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Abstract 

Use of lubricating/cutting fluids is crucial in machining processes to reduce friction, alleviate heat 

accumulation and prolong tool life.  To minimize environmental and health impacts, a number of studies 

using vegetable oil-based cutting fluid have been investigated and reported demonstrating similar 

performance obtained using commercial cutting fluids. However, massive use of vegetable oil for such 

purposes would undeniably trigger issues of food security. In order to mitigate food waste, the primary 

objective of the chapter is to demonstrate the application of waste palm cooking oil as a potential 

lubricating fluid in laser-assisted machining of metal. By considering kinematic and dynamic viscosities 

of the waste cooking oil, its effects on surface roughness and tool wear are studied by predicting using 

extreme learning machine (ELM). The prediction results show that the average errors are only 0.51% 

and 1.19% for surface roughness and flank wear, respectively, suggesting good agreement between 

observation and prediction. 
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1. Introduction 



The lubricants, generally can be classified as automotive and industrial lubricants, are used to 

improve the life of engines and machines by removing heat [1]. These lubricants, excessively used in 

industry and transportation, are largely produced as an expensive product of fossil fuel and also 

contribute significantly to pollution. The replacement of fossil fuels with bio-based oils & lubricants is 

not only environment-friendly, owing to biodegradability [2]. One major use of lubricants is in 

automotive sector in different engine types at varying operating conditions. However, the performance 

of bio-oils as lubricants have not been much successful as yet owing to tribological issue resulting in 

deterioration of engine components [1].  

While the other use of lubricants in industrial applications are mainly to protect the important 

operational elements from intensive duty cycles. The most important aspect of such lubricants is their 

viscosity to retain operations at optimal conditions irrespective of ambient range of working conditions. 

Bio-oils have been used as machining lubricants which helps in reducing cutting forces along with 

temperature reduction which can improve tool life. However, one common issue with the mineral based 

cutting fluids is the production of odour in the vicinity of workplace and higher concentration of fumes 

can be hazardous for operators. On the other hand, the vegetable-oil based fluid are useful alternative 

since their bio-degradable nature offers their renewability alongside excellent lubrication properties [2]. 

A few researchers have developed such cutting fluids. For instance, for turning process, Katna et al. [3] 

used non-edible neem blended with various percentages (5%-20%) of food grade emulsifier and showed 

promising results in terms of better machined surface finish at 10% emulsifier blending compared to 

mineral oil. In addition, the rate of tool wear reduced notably while using neem blended with 5% 

emulsifier as cutting fluid in comparison with conventional mineral oil. While using palm oil as cutting 

fluid during high speed drilling of titanium alloys, Rahim and Sasahara [4] observed lower cutting forces 

and resultantly lesser temperature of workpieces compared to the use of synthetic ester as cutting fluid. 

Wickramasinghe et al. [5] used a novel coconut-oil based while performing end milling operation on 



samples made of AISI 304 steel. Results indicated that around 70% reduction in average surface 

roughness along with 48% reduction in flank wear in comparison with soluble oil as working fluid. In 

addition, Bermingham et al. [6] used laser-assisted milling of Ti–6Al–4V with vegetable-based cutting 

fluid to evaluate the life of tool and the wear mechanism. The results suggested that the tool life 

improved around five times with respect to conventional dry laser-assisted milling. Such studies are 

underway with some hick-ups and limitations [7, 8]. Nevertheless, massive use of bio-oils extracted 

from edible crops such as palm and soybean has raised serious concerns on food insecurity. 

On the other hand, wasting food is becoming a social problem along with its ecological and 

economic impacts. Globally around a quarter more than a billion ton of food is either lost or wasted [9]. 

Estimates of 2012 for Malaysia suggested that around 33 thousand tonnes of food is daily wasted and 

this amount is on further rise owing to urbanization, changes in lifestyle, population growth and 

industrialization. Large chunk of food wastes especially of organic origin is generated from common 

households, restaurants and other industries in the food processing industries [10]. One peculiar item as 

waste, in millions of tons per day, is the cooking oil. Converting waste cooking oil of houses, restaurants 

etc. to lubricants can help address one major environmental challenge since its disposal is a grave 

concern for countries across the globe [11]. To the best of authors’ knowledge, no investigation has 

been performed on metal machining using waste cooking oil as industrial lubricant except automotive 

lubricants. 

Different waste cooking oil would produce different machining characteristics and tribological 

properties.  Characterization of waste cooking oil is necessary but laboriously time consuming due to 

varying external factors. However, predicting the behavior of cooking oil in different engines and 

working environments is not an easy task. One important aspect is the use of prediction models 

especially at the planning stage to assess the behavior of tribological applications in finding suitable 



parametric ranges for better performance [12-14]. This approach can mitigate the assessment process 

complexities with lesser rejections and errors. With the benefits of artificial intelligence (AI), as noted 

in many fields including manufacturing processes, different variants such as Artificial Neural Network 

(ANN), genetic algorithm, fuzzy logic etc. can be efficiently used to model the process. One critical 

aspect of these techniques is the time consumption during learning process in addition to generalization 

and overfitting [15]. For instance, ANN requires a certain set of data for generalization while over 

training can lead to overfitting [16]. One alternate is the extreme learning machine (ELM) which uses 

weights for the hidden nodes [17]. In addition, ELM is relatively simplified than ANN, while it reduces 

the time for train-test, moreover it also provides better generalization in case of overfitting issues. In 

this regard, the comparison carried out by Mustafa [18] between ANN model and ELM indicated that 

the ELM estimates are superior than its counterpart along with fast learning at lesser number of 

iterations. Similarly, the work by Anicic et al. [19] demonstrated the same predictions. In general, ELM 

demonstrate high capabilities in all three areas of learning speeds, training errors and norms of weights 

compared to  other algorithms such as back-propagation [20]. 

Keeping in view the relevant literature in terms of exploring innovative methods and practices 

for mitigating food wastages, this chapter analyzed the effect of waste palm cooking oil on surface 

roughness of 6082 Al alloy and tool’s flank wear width by predicting using ELM. Here, kinematic and 

dynamic viscosities of the waste cooking oil were also estimated as input parameters for machining. 

The methodology is described in the following section. 

 

1. Methodology  

2.1   Experimental details 



In this chapter, a medium strength aluminum alloy (6082) having 6 mm thickness was used 

while undergoing laser-assisted high speed milling. The selected material is corrosion resistant with 

melting point of 555oC, thermal conductivity of 180 W/m.K and Hardness Brinell (HB) of 91. A detailed 

chemical composition of the selected material can be found in [21].  

The setup for high speed milling operation included a cutting system along with lubricant fluid 

delivered in droplets and a heating system operating continuously by using laser power as shown in Fig. 

1. The heating system is positioned as top laser-heating which is preferred during radial cutting owing 

to wider heating area; while the side heating position is efficient during axial cutting [22]. Here side 

laser-heating method is more preferable rather than top laser-heating method. The machine with 

numerical control for milling was X-Carve having maximum speed of 8000 mm/min with in the plane 

while in the out of plane direction (z-axis) a maximum of 500 mm/min speed can be achieved. A 4-flute 

micro grain carbide end-mill tool was used having 3.175 mm diameter and coated with aluminum 

titanium nitride (AlTiN). 
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Fig. 1. Schematic diagram of the experimental setup 

The continual side heating source was a diode laser having 1.6 W power at wavelength of 445 

nm. The used beam spot of the laser had spot size of 20 × 6 mm2, approximately equivalent to cutting 

area. To enhance absorptivity of radiations at the substrate alloy, the cutting zone was coated with black-

body coating. Before initialization of cutting process, the substrate was pre-heated for at least 2 minutes.  

In this chapter, waste or used sample of Malaysian palm cooking oil was explored as lubricating 

fluid during machining. The physio-chemical properties are given in Table 1 for both off-the-shelf and 

waste palm cooking oil [23].  

Table 1: Physiochemical properties of bought and waste palm cooking oil [23] 

Properties Off-the-shelf palm 

cooking oil 

Waste palm cooking oil 

Acid value (mg KOH/gm) 0.3 4.03 

Calorific value (J/gm) ------- 39658 

Saponification value (mg KOH/gm) 194 177.97 

Peroxide value (meq/kg) < 10 10 

Density (gm/cm3) 0.898 0.9013 

Kinematic Viscosity (mm2/s) 39.994 44.956 

Dynamic Viscosity (mpa.s) 35.920 40.519 

Flash point (oC) 161-164 222-224 

Moisture content (wt %) 0.101 0.140 

 

2.2   Design of Experiments 

The design of experiments was carried out for three important parameters involved in the 

machining process namely, feed rate of cutting, lubricant flow rate and the used laser power. In order 

to practice the process, several dry runs of the apparatus indicated the ranges of the selected parameters 

in terms of their results in producing the finished surface and the wear of the tool. At high speed milling 



of Al 6082, feed rate range between 1500 – 3500 mm/min was selected with acceptable machined 

surface finish. In similar fashion ranges for laser power was selected between 650 mW-850 mW while 

the ranges of cutting fluid kinematic viscosities are tabulated in Table 2 [23]. The quantity of cutting 

fluid was kept between 0.15 to 0.25 mL/s at pump voltage of 6.8 V to 8.3 V.  

Table 2: Kinematic and dynamic viscosity of palm cooking oil 

Input parameter Fluid characteristics 

No. 
Power 

(mW) 

Predicted 

temperature 

rise (o C) 

Off-the-shelf palm 

cooking oil 
Waste palm cooking oil 

Kinematic 

viscosity 

(mm2/s) 

Dynamic 

viscosity 

(mPa.s) 

Kinematic 

viscosity 

(mm2/s) 

Dynamic 

viscosity 

(mPa.s) 

1 0 at 40C 0 39.994 35.920 44.956 40.519 

2 650 32.37 58.81 51.42 63.77 59.33 

3 750 33.5 55.38 48.24 60.34 55.90 

4 850 34.64 52.05 45.36 57.01 52.57 

 

Using CCD (Central Composite Design), the design of experiments was prepared with high and 

low levels of process parameters at setpoints of high (+1), central point (0) and low (–1). The resultant 

levels generate six axial points along with six central points with one replicate as summarized in Table 

3, resulting in 20 experiments.  

Table 3: Input processing parameters based on CCD 

   Extension 

Parameter Unit Annotation -1 0 +1 

Feed rate mm/min F 1500 2500 3500 

Laser Power mW P 650 750 850 

Droplet flow rate mL/s r 0.15 0.2 0.25 

Kinematic viscosity mm2/s vk 63.77 60.34 57.01 

Dynamic viscosity mPa.s vd 59.33 55.90 52.57 

 



2.3   Extreme Learning Machine (ELM) 

In order to deduce conclusive evidence from the experimental setup and runs, a learning 

algorithm is employed. In this regard, ELM provides the linear and easy to implement learning machine 

as proposed by Huang et al. [17]. ELM improves the ability for generalization of feed forward ANN by 

applying the learning structure to the hidden-layered.  

In addition, the output weights are selected using Moore-Penrose generalized inverse in ELM 

while the initial guess of the weights as well as biases can be still arbitrary. The network training 

requirements are not necessarily present as linear equality, and is solved in a single step which 

significantly reducing the time for relating N number of input with output (input 𝑥𝑁 and output 𝑦𝑁) 

vectors. 

The goal here is to relate the input process parameters with the output of the machining, as 

identified earlier, in the complete set of experiments. For instance, in an ith training of ELM, inputs xj 

are used to relate to responses yj with j = 1,2,…,M. Here M represents the total number of hidden layers 

defined as,  

𝑦𝑗 =  ∑ 𝛽𝑗𝑓 (𝑥𝑗 , 𝑤𝑗 , 𝑏𝑗)

𝑀

𝑗=1

 

where βj are the weights of the output layer while f represents the activation function. wj 

representing the weight vector connects the jth node of hidden and input with bj representing the bias of 

hidden nodes. Upon further simplifications, in the form of H the final equation is expressed by Eq. (3), 

𝐻 =  [
𝑓(𝑥1, 𝑤1, 𝑏1) … 𝑓(𝑥1, 𝑤𝑀, 𝑏𝑀)

⋮ … ⋮
𝑓(𝑥𝑁 , 𝑤1, 𝑏1) … 𝑓(𝑥𝑁 , 𝑊𝑀, 𝑏𝑀)

] 

𝑌 = 𝐻𝛽 

(1) 

(2) 

(3) 



While the criteria for ELM is as follows,  

𝐿(𝑋, 𝑌;  𝛽) =  ‖𝑌 − 𝐻𝛽‖2 

Since ELM, unlike ANN, can seek output with the need for iterative procedure [24]; therefore the value 

for  β can be found using, 

𝛽 = 𝐻+𝑌 

The Moore-Penrose inverse of unique matrix H is represented by H+ also known as generalized inverse 

matrix.  

In this chapter, using ELM the relationship between inputs (process parameters) and outputs 

(surface roughness and flank wear) are built based on the above mentioned data. The training data is 

categorized as 14 input sets/samples randomly selected from the total 20 data points while the rest six 

datasets were used to test data. Moreover, both inputs as well as outputs were initially normalized on a 

scale of -1.0 to 1.0 at the start of network training. Using MATLAB R2016a, ELM relied on a single 

user-defined value representing the number of hidden nodes which was varied between 1 to 12, less 

than total number of test samples [25]. While for the activation function, sigmoidal function was used.  

 

2. Results and Discussion 

After conducting the planned set of experimentations, each of the designated response variables 

were measured and examined which are listed in Table 4.  

Table 4. Experimental cases and results using waste palm cooking oil 

Input parameter Machining characteristics 

(4) 

(5) 



No. Feed 

rate 

(mm/

min) 

Power 

(mW) 

Flow 

rate 

(mL/s) 

Kinematic 

viscosity 

(mm2/s) 

Dynamic 

viscosity 

(mPa.s) 

Flank 

wear (µm) 

Surface 

roughness (µm) 

1 1500 650 0.15 63.77 59.33 1.98 1.529 

2 1500 850 0.25 57.01 52.57 1.70 1.499 

3 3500 650 0.15 63.77 59.33 2.46 1.648 

4 3500 850 0.25 57.01 52.57 2.02 1.612 

5 1500 750 0.20 60.34 55.90 1.88 1.521 

6 3500 750 0.20 60.34 55.90 2.25 1.627 

7 1500 650 0.25 63.77 59.33 1.90 1.526 

8 2500 650 0.20 63.77 59.33 2.04 1.546 

9 3500 850 0.15 57.01 52.57 2.13 1.622 

10 1500 850 0.15 57.01 52.57 1.77 1.513 

11 2500 850 0.20 57.01 52.57 1.86 1.552 

12 3500 650 0.25 63.77 59.33 2.34 1.631 

13 2500 750 0.15 60.34 55.90 2.02 1.542 

14 2500 750 0.25 60.34 55.90 1.88 1.541 

15 2500 750 0.20 60.34 55.90 1.97 1.534 

16 2500 750 0.20 60.34 55.90 1.95 1.541 

17 2500 750 0.20 60.34 55.90 1.94 1.538 

18 2500 750 0.20 60.34 55.90 1.97 1.544 

19 2500 750 0.20 60.34 55.90 1.96 1.550 

20 2500 750 0.20 60.34 55.90 1.94 1.536 

 

3.1   Prediction using Extreme Learning Machine (ELM) 

Predictions using ELM for the surface roughness and flank wear using waste palm cooking oil, 

are shown in Table 5 and Table 6, respectively. The hidden nodes were used for the prediction of 

surface roughness and flank wear having the smallest norm of the least-squares solution. In this case, 

the root mean square errors are minimum at 4 and 8 number hidden nodes for surface roughness and 

flank wear, respectively, where the average errors are only 0.51% and 1.19% suggesting that the 

observation are in fine agreement with predictions. 

Table 5: ELM prediction of surface roughness using waste palm cooking oil 



Input parameter Machining characteristics 

Run 

Feed 

rate 

(mm/

min) 

Power 

(mW) 

Flow 

rate 

(mL/s) 

Kinematic 

viscosity 

(mm2/s) 

Dynamic 

viscosity 

(mPa.s) 

Surface roughness (Ra)  

Experimentation 

(µm) 

Prediction 

(µm) 

Error 

% 

1 2500 850 0.2 57.01 52.57 1.552 1.5321 1.28 

2 3500 850 0.25 57.01 52.57 1.612 1.6191 0.44 

3 1500 750 0.2 60.34 55.9 1.521 1.5166 0.29 

4 3500 650 0.15 63.77 59.33 1.648 1.6343 0.83 

5 1500 650 0.25 63.77 59.33 1.526 1.5248 0.08 

6 2500 750 0.15 60.34 55.9 1.542 1.5402 0.12 

Average error % 0.51 

 

Table 6: ELM prediction of flank wear using waste palm cooking oil 

Input parameter Machining characteristics 

Run 

Feed 

rate 

(mm/

min) 

Power 

(mW) 

Flow 

rate 

(mL/s) 

Kinematic 

viscosity 

(mm2/s) 

Dynamic 

viscosity 

(mPa.s) 

Flank wear (VB)  

Experimentation 

(µm) 

Prediction 

(µm) 

Error 

% 

1 2500 850 0.2 57.01 52.57 1.86 1.8515 0.46 

2 3500 850 0.25 57.01 52.57 2.02 2.0306 0.52 

3 1500 750 0.2 60.34 55.9 1.88 1.8117 3.63 

4 3500 650 0.15 63.77 59.33 2.46 2.4387 0.87 

5 1500 650 0.25 63.77 59.33 1.90 1.8875 0.66 

6 2500 750 0.15 60.34 55.9 2.02 1.9996 1.01 

Average error % 1.19 

 

 

Conclusions 

In this chapter, using ELM, the prediction of waste palm cooking oil as cutting fluid on laser-assisted 

milling operation of Aluminum alloy is carried out in terms of assessment of surface roughness and 

flank wear. Some important points can be drawn as conclusion from this work as follows: 



1) The environmental concern on the impact of mineral oil/lubricants and their life cycle are significant 

and many researchers are trying to develop alternates using possibly renewable and lesser harmful 

vegetable oils for such purposes.  

2) In the current chapter, the use of waste cooking oil in terms of its potential as alternative cutting 

fluid/lubricant in metal machining process was presented. The results show promising aspect from 

the view point of viscosity of such oil as lubricant.  

3) ELM-based prediction errors of the surface roughness and flank wear were only 0.51% and 1.19%, 

respectively using waste palm cooking oil, suggesting good agreement between observations and 

predictions.  
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