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Abstract In this paper, we study the applicability of the monotone output
property and the output resolution property in fuzzy assessment models to two indus-
trial Failure Mode and Effect Analysis (FMEA) problems. First, the effectiveness of the
monotone output property in a single-input fuzzy assessment model is demonstrated
with a proposed fuzzy occurrence model. Then, the usefulness of the two properties
to a multi-input fuzzy assessment model, i.e., the Bowles fuzzy Risk Priority Num-
ber (RPN) model, is assessed. The experimental results indicate that both the fuzzy
occurrence model and Bowles fuzzy RPN model are able to fulfill the monotone output
property, with the derived conditions (in Part I) satisfied. In addition, the proposed rule
refinement technique is able to improve the output resolution property of the Bowles
fuzzy RPN model.

Keywords Assessment models · Monotone output property · Output resolution
property · Failure mode and effect analysis · Risk priority number

1 Introduction

An assessment model is a mathematical model, which quantifies a situation/object
and produces a measuring index, either in a numerical score of a continuous scale or a
category to a situation/object, taking into consideration its attribute(s) (Dubois and
Prade 1997; Cunningham 1986; Chatterji 2003). The estimated score or category
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represents the level of criticality or wellness, which will result in certain actions or deci-
sions to be taken. From the literature review, fuzzy set methods have been widely used
in assessment models (Dubois and Prade 1997; Figueira et al. 2005; Triantaphyllao
2000; Kaliszewski 2006). In Part I of this work, definitions of two common theoretical
properties of assessment models, i.e., the monotone output property and the output
resolution property, and the conditions how a Fuzzy Inference System (FIS)-based
assessment models to fulfill the properties are presented. In this sequel paper, we
focus on the fuzzy inference system (FIS)-based assessment models, with applica-
tion to Failure Mode and Effect Analysis (FMEA) methodology (Ireson et al. 1995;
Chrysler Corporation et al. 1995). Specifically, we examine the applicability of the
two properties and the derived conditions to a proposed fuzzy occurrence model (a sin-
gle-input fuzzy assessment model) and the Bowles fuzzy Risk Priority Number (RPN)
model (Bowles and Peláez 1995) (a multi-input fuzzy assessment model). Both models
are constructed with real information collected from a semiconductor manufacturing
plant for Flip Chip Ball Grid Array (FCBGA) (Tummala 2000) products.

With regard to FMEA, a number of soft computing techniques have been researched
to enhance its methodology. For example, in Lee (2001), a Bayesian belief network
for FMEA modeling and analysis was examined. Application of expert systems to
FMEA was suggested in Russomanno et al. (1992). In Bell et al. (1992), use of causal
reasoning for automating FMEA was presented, while in Peláez and Bowles (1996),
application of the fuzzy Cognitive Map to FMEA was explored. In this paper, we
first examine the findings as presented in Part I with a proposed FIS-based occurrence
model (a single-input fuzzy assessment model). The fuzzy occurrence model is pro-
posed to automate the conventional occurrence score rating procedure. It produces a
fuzzy occurrence score as a measure of occurrence of failures.

To further ascertain the effectiveness of the proposed monotone output and output
resolution properties, an enhanced Bowles fuzzy RPN model is applied to FMEA
problems. The Bowles fuzzy RPN model is a popular method, and has been success-
fully applied to a number of FMEA problems. For example, it was applied to FMEA
of an auxiliary feed water system and a chemical volume control system in a nuclear
power plant (Guimarães and Lapa 2004a,b). It was also used in FMEA of an engine
system (Xu et al. 2002), a semiconductor manufacturing line (Tay and Lim 2006), and
a fishing vessel (Pillay and Wang 2003). Over the years, several enhancements have
also been proposed to the Bowles fuzzy RPN model. Development of a Bowles fuzzy
RPN model using the grey relation theory is presented in Pillay and Wang (2003). In
Xu et al. (2002), a Bowles fuzzy RPN model which allows interdependencies among
all failures to be considered is proposed. In Tay and Lim (2006), a method to reduce
the number of fuzzy rules in the Bowles fuzzy RPN model is reported. However, to
the best of our knowledge, little attention is paid on the validity and the efficiency of
the estimated numerical scores, as available in the literature. Therefore, in this paper,
we investigate the efficiency of the estimated numerical scores, for both fuzzy occur-
rence model and Bowles fuzzy RPN model, in order to allow valid and meaningful
comparisons among different failure modes in FMEA to be made.

This paper is organized as follows. Section 2 presents a review of FMEA method-
ology. In Sect. 3, the fuzzy occurrence model is presented. Besides, the applicability
of the proposed property and derived conditions are examined. In Sect. 4, the Bowles
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fuzzy RPN model is presented. Again, the applicability of the proposed two proper-
ties and the derived conditions are examined, with two sets of real data/information
collected from a semiconductor manufacturing process. Section 5 presents some con-
cluding remarks and suggestions for further work.

2 The FMEA methodology

FMEA is an effective quality improvement and risk assessment tool, which can be
interfaced with many engineering and reliability methods (Ireson et al. 1995; Chrysler
Corporation et al. 1995). It is a systemized group of activities intended to recognize and
to evaluate the potential failures of a product/process and its effects. Besides, FMEA
identifies actions which can eliminate or reduce the chances of potential failures from
recurring. It also helps users to identify the key design or process characteristics that
require special controls for manufacturing, and to highlight areas for improvement in
characteristic control or performance.

The RPN model is used to evaluate the risk associated with each failure mode in
FMEA. Generally, the traditional RPN model takes three factors, i.e., severity, occur-
rence, and detect, and the RPN scores is determined by the multiplication of these
three inputs scores, as shown in Eq. 1.

RPN = Severity × Occurrence × Detect (1)

Severity is an assessment of the effect of potential failure mode. Occurrence is defined
as the likelihood that a cause will occur. Detect is an assessment of the ability of current
design control to detect a potential cause (Ireson et al. 1995; Chrysler Corporation et
al. 1995). In general, these three factors are estimated by experts in accordance with
a scale from “1” to “10” based on commonly agreed evaluation criteria. The higher
the input scores, the more critical the situation is. Tables 1–3 summarize the evalu-
ation criteria for severity, occurrence and detect ratings, respectively, which is used
practically in a semiconductor manufacturing plant.

In summary, the conventional procedure of FMEA, as depicted in Fig. 1, is as
follows.

(1) Define the scale table of severity, occurrence, and detect.

Table 1 Scale table for severity

Rank Linguistic terms Criteria

10 Very high (Liability) Failure will affect safety or compliance to law
9 ∼ 8 High (Reliability/reputation) Customer impact

Major reliability excursions
7 ∼ 6 Moderate (Quality/Convenience) Impacts customer yield

Wrong package/par/marking
5 ∼ 2 Low (Special handling) Yield hit, cosmetic
1 None (Unnoticed) Unnoticed
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Table 2 Scale table for occurrence

Rank Linguistic terms Criteria

10 ∼ 9 Very high Many/shift, many/day
8 ∼ 7 High Many/week, few/week
6 ∼ 4 Moderate Once/week, several/month
3 Low Once/month
2 Very low Once/quarter
1 Remote Once ever

Table 3 Scale table for detect

Rank Linguistic terms Criteria

10 Extremely low No control available
9 Very low Controls probably will not Detect
8 ∼ 7 Low Controls may not detect excursion until reach next functional area
6 ∼ 5 Moderate Controls are able to detect within the same functional area
4 ∼ 3 High Controls are able to detect within the same machine/module
2 ∼ 1 Very high Prevent excursion from occurring

(2) Study the intent, purpose, goal, objective of a product/process, which is generally
identified by interaction among components/process flow diagram followed by
task analysis.

(3) Identify potential failures of the product/process; which include problems, con-
cerns, and opportunity of improvement.

(4) Identify consequence of failures to other components/next processes, operation,
customers, and government regulations.

(5) Identify the potential root cause of potential failures.
(6) Conduct the first level method/procedure to detect/prevent failures of the prod-

uct/process.
(7) Perform severity score rating: rank the seriousness of the effect of the potential

failures.
(8) Perform occurrence score rating: estimation of the frequency for a potential cause

of failures.
(9) Perform detect score rating: likelihood of the process control to detect a specific

root cause of a failure.
(10) Compute the RPN: product of the three inputs (severity, occurrence, detect).
(11) Back to 2 if there is any correction.
(12) End.

3 Case study I: a single-input fuzzy assessment model

In the conventional FMEA methodology, the occurrence score is rated and updated
manually from time to time by users (based on their experience/knowledge, and with
reference to the latest data) in accordance with an occurrence scale table (Table 2), as
depicted in Fig. 2.
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Study about the process/product
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Fig. 1 The operation of FMEA

FMEA User
experiance/

knowledege with
referring to

historical data

FMEA user prediction (base on the
predefined Occurrence scale table)

Occurrence
Score

Fig. 2 The traditional way of predicting and updating occurrence score

In essence, from Eq. 1, getting a more accurate occurrence score rating will defi-
nitely contribute to a more meaningful RPN prediction. However, it is a tedious and
time consuming process to update the scores manually from time to time. In addi-
tion, the method for updating the scores is often subjective, and is influenced by the
user’s mind states. Owing to these reasons, we suggest a generic framework that is
equipped with a fuzzy occurrence model to predict and update the occurrence scores.
This method can also be viewed as an automated procedure for occurrence score
prediction.

In case study I, the proposed fuzzy occurrence model, which is an example of a
single input fuzzy assessment model, is presented. We further discuss the applicabil-
ity of the monotone output property and output resolution property to the proposed
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Historical data
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Average
Occurrences per N

week

Fig. 3 The proposed frameworks for predicting and updating the occurrence score

fuzzy occurrence model. In addition, we demonstrate the usefulness of the derived
conditions in Part I in this study.

3.1 The proposed fuzzy occurrence model

We view the occurrence score as a result of human perception towards the failure rate
of a specific cause to occur, which can be substituted and performed by an intelligent
inference system, for example, an FIS. Figure 3 shows the proposed framework to
predict the occurrence score based on historical data.

The monitoring period, M week(s), which can be viewed as a sampling period, is
first pre-determined by FMEA users. The rule-of-thumb is to choose a period which
is sufficiently long enough to record a number of occurrences and the root cause of
a failure. The frequency of a failure within M weeks is extracted from a historical
database. This process can be accomplished either manually by the FMEA users, or
automatically by a simple computer script. The frequency of the failure occurrence
is then averaged per N weeks, using Eq. 2. The proposed fuzzy occurrence model
converts an Average Occurrence per N week value to an occurrence score. In other
words, the model takes Average Occurrence per N week as the attribute and produces
a meaningful measuring score, i.e., the occurrence score.

Average_Occurrences_per_N_week = Count_of _particular_failure

M
× N

(2)

As shown in Table 4, the proposed occurrence scale table is an enhanced version from
the conventional occurrence scale table (Table 2). Table 4 also shows the extended
classification/criteria describing each linguistic term for the occurrence scores (with
N = 52, as used in this study). The attribute of the fuzzy occurrence model and its
partitions, which range from 1 to 1,000, are shown in “Average number of failure
occurred/52 weeks”. The detailed description of each input partition is in “Criteria”.
We use the Gaussian membership function, µ j (x), to represent each attribute’s parti-
tion. For example, the fourth partition (from 13 to 52), µ4(x), is called “Once/week”
or “Several/month”. The output, ranged from 1 to 10, is shown in “Occurrence Score”.
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Table 4 An extended scale table for the occurrence score

Occurrence scale table

Occurrence
score

Linguistic variable Criteria Average number of failures occurred/52 weeks

Lower limit estimation Upper limit estimation

10 Very high Many/shift 301 1,000
9 Many/day
8 High Many/week 53 300
7 Few/week
6 Moderate Once/week 13 52
5 Several/month
4
3 Low Once/month 5 12
2 Very low Once/quarter 3 4
1 Remote Once ever 1 2

Again, every output partition is assigned a linguistic variable, B j as shown in “Lin-
guistic variable”. For example, the forth output (from 4 to 6), B4, is assigned the
linguistic variable of “Moderate”.

The Gaussian membership function is chosen because the Gaussian kernel func-
tion exhibits properties that are mathematically and computationally tractable (Masters
1993, 1995). The Gaussian kernel function is also a continuously differentiable func-
tion, and has the advantage of being smooth and nonzero at all points. Because of
its smoothness and concise notation, the Gaussian membership function is a popu-
lar method for specifying fuzzy sets (Masters 1993, 1995). Besides, past experiences
(Masters 1993, 1995) have indicated that it is a suitable choice in many applications,
and has been a reliable performer.

The Gaussian membership function is defined by Eq. 3,

Gaussian(x; c, σ ) = e− 1
2 (

x−c
σ )

2

(3)

where c and σ are center and width of the membership function respectively. Figure 4
illustrates an example of fuzzy membership function for Average number of failure
occur /52week. As an example, µ4(x), as the italised row in Table 4, can be repre-
sented by membership function mf4 as in Fig. 4. The logarithm scale is used for the
input membership function because the input domain often is large, and the size of
each partition often increases exponentially over the domain.

The occurrence scale table can be treated as a mapping from “Average number of
failures occurred/52 weeks” to “Occurrence score”, and can be explained by using
fuzzy production rules. For example, referring to Table 4, Ranks 4–6 (as italised) can
be expressed as follows.

IF Average number of failures occurred /52weeks is “about log (13) to log (52)”,
THEN Occurrence Score is “about 4 to 6”.

A simplified Mamdani FIS (Yam 1999; Hisao et al. 2006; Hisao 1991), as shown
in Eq. 4, is used to evaluate the occurrence score.
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Fig. 4 Fuzzy Membership function for Average number of failure occur/52week

Occurrence score =

j=M∑

j=1
µ j (x) × b j

j=M∑

j=1
µ j (x)

(4)

where b j is a representative value of B j , as in Eq. 5.

b j = rep(B j ) (5)

We determine the value of b j by the point where the membership value of B j is 1.
Hence, bis 1, 2, 3, 5, 7.5, and 10 for linguistic term Remote, Very Low, Low, Moderate,
High, and Very High respectively.

3.2 Analysis of the monotone output property

The occurrence scale table is defined in such a way that the higher the “Average
occurrences per N week”, the higher the “occurrence score”. For example, given two
failures with “Average occurrences per N week” of 4 and 5, respectively, the predicted
occurrence score for the second failure should be higher than that of the first. The
prediction is deemed illogical if the fuzzy occurrence model yields a contradictory
result. In other word, the monotone output property is applied.

From Part I, two conditions need to be fulfilled. It can be observed that Condition
(1) is satisfied, as rep(VeryHigh) > · · · > rep(VeryLow) > rep(Remote). Condition
(2) is used as a guideline to tune the membership function of “Average number of
failure occur /52 week”. Figure 4 shows an example that satisfies Condition (2). In
this case, the number of output membership functions is equal to the number of fuzzy
rules; therefore the rules refinement approach is not applicable.

Table 5 shows some of the predicted attribute and estimate pairs of the proposed
fuzzy occurrence model. As can be seen, the monotone output property is satisfied.
Columns “Average number of failures occurred/52 weeks” and “Occurrence score” are
the input and output of the fuzzy occurrence model, respectively. Column “Expert’s
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Table 5 Some examples of the input and output pairs of the fuzzy occurrence model

Average
number of
failure occur/
52 weeks

Occurrence Expert’s Average
number of
failure occur/
52 weeks

Occurrence Expert’s
score knowledge score knowledge

Linguistic term b Linguistic term B

1 1.0 Remote 1 52 6.3 Moderate 5
2 1.6 Remote 1 53 6.4 High 7.5
3 2.0 Very low 2 100 7.4 High 7.5
4 2.2 Very low 2 150 7.6 High 7.5
5 2.5 Low 3 200 7.8 High 7.5
6 2.6 Low 3 250 8.0 High 7.5
8 3.0 Low 3 300 8.4 High 7.5
10 3.3 Low 3 301 8.4 Very high 10
12 3.7 Low 3 400 9.0 Very high 10
13 3.9 Moderate 5 450 9.3 Very high 10
20 4.9 Moderate 5 500 9.5 Very high 10
25 5.2 Moderate 5 600 9.7 Very high 10
30 5.3 Moderate 5 700 9.8 Very high 10
35 5.5 Moderate 5 800 9.9 Very high 10
40 5.7 Moderate 5 900 9.9 Very high 10
45 6.0 Moderate 5 1,000 10.0 Very high 10

Knowledge” states the nearest linguistic term, and b is assigned with a particular
“Average Occurrence per 52 week”. For example, a failure with “Average Occur-
rence/52 week” of 2 is predicted to have an occurrence score of 1.6, which is assigned
“Expert’s Knowledge” of “remote” (where b = 1).

From Table 5, “Average number of failure occurred/52 weeks” from 1 to 2 is pre-
dicted to have occurrence scores of 1–1.6. This is close to the occurrence scale table,
which gives an occurrence rating of 1. The same scenario is observed from the range
from 3 to 4, which gives predicted occurrence scores of 2.0–2.2. Again, this is close
to the predefined occurrence scale table, with an occurrence rating of 2. The same
situation can be observed for other ranges. As a summary, the predicted occurrence
scores are in accordance with the scale table.

Figure 5 shows “Occurrence Score” versus “Average Occurrences per N week” of
the fuzzy occurrence model. Notice that the occurrence score increases monotonically

Fig. 5 “Occurrence score” versus “Average number of failures occurred/52 weeks”
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over “Average number of failures occurred/52weeks”; therefore the monotone output
property is fulfilled.

In short, the fuzzy occurrence model is able to produce monotonous outputs, hence
giving logical estimate to failures. In other words, the monotone output property is
fulfilled, and the proposed two conditions are satisfied.

4 Case study II: a multi-input fuzzy assessment model

In this case study, the effectiveness of the Bowles fuzzy RPN model in fulfilling
the monotone output property and the output resolution property is investigated. To
validate the proposed derivations and suggestions, a series of experiments using data
collected from a semiconductor manufacturing processes of Flip Chip Ball Grid Array
(FCBGA) products is conducted. FCBGA is a low cost semiconductor packaging
solution which utilizes the Controlled Collapse Chip Connect technology, or which is
known as Flip Chip (FC) for its die to substrate interconnection. FC was initiated at
the early 1960s to eliminate the expanse, unreliability, and low productivity of manual
wire bonding process (Tummala 2000). It utilizes solder bump interconnection, as
shown in Fig. 6.

The manufacturing operation of FCPGA products is divided into nine processes, i.e.,
wafer fabrication, wafer reflow, wafer mounting, wafer sawing, chip attach (which can
be subdivided to fluxing, chip place, reflow and deflux), underfill dispensing (which
can be subdivided to prebake, dispensing, and cure), testing, FCBGA ball attach, final
inspection, and packaging. Two processes i.e., wafer mounting and wafer dispensing,
are used in this case study.

Wafer mounting is a process that facilitates the processing of the wafer from the
sawing process through die attach while keeping dies from scattering when the wafer
is cut. The process consists of several steps, i.e., (1) frame loading; (2) wafer loading;
(3) application of tape to the wafer and wafer frame; (4) cutting of the excess tape; and
(5) unloading of the mounted wafer. A number of potential failures to be prevented
during this process are: wafer cracking or breakage, bubble trapping on the adhesive
side of the tape, scratches on the active side of the wafer, and non-uniform tape tension
which can result in tape wrinkles.

Fig. 6 Schematic of the Flip
Chip Interconnection system
(adapted from Tummala 2000)
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On the other hand, during the wafer underfill dispensing process, the bottom side of
a silicon die of a flip chip is encapsulated. The main purpose of this process is to couple
the chip and substrate over the entire area of the chip and to lower the effective thermo-
mechanical stress on the flip chip interconnections. Besides, it intends to protect flip
chip interconnections from environment effects and to absorb harmful alpha particle
emissions from the lead in solders which can cause errors in logic circuits (Tummala
2000). This process consists of three steps: (1) pre-bake: to remove residual moisture
from the die and the package before the underfill operation; (2) underfill material dis-
pensing: to dispense liquid underfill material between the die and substrate; and (3)
underfill material curing: to heat-treat the underfill material that has been dispensed
between the die and substrate during underfill.

4.1 The Bowles fuzzy RPN model

Even through the traditional RPN model is simple and has been well accepted for
safety analysis, it suffers from several weaknesses. In Bowles (1998), it is pointed
out that the same RPN score can be obtained from a number of different score com-
binations of severity, occurrence, and detect. Although the same RPN is obtained,
the risk can be different. In other words, the relative significance of the three factors
is neglected in the traditional way of calculating the RPN, and the three factors are
assumed to be of equal importance. However, this may not be the case in practice. In
fact, it is argued that special attention should be given to failures with high ratings
in severity regardless of the RPN (Chrysler Corporation et al. 1995). For example,
for two failures with RPN1 =10 (severity) × 1 (occurrence) × 1 (detect)=10, and
RPN2 =2 (severity) × 5 (occurrence) × 1 (detect)=10, the former should be given a
higher priority as it has a higher score of severity.

On the other hand, there is a suggestion in Ben-Daya and Raouf (1993) to give
the occurrence factor the most weight in the RPN calculation because it affects the
likelihood of a fault reaching the customer. In Pillay and Wang (2003), it is stated that
the FMEA scales for severity and detect are only qualitative. For example, a sever-
ity score of 8 does not necessarily twice as severe as that of 4. It is further stated
that when the severity, occurrence, and detect ratings are multiplied together to get the
RPN, the ratings are treated as if they represent numeric quantities. Indeed, the relative
significance of the three factors varies based on the nature of a process or a product.

As an alternative to the traditional RPN model, Bowles proposed a fuzzy RPN
model, which allows failure risk evaluation and prioritization to be conducted based
on experts’ knowledge (Bowles and Peláez 1995). The Bowles fuzzy RPN model con-
siders severity, occurrence, and detect as the input attributes, and it produces the RPN
as a measure of failures risk. Figure 7 summarizes the procedure of the Bowles fuzzy
RPN model.

4.2 Development of the Bowles fuzzy RPN model

Attributes’ membership functions of the Bowles fuzzy RPN model can be generated
with reference to Tables 1–3, respectively. Instead of the triangle membership function
as used in Bowles and Peláez (1995), the Gaussian membership function is used (with
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Fig. 7 FMEA with Bowles fuzzy RPN model

the reasons in Sect. 3.1). Figures 8–10 depict the fuzzy membership function for sever-
ity (µs), occurrence (µo), and detect (µd ), respectively. As an example, referring to
Fig. 8, the second membership function of severity, µ2

s , with linguistic label of “Low”,
represents severity ratings from 2 to 5, which correspond to “yield hit, cosmetic impact,
special internal handling, effort or annoyance” as in Table 1. The same scenario applies
to Fig. 9, where the “Moderate” membership, µ4

o, represents occurrence ratings from
4 to 6, which correspond to “Once/week, Several/month, Few/quarter” as in Table 2.
In Fig. 10, the “High” membership function, µ2

d , represents detect ratings from 3 and
4, which correspond to “Controls are able to Detect within the same machine/module”
as in Table 3.

Similar to the traditional RPN model, the output of the Bowles fuzzy RPN model
varies from 1 to 1,000. In this case study, it is divided into five equal partitions,
with fuzzy membership functions, B, “Low”, “Low Medium”, “Medium”, “High
Medium”, and “High”, respectively. The corresponding b scores are assumed to the
point where membership value of B is 1. Hence, b is 1, 250.75, 500.5, 750.25, and
1,000, respectively.
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Fig. 8 The membership function of severity

Fig. 9 The membership function of occurrence

Fig. 10 The membership function of detect

Rule 1 

If Severity is Very High and Occurrence is Very High and Detect is Extremely Low then RPN is High.

Rule 2 

If Severity is Very High and Occurrence is Very High and Detect is Very Low then RPN is High

Fig. 11 An example of two fuzzy production rules

A fuzzy rule base is a collection of knowledge from experts in the If-Then format.
Considering the attributes and the linguistic terms describing each attribute, the fuzzy
rule base has 180 (5 (severity) × 6 (occurrence) × 6 (detect)) rules in total using the grid
partition approach (Jang et al. 1997; Lin and Lee 1995). Here, two sets of fuzzy rule
base are collected from process engineers of the wafer mounting process and the wafer
dispensing process, respectively. As an example, Fig. 11 shows two rules that describe
a small portion of the fuzzy rules collected from wafer mounting process engineers.

In this paper, we use a simplified Mamdani FIS (Yam 1999; Hisao et al. 2006; Hisao
1991), is used to evaluate the RPN, as in Eq. 6.
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RPN score =

Ms∑

a=1

Mo∑

b=1

Md∑

c=1
µa

s × µb
o × µc

d × ba,b,c

Ms∑

a=1

Mo∑

b=1

Md∑

c=1
µa

s × µb
o × µc

d

(6)

4.3 Analysis of the bowles fuzzy RPN model

4.3.1 The monotone output property

Similar to the traditional RPN function, the three attributes of Bowles fuzzy RPN are
defined in such a way that the higher the input scores, the more critical the situation.
The output RPN is a measure of the failure risk. From the inputs–output relationship,
the monotone output property can be applied to all these three attributes. For example,
for two failures with input sets of 5 5 5 and 5 5 6 (severity, occurrence, and detect),
the fuzzy RPN for the second failure should be higher than that of the first. Prediction
is deemed illogical if a contradictory result is produced.

We argue that Condition (1) and Condition (2) (as in Part I) need to be satisfied
for all attributes (severity, occurrence, and detect). Condition (1) suggests that a log-
ical fuzzy rule base is needed. Again, Condition (2) gives a guideline on how the
fuzzy membership functions of severity, occurrence, and detect should be tuned. Fig-
ures 8–10 depict an example of attribute membership functions that fulfill Condition
(2).

4.3.2 The output resolution property

To allow valid and effective comparison among failures, the output resolution property
is applied. In this case study, we set α = 1. As in the previous example (Sect. 4.3.1),
obtaining the same fuzzy RPN for both the failures is not representative enough for risk
comparison between the two failures. Ideally, the Bowles fuzzy RPN model should
be able to give a higher fuzzy RPN to the second failure as compared with that of the
first, i.e., the second failure has a higher risk and has a higher priority.

To increase the output resolution of the Bowles fuzzy RPN model, we suggest
to refine the original rule base with weighted fuzzy production rules. For the exam-
ple in Fig. 11, with the rule refinement approach, Rule 2 is mapped 95% to High
(b = 1,000) and 5% to High Medium (b = 750.25). Figure 12 shows the refined
rules. This indicates that Rule 2 has a lower risk level as compared than that of
Rule 1. The new b score for Rule 2 is 987.5125 (0.95 × 1,000 + 0.05 × 750.25 =
987.5125), and is equal to a new membership function between High and High
Medium.

4.4 Results and discussion

Tables 6 and 7 summarize the failure risk evaluation, ranking, and prioritization results
using the traditional and Bowles fuzzy RPN models for the wafer mounting and under-
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Rule 1 

If Severity is Very High and Occurrence is Very High and Detect is Extremely Low then RPN is High.  --1.00 

Rule 2 

If Severity is Very high and Occurrence is Very High and Detect is Very Low then RPN is High --0.95

If Severity is Very high and Occurrence is Very High and Detect is Very Low then RPN is High Medium--0.05

Fig. 12 An example of two weighted fuzzy production rules

fill dispensing processes, respectively. Columns “Sev” (severity), “Occ” (occurrence),
and “Det” (detect) show the three attribute ratings describing each failure. Failure risk
evaluation and prioritization outcomes based on the traditional RPN model are shown
in columns “RPN” and “RPN rank”, respectively. For example, in Table 6, failure mode
“1” represents “broken wafer”, which leads to yield loss, and is given a severity score
of 3 (refer to Table 1). This failure happens because of “drawing out arm failure”, and
because it rarely happens, it is assigned an occurrence score of 1 (refer to Table 2).
In order to eliminate the cause, software enhancement has been done as action taken.
Owing to the action taken is very effective, and can almost eliminate the root cause; a
detect score of 1 is given (refer to Table 3). Using the traditional RPN model, an RPN
of 3 is obtained, with the lowest RPN ranking (RPN rank=1).

Column “Fuzzy RPN (FPR)” shows the failures risk evaluation results using the
Bowles fuzzy RPN model, while sub-columns “FRPN” and “FRPN Rank” show its
failure risk evaluation and prioritization outcomes, respectively. Referring to above
example, FRPN=10 and FRPN Rank=1. Column “Expert’s Knowledge (FPR)”
shows the linguistic term assigned by process engineers, Low with b = 1.00. The
evaluation result after rule refinement (column “Fuzzy RPN model after refinement”)
is FRPN=10, with rank of 1, and is assigned a linguistic term of Low with b = 1.00.

From the observation, the Bowles fuzzy RPN model is able to fulfill the monotone
output property for all failures. There are no illogical predictions found in both prob-
lems. However, it is not able to fulfill the output resolution property. For example, in
Table 6, failures 2 and 3 are predicted to have the same FRPN of 19. Based on the
severity, occurrence, and detect ratings, failure 3 should have a higher FRPN than that
of failure 2. The same situations can be observed in failures 13 and 14 as well as 17
and 18. In Table 7, failures 1 and 2 as well as 4 and 5 are is predicted to have the same
score (FRPN=1 and FRPN=15, respectively). Similar situation occurs in failures 17
to 23 (FRPN=750) as well as 25 and 26 (FRPN=925).

The output resolution problem is resolved after rule refinement, as shown in “Fuzzy
RPN with rule refinement”. After rule refinement, the Bowles fuzzy RPN model is able
to evaluate failures in accordance with expert’s knowledge, with different estimated
scores. The monotone output property is still fulfilled. For example, in Table 6, fail-
ures 2 (FRPN=19) and 3 (FRPN=24) are predicted to have different FRPN scores
after rule refinement. The same can be observed in failures 13 and 14 as well as 17
and 18. From Table 7, the same finding is obtained. After rule refinement, failures 1
(FRPN=79) and 2 (FRPN=86) as well as 4 (FRPN=105) and 5 (FRPN=114) are
predicted to have different FRPN scores. Different FRPN scores are also estimated for
failures 17–23, and this allows valid and useful comparisons to be made among them.
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As a summary, the case study demonstrates that with Condition (1) and Condition
(2) satisfied, the monotone output property is satisfied. Besides, the output resolution
property of the Bowles fuzzy RPN model is improved by using the proposed rule
refinement approach.

5 Summary

In this paper, two fuzzy assessment models are explained. We have assessed the two
proposed theoretical properties, namely the monotone output property and the output
resolution property, of fuzzy assessment models in FMEA methodology. The two
properties ensure meaningful measuring scores to be obtained, so that valid and useful
comparisons among situations/objects are allowed. We have demonstrated the appli-
cability of the two properties to industrial FMEA applications, with a proposed fuzzy
occurrence model and the Bowles fuzzy RPN model. These models are constructed
with data and information collected from a real manufacturing facility. The experi-
mental results have shown that by fulfilling the two conditions (Conditions 1 and 2),
the monotone output property can be ensured. This can be viewed as a simple and
reliable method to obtain a monotonous fuzzy assessment model without resorting to
any complicated tuning algorithms. This finding is useful, and is a step further to make
fuzzy assessment models a generic tool to be applied in various applications, and to
be used by users with very limited knowledge in fuzzy systems. In addition, we have
shown that with the rule refinement approach, the output resolution property of the
Bowles fuzzy RPN model can be improved.

For further work, the use of the fuzzy assessment models with enhanced techniques
needs to be investigated. These include fuzzy assessment models that employ fuzzy
rule interpolation techniques or online learning algorithms. In addition, it is necessary
to further study the effectiveness of the proposed fuzzy assessment models in different
domains in order to ascertain their applicability to real industrial environments.

References

Bell, D., Cox, L., Jackson, S., & Schaefer, P. (1992). Using causal reasoning for automated failure modes
and effects analysis (FMEA). Annual reliability and maintainability symposium, pp. 343–353.

Ben-Daya, M., & Raouf A. (1993). A revised failure mode and effects analysis model. International Journal
of Quality & Reliability Management, 3, 43–47.

Bowles, J. B. (1998). The new SAE FMECA standard. In Proceedings of Annual Reliability and Maintain-
ability Symposium, pp. 48–53.

Bowles, J. B., & Peláez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects
and criticality analysis. Reliability Engineering & System Safety, 50, 203–213.

Chatterji, M. (2003). Designing and using tools for educational assessment. Pearson Education.
Chrysler Corporation, Ford Motor Company and General Motors Corporation. (1995). Potential failure

mode and effect analysis (FMEA) reference manual (SAE J 1739). AIAG.
Cunningham, G. K. (1986). Educational and psychological measurement. Macmillan publishing.
Dubois, D., & Prade, H. (1997). Fuzzy criteria and fuzzy rules in subjective evaluation—a general dis-

cussion. In Proceedings of 5th European Congress on Intelligent Technologies and Soft Computing,
pp. 975–978.

Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of art surveys.
Springer International Series.

123



302 K. M. Tay, C. P. Lim

Guimarães, A. C. F., & Lapa, C. M. F. (2004a). Effects analysis fuzzy inference system in nuclear problems
using approximate reasoning. Annals of Nuclear Energy, 31, 107–115.

Guimarães, A. C. F., & Lapa, C. M. F. (2004b). Fuzzy FMEA applied to PWR chemical and volume control
system. Progress in Nuclear Energy, 44, 191–213.

Hisao, I. (1991). Iterative fuzzy modeling and a hierarchical network. In Proceedings of 4th International
Fuzzy System Association World Congress, pp. 49–52.

Hisao, I., Takashi, Y., & Tomoharu, N. (2006). An approach to fuzzy default reasoning for function approx-
imation. Soft Computing, 10, 850–864.

Ireson, W. G., Coombs, C. F., & Moss, R. Y. (1995). Handbook of reliability engineering and management.
McGraw-Hill Professional.

Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neural-fuzzy and soft computing. Prentice-Hall.
Kaliszewski, I. (2006). Soft computing for multiple criteria decision making. Springer.
Lee, B. H. (2001). Using Bayes belief networks in industrial FMEA modeling and analysis. Annual reli-

ability and maintainability symposium, pp. 7–15.
Lin, C. T., & Lee, C. S. G. (1995). Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems.

Prentice-Hall.
Masters, T. (1993). Practical neural network recipes in C++. Academic Press.
Masters, T. (1995). Advanced algorithms for neural networks: A C++ sourcebook. Wiley.
Pillay, A., & Wang, J. (2003). Modified failure mode and effects analysis using approximate reasoning.

Reliability Engineering & System Safety, 79, 69–85.
Peláez, C. E., & Bowles, J. B. (1996). Using fuzzy cognitive maps as a system model for failure modes and

effects analysis. Information Sciences, 88, 177–199.
Russomanno, D. J., Bonnell, R. D., & Bowles, J. B. (1992). A blackboard model of an expert system for

failure mode and effects analysis. Annual reliability and maintainability symposium, pp. 483–490.
Tay, K. M., & Lim, C. P. (2006). Fuzzy FMEA with guided rules reduction system for prioritization of

failures. International Journal of Quality & Reliability Management, 23, 1047–1066.
Triantaphyllao, E. (2000). Multi-criteria decision making methods: A comparative study. Kluwer Academic

Publishers.
Tummala, R. R. (2000). Fundamentals of microsystems packaging. McGraw-Hill Professional.
Xu, K., Tang, L. C., Xie, M., Ho, S. L., & Zhu, M. L. (2002). Fuzzy assessment of FMEA for engine

systems. Reliability Engineering & System Safety, 75, 17–19.
Yam, Y. (1999). Fuzzy approximation via grid point sampling and singular value decomposition. IEEE

Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 27, 933–951.

123


	On the use of fuzzy inference techniques in assessment models: part II: industrial applications
	Abstract
	1 Introduction
	2 The FMEA methodology
	3 Case study I: a single-input fuzzy assessment model
	3.1 The proposed fuzzy occurrence model
	3.2 Analysis of the monotone output property

	4 Case study II: a multi-input fuzzy assessment model
	4.1 The Bowles fuzzy RPN model
	4.2 Development of the Bowles fuzzy RPN model
	4.3 Analysis of the bowles fuzzy RPN model
	4.4 Results and discussion

	5 Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


