

Natural Product Research Formerly Natural Product Letters

ISSN: 1478-6419 (Print) 1478-6427 (Online) Journal homepage: https://www.tandfonline.com/loi/gnpl20

In vitro cytotoxicity evaluation of thiourea derivatives bearing *Salix sp.* constituent against HK-1 cell lines

Norsyafikah Asyilla Nordin, Vannessa Lawai, Zainab Ngaini, Ainaa Nadiah Abd Halim, Siaw San Hwang, Reagan Entigu Linton, Boon Kiat Lee & Paul Matthew Neilsen

To cite this article: Norsyafikah Asyilla Nordin, Vannessa Lawai, Zainab Ngaini, Ainaa Nadiah Abd Halim, Siaw San Hwang, Reagan Entigu Linton, Boon Kiat Lee & Paul Matthew Neilsen (2020) *In vitro* cytotoxicity evaluation of thiourea derivatives bearing *Salix sp.* constituent against HK-1 cell lines, Natural Product Research, 34:11, 1505-1514, DOI: <u>10.1080/14786419.2018.1517120</u>

To link to this article: <u>https://doi.org/10.1080/14786419.2018.1517120</u>

+	View supplementary material 🗗	Published online: 03 Dec 2018.
	Submit your article to this journal 🛛	Article views: 96
Q	View related articles 🖸	Uiew Crossmark data 🗹

Check for updates

In vitro cytotoxicity evaluation of thiourea derivatives bearing *Salix sp.* constituent against HK-1 cell lines

Norsyafikah Asyilla Nordin^{a,b}, Vannessa Lawai^b, Zainab Ngaini^b, Ainaa Nadiah Abd Halim^b, Siaw San Hwang^c, Reagan Entigu Linton^c, Boon Kiat Lee^c and Paul Matthew Neilsen^d

^aFaculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, Malaysia; ^bFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia; ^cFaculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Sarawak, Malaysia; ^dSchool of Health Medical and Applied Sciences, Central Queensland University, Norman Gardens, Australia

ABSTRACT

In searching for drugs from natural product scaffolds has gained interest among researchers. In this study, a series of twelve halogenated thiourea (**ATX 1-12**) *via* chemical modification of aspirin (a natural product derivative) and evaluated for cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines, HK-1 via MTS-based colorimetric assay. The cytotoxicity studies demonstrated that halogens at *meta* position of **ATX** showed promising activity against HK-1 cells (IC₅₀ value $\leq 15 \,\mu$ M) in comparison to cisplatin, a positive cytotoxic drug (IC₅₀ value = $8.9 \pm 1.9 \,\mu$ M). **ATX 11**, bearing iodine at *meta* position, showed robust cytotoxicity against HK-1 cells with an IC₅₀ value of $4.7 \pm 0.7 \,\mu$ M. Molecular docking interactions between **ATX 11** and cyclooxygenase-2 demonstrated a robust binding affinity value of $-8.1 \,\text{kcal/mol}$. The findings represent a promising lead molecule from natural product with excellent cytotoxic activity against NPC cell lines.

Received 7 May 2018 Accepted 24 August 2018

KEYWORDS

Aspirin; thiourea; cytotoxicity; molecular docking; cyclooxygenase-2

CONTACT Zainab Ngaini 🖾 nzainab@unimas.my

Supplemental data for this article can be accessed https://doi.org/10.1080/14786419.2018.1517120.

© 2018 Informa UK Limited, trading as Taylor & Francis Group