC) enzyme which is able to destroy carbapenems and causes resistance against a wide spectrum of antibiotics.

Rekindling phage therapy can be a good option for solving the problem of multidrugresistant pathogens such as *K. pneumoniae*. Major advantages of phage therapy compared to conventional antibiotic treatment are such that phages are highly specific and easy to obtain. Thus, it can be used in cases of sudden bacterial disease outbreaks. Moreover, they do not have chemical side effects like antibiotics (Baharuddin et al., 2017).

Therefore, the objectives of this study were to isolate and characterise lytic bacteriophages with therapeutic potential against clinical- and community-acquired *K*. *pneumoniae* strains. It is hoped that this study will be able to contribute to future phage therapy studies and applications.

2

1.2 The History of Therapeutic Bacteriophages

Bacteriophage, or simply called as phages, are viruses that specifically infect and lyse bacteria. The term bacteriophage was coined by Felix d'Herelle in 1916, who derived it from the word 'bacteria' and a Greek word 'phagein' which means 'to devour'. Phages, like all other viruses, are absolute parasites as they have no machinery to generate energy and ribosomes for making proteins even though they carry all the information to direct their own reproduction in an appropriate host. (Kutter & Sulakvelidze, 2005).

In 1910, d'Herelle first observed the bacteriophage phenomenon while studying microbiologic means of controlling an epizootic locusts in Mexico which he then applied his knowledge on phage to treat the dysentery outbreak among several French soldiers (Sulakvelidze, Alavidze, & Morris Jr., 2001). Following the success, the usage of bacteriophage as a therapeutic agent to treat bacterial infections has been widely applied circa the 1930s and 1940s in Eastern Europe and the former Soviet Union. However, it was abandoned by Western Medicine in the 1940s after the discovery of penicillin which soon became widely available (Matsuzaki et al., 2005).

The reason for abandoning the therapeutic usage of phages in the West was due to the lack of appropriate controls and inconsistent results (Wittebole et al., 2014). Moreover, at that time, the biological viral nature and mechanism of phage has yet to be determined and thoroughly studied until they were visualised in the 1940s after the invention of electron microscopy (Cisek et al., 2017).

Merril et. al., (2003) stated that the applications of phage as practiced in the Soviet Union including Poland have been extensively evaluated in which according to one of the review papers from 1998, only 27 papers dealing with bacteriophage therapy were published between 1966 and 1996. Nineteen of these were from laboratories in Poland and Russia, where research on bacteriophage therapy had never dimmed, and where patients infected with *Staphylococcus, Streptococcus, Klebsiella, Escherichia, Proteus, Pseudomonas, Shigella,* and *Salmonella* were reportedly treated with 80 to 85 percent success (Ho, 2001). Likewise, Bull et al., (2002) has reviewed on the earlier experimental work on phage therapy and prophylaxis and mentioned several impressive studies using phage to treat and prevent bacterial infections in animals including work done by Williams S. H. and team in 1987.

However, details such as the primary qualitative data such as phage dosages and clinical criteria were not properly reported and documented. Hence, most of the studies from Eastern Europe are unable to meet the present standards for pharmaceutical approval in countries that require certification based on the results of efficacy and pharmacokinetic studies in animals and humans.

1.3 Emergence of Antibiotic-Resistant Bacteria

Since the discovery of penicillin by Alexander Fleming in 1928, antibiotics were successfully used to treat bacterial infections in humans and animals, as well as in agriculture. However, the effectiveness of antibiotics is challenged by the increasing number of antibiotic-resistant bacteria. Most of the available antibiotics, including β -lactams, are becoming less effective and in some cases, resistance rates exceed 98 % (Akinkunmi et al., 2014). For instance, El-Shibiny & El-Sahhar (2017) have reported on few multidrug-resistant strains such as *Escherichia coli O104:H4* and some *Salmonella* isolates from poultry which have been found to be resistant to at least 14 different antibiotics, and about 90 % of the *Salmonella* isolates were found to be resistant to at least one or more antibiotics tested.