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ABSTRACT 

 

In this research, Total Variation (TV) regularization method was incorporated with the 

Forward-Backward Time-Stepping (FBTS) algorithm to deal with the ill-posedness of the 

inverse scattering problem in the time domain. The effectiveness between FBTS without and 

with regularization method is compared and analyzed by numerical simulations and 

calculation of Mean Square Error (MSE). Finite-Difference Time-Domain (FDTD) scheme is 

used to calculate the inverse scattering signals in forward time-stepping and adjoint field in 

backward time-stepping to reconstruct the microwave properties. The Forward-Backward 

Time-Stepping - Total Variation (FBTS-TV) regularization algorithm is in a two-dimensional 

case and implemented in C++ language executed in single computing. The FBTS-TV 

regularization method shows a good performance of reconstructing relative permittivity and 

conductivity profiles of the unknown embedded object for its size, shape, and location. The 

image reconstruction in enhanced by smoothing irregular contours while preserved the edges, 

and hence produced a better estimation of the image’s boundaries. A distinct improvement is 

shown in the reconstruction of the object’s relative permittivity. In the case of reconstruction 

of a simple object for relative permittivity, FBTS-TV improved the FBTS algorithm by 15%. 

                                                                                                                                                                                                                                                                                         

Keywords: Inverse scattering, image reconstruction, microwave imaging, regularization, 

total variation regularization. 

 

 

 

 



iv 
 

Pengimejan Berdasarkan Gabungan Kaedah Songsang Berselerak Bersama Kaedah 
Penyusunan Jumlah Variasi 

ABSTRAK 

 

Dalam kajian ini, kaedah penyusunan Total Variation (TV) telah digabungkan bersama 

Forward-Backward Time-Stepping (FBTS) dalam lapangan masa bagi menangani masalah 

ketidaksempurnaan di dalam kaedah songsang berselerak. Keberkesanan kaedah FBTS 

tanpa dan dengan gabungan kaedah penyusunan telah dibandingkan serta dianalisis melalui 

kaedah simulasi berangka serta pengiraan ralat min kuasa dua. Teknik Finite-Difference 

Time-Domain (FDTD) digunakan bagi penggiraan  isyarat tuju serta isyarat serakan dalam 

proses pengimejan. Algoritma bagi gabungan kaedah tersebut, Forward-Backward Time-

Stepping - Total Variation (FBTS-TV) adalah dalam bentuk dua dimensi dan diprogramkan 

di dalam bahasa pengaturcaraan C++ menggunakan jenis pengkomputeran tunggal. Kaedah 

FBTS-TV telah menunjukkan prestasi yang baik dalam pembinaan semula sifat-sifat 

dielektrik gelombang mikro bagi objek yang tidak diketahui mengikut saiz, bentuk dan 

lokasinya. Mutu pengimejan telah ditingkatkan dengan melicinkan permukaan kontur yang 

menggerutu, sementara memelihara kawasan pinggir, dan disebabkan itu, sempadan imej 

dapat dianggarkan dengan lebih baik. Penambahbaikan yang jelas telah ditunjukkan bagi 

pembinaan semula objek dalam keterusan elektrikal. Bagi kes pembinaan semula sebuah 

objek mudah dalam keterusan elektrikal, kaedah FBTS-TV telah memberikan peningkatan 

sebanyak 15% berbanding kaedah FBTS. 

 
Kata kunci: Kaedah penyusunan, kaedah penyusunan Total Variation, kaedah songsang       

berselerak, pembinaan semula imej, pengimejan gelombang mikro. 
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1. CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Microwave imaging is a technique used to sense objects by means of analyzing 

microwave signals. Extensive researches have been conducted on microwave imaging and 

it had proven its potential utility and effectiveness for a wide range of applications such as 

in medical imaging, remote sensing of earth, and non-destructive testing and evaluation. For 

example, in remote sensing, Synthetic Aperture Radar (SAR); form of a radar system, has 

the capability to produce a high-resolution imagery of bio and the geophysical parameter of 

the Earth’s surface [1-3]. Remote sensing also applied for forest biomass mapping [4], 

monitoring global land surface phenology [5] and mapping natural hazard and disaster [6].  

In Non-Destructive Testing and Evaluation (NDT & E), high-frequency 

electromagnetic energy is utilized to determine material characterization and its structural 

integrity. Pulsed Eddy Current (PEC) is among the popular technique applied in NDT & E 

due to its effectiveness of quantifying defects in multilayer structures. Some applications 

involving NDT & E are identifying hidden defect characterization in some complex 

structures [7], and defect detection of riveted structures of aging aircraft [8].  

Microwave imaging applications for medical purposes had pulled a great attention 

and continuously investigated by the researchers. Medical imaging is the visualization of a 

biological system for clinical diagnosis and medical intervention proposes. Medical imaging 

modalities examples are X-ray, Ultrasound, Computerized Tomography (CT), Positron 

Emission Tomography (PET) and Magnetic Resonance Imaging (MRI).  
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In microwave tomography, transmitting antenna is used to illuminate the biological 

part in microwave region and the scattered field data are then collected by receiving 

antennas. The scattered field information will be processed and analyzed to reconstruct the 

dielectric properties of the biological part. The dielectric properties concern is the relative 

permittivity, 𝜀, the capacitance of a unit volume of matter and conductivity, 𝜎, the 

conductivity of a unit volume of matter. Microwave tomography can be obtained through 

single-frequency, multi-frequency or time domain method [9-11]. Microwave tomography 

is preferable method compared to other conventional medical imaging modalities due to its 

non-ionizing detection, more comfortable for patients, inexpensive, no side effect for human 

body and potentially increases the sensitivity of cancer detection [12].  

Recently, there is a positive growth in research on medical tomography for cancer 

detection due to the significant contrast of dielectric properties of healthy and malignant or 

abnormalities tissue at microwave frequencies. For the similar reason, a group of researchers 

focuses on microwave imaging technique for breast cancer detection [13-17].  Takenaka et 

al. [18] introduced Forward-Backward Time-Stepping (FBTS) to solve electromagnetic 

inverse scattering problems in the time domain. Time domain method in FBTS means 

allowing a broad spectrum of frequencies to be utilized in a single optimization, thus, this 

method will give more useful quantitative information of electrical parameter profiles and 

increase in accuracy for the reconstructed images. FBTS has shown a strong ability to 

reconstruct images providing the electrical properties of the objects together with its size, 

shape, a position of the scatters or objects. In recent studies, the reconstructed of breast 

imagery with FBTS technique had shown a significant disparity of the dielectric properties 

in which enabling the differentiation and recognition of normal and abnormal breast tissue. 
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It is reported that FBTS technique capable of detecting as small as 4 mm malignant tumor 

in its reconstructed image [19].  

Another advancement of FBTS is a reconstruction of breast imagery in three-

dimensional forms [20], and incorporating low pass filter with several cut-off frequencies in 

the FBTS algorithm to avoid nonlinearity problem [21]. 

In many cases, inverse problems are ill-posed due to noise in measurement data 

which cause misinterpretations of the solution. Ill-posed problems can be handled either by 

incorporating a priori information through the use of transformation or by applying 

appropriate numerical methods, called regularization techniques [22].  Regularization 

method can be applied to improve the conditioning and determine a useful approximation of 

the actual reconstruction image.  

Some of the commonly known and used methods of regularization are Singular-

Value Decomposition (SVD) as in [23-25], and Tikhonov regularization as in [26-27]. SVD 

and Tikhonov’s regularization perform successfully in image enhancement, noise removal, 

and deblurring, however, these types of regularization tend to produce smoothed or over-

smoothed solution which eliminates sharpness at object boundaries on the resulting solution.  

The Total Variation (TV) regularization method was introduced by Rudin, Osher and 

Fatemi in [28], is a constrained optimization type of numerical method for image denoising 

while preserved the edge information. Unlike other conventional smoothing filters that have 

a greater tendency to blur the discontinuities, TV regularization is well suited for edge-

preserving as it is not discriminating against smoothness in an image and tends to preserve 

edges of the reconstructed image [29]. Due to efficacy and robustness of TV regularization 

method, it has been considered to be utilized in image denoising, deblurring, inpainting, 

edge-preserving, and restoration. TV regularization method has been applied in image 
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denoising [30], reconstruction for images that missing some pixels due to impulsive noise 

[31], and reconstruction of super-resolution images [32]. There are also researches on a 

combination of regularization methods, for example, hybrid of Tikhonov and TV 

regularization method in [33-34] to compensate both methods’ weaknesses thus improving 

the outcome. 

 

1.2 Problem Statement 

Breast imaging with FBTS had shown a great success due to its ability to determine 

and reconstruct images by providing useful quantitative information about the size, location, 

shape and the internal composition of the backscatters or objects in a test area [18-21]. FBTS 

shown the potential to detect malignancy and assessed internal compositions in a breast 

model [35]. A good and stable image reconstruction will aid in better medical analysis and 

diagnosis [14-15].  

FBTS, an inverse scattering method in time domain is utilizing an iterative scheme 

based on conjugate gradient method, which is updating simultaneously the unknown field in 

the scattering domain and the unknown material contrast by minimizing a cost functional at 

each iteration [18]. The process of developing the reconstruction of the electrical properties 

is dependent greatly on its quantitative information produced by the calculation of error 

between the measured and simulated scattering field data. FBTS has strong non-linearity and 

ill-posed in nature causes the algorithm to get trapped in a local minimum leading to false 

estimation. False estimation in the scattering data calculation will give negative impact in 

the reconstruction output such as distortion and irregularities in the reconstructed images. A 

regularization method is needed to improve the quality and stability of the FBTS algorithm 

[35]. 
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Ill-posed problems can be handled either by incorporating a priori information 

through the use of transformation or by incorporating an appropriate numerical method, 

called regularization method [36]. The regularization method will give constraints on the 

reconstructed image that lead to more accurate estimation. In this research, the Total 

Variation (TV) regularization scheme will be incorporated in the FBTS inverse scattering 

algorithm to improve the reconstructed image by giving information such as its shapes and 

location, smoothing the uninterested structures, and reconstructing sharp edges in the 

enclosed region that should give a better estimation of the image’s boundaries. 

 

1.3 Objectives 

The goal of this research is to develop a low cost and safe microwave imaging system 

that detect the presence of objects buried in inhomogeneous medium and also to identify the 

electric properties of the objects. The project will involve the following objectives: 

a) To formulate edge preserving with Total Variation (TV) regularization method. 

b) To analyze the effect of Total Variation Regularization with different parameter 

settings such as regularization parameter, number of antenna, and center frequency. 

c) To incorporate the Total Variation Regularization scheme with the time-domain 

inverse scattering technique for edge-preserving image reconstruction. 

 

1.4 Scope of Project 

This research was conducted to investigate and formulate Total Variation 

Regularization, which is one of a regularization method, and incorporated it with FBTS in 

two-dimensional transverse magnetic case, in order to improve the quality of the 
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reconstructed image. It is assumed that the media is nondispersive with constant permittivity 

and conductivity over changes in frequency.  

Thus, the study is conducted for less complex reconstruction algorithm which is for 

two electrical profile parameters of relative permittivity,  𝜀 , and conductivity,  𝜎.  For the 

reconstructed image, it is assumed that the position, shape, and size of the object could be 

detected.  The research will consider free space as background medium. The development 

of numerical simulation is completed using the C++ programming language in single 

computing, while the demonstration of the obtained data is accomplished by MATLAB 

R2010a software.  Besides that, the study aims to determine the effect of Total Variation 

Regularization with different parameter settings such as scaling, orientation, and central 

frequencies. 

 

1.5 Thesis Outline 

Chapter 1 presents the introductory statements of the study that include a brief 

introduction to the research, problem statements, objectives, and scopes of this research. 

Chapter 2 describes the research of related literature and studies such as microwave 

imaging system, Maxwell’s equation, the Forward-Backward Time-Stepping, the Finite-

Difference Time-Domain, ill-posed problem in image reconstruction, and regularization 

method in image reconstruction such as the Truncated Singular Value Decomposition, 

Tikhonov Regularization and Total Variation Regularization. 

Chapter 3 provides explanations of methods to be use in this research, which include 

Forward-Backward Time-Stepping method, and TV regularization method to be utilize in 

this research. 
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Chapter 4 presents and discusses the findings of numerical experiments, which 

demonstrate the performance of the method proposed. The comparison of reconstruction of 

a simple object with and without regularization presented. Furthermore, the efficacy simple 

object reconstructed tested for a higher optimization and the impact of utilizing different 

regularization parameter value has been evaluated. Reconstructions of a simple object with 

multiple configurations of antennas are tested and analyzed for its performance. Besides that, 

reconstruction of multiple circular and square shape objects with varying sizes has been 

studied and presented. MSE statistic used for measuring the method effectiveness. 

Chapter 5 concludes the whole research and provides some recommendations for 

future works and improvement of this research. 

  



8 
 

2. CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Microwave Imaging 

Microwave imaging is a continually evolving science to estimate hidden or 

embedded objects in a structure or media with the usage of electromagnetic information in 

the microwave regime. Researchers in microwave imaging always make used of numerical 

modeling and hardware to improve its detection of the embedded object. The information on 

electromagnetic properties is acquired by measuring scattered electric field via transceivers. 

The analysis of the electric field permits the location and identification of the unknown 

objects. Microwave imaging has a huge potential for a wide range of applications such as in 

remote sensing of the earth [1-4], biomedical imaging and diagnostic [13-17], non-

destructive testing and evaluation [7-8], underground surveillance [37], and through-wall 

imaging [38].  

One of the microwaves imaging application is in remote sensing. Remote sensing is 

a great tool to observe the earth due to its capability to operate unmanned and durability to 

be under any weather circumstances for day or night. The radiated electromagnetic energy 

from its transmitting antenna will focus on a target. As the electromagnetic energy hit the 

target, it will be reflected or create backscatter in which are detected by the receiving 

antenna. The received electromagnetic energy of the target will be analyzed and observed 

via signal processing [1-2]. 

In Synthetic Aperture Radar (SAR), it synthesizes a large aperture antenna from the 

antenna scanning. A miniature SAR system operated on a small dimension of Unmanned 

Aerial Vehicle (UAV) platform that generating 5m x 5m spatial resolutions has been 
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reported in [3].  Several techniques have been applied to improve the performance and 

efficacy of the SAR such as adding filter-based deconvolution [39], advancement in signal 

processing technique [40] and enhanced target discrimination algorithm [41].  

In [39], two SAR based methods, piecewise and wiener filter were introduced to 

improve the conventional SAR imaging in term of images’ focus and object’s position inside 

of layered structures. In [40], Orthogonal Matching Pursuit is incorporated with compressed 

sensing algorithm to reduce the computational time and providing a high resolution images. 

In [41], the proposed method had shown a good performance for discriminating between 

target and the clutter in SAR images while improving the K-center one-class classification 

based on Hausdorff distance measurement. 

Near-field method always related to biomedical imaging due to the evidence of 

dielectric contrast to detect and differentiate anomalies in the human body. The purpose of 

medical imaging is to reconstruct the spatial distribution of the dielectric properties of the 

interested domain. An electromagnetic source is used to illuminate an unknown material, 

and then the totals of the scattering field are measured and are inverted to determine its shape, 

location, and size. The inverse scattering problem is a nonlinear problem due to nonlinearity 

function of the scattering properties.  

Biomedical imaging produces the visualization of a biological system for clinical 

diagnosis and medical intervention proposes. It modalities include X-ray, Ultrasound, 

Computerized Tomography (CT), Positron Emission Tomography (PET) and Magnetic 

Resonance Imaging (MRI). Recently there has been renewed interest in breast cancer 

detection [13-17]. The sensing of the breast cancer is possible due to the significant contrast 

of dielectric properties of healthy and malignant or abnormalities tissue at microwave 

frequencies.  
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Figure 2.1 shows the classification of the biomedical imaging system of active, 

passive and hybrid methods. In passive microwave imaging, the received power level or 

energy from the object is used to build up the microwave image of the respected 

environment. In an active microwave imaging, the biological object is detected by probing 

it with an electromagnetic radiation. The electromagnetic radiation will illuminate the object 

and with the measured scattered radiation, an estimated image of the internal dielectric 

properties can be gained. Active microwave imaging divided into microscopy and 

tomography. Unlike in active microwave imaging, the hybrid methods measure the heated 

biological object by detecting the scattered radiation through ultrasound transducers. Hybrid 

method can be classified into microwave with thermal acoustic and microwave with 

ultrasound.

 

Figure 2.1: Biomedical Imaging System [42] 
 
 

There are two main methods to tomography, the frequency domain, and time domain. 

In the frequency domain, the estimated detection of an object is evaluated according to the 

progression to the response of different frequencies while in the time domain, the 

progression is evaluated according to the state of time. The tomography in frequency domain 
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requires less imaging hardware and lower computational power than in time domain. 

However, the advantage of time domain over frequency domain is the measurement in time 

domain covers a large frequency band which, provide more information of the objects and 

therefore will produce a better reconstruction [10].  

Studies in [43] shown that microwave imaging in the time domain has the advantages 

over frequency domain in deep-tissue fluorescence imaging of turbid media, in which it 

gives the better distinction of the reconstruction of the target under test. Data acquisition in 

time domain analysis is reported more feasible [44] and it gives higher efficiencies than in 

the frequency domain [45].  

 

2.2 Maxwell’s Equations 

James Clerk Maxwell was first to determine the speed of propagation of 

electromagnetic waves is the same as the speed of light. Maxwell took a set of known 

experimental laws such as Faraday’s Law and Ampere’s Law and incorporated them into a 

symmetric coherent set of equations known as Maxwell’s Equations.  

Maxwell's equations represent the basic ways to state the fundamentals of electricity 

and magnetism.  A flow of current will produce a magnetic field. A varies in current flow 

influence the magnetic field which also gives rise to an electric field.  Electromagnetic waves 

can be demonstrated in time domain form or frequency domain form.   

Figure 2.2 shows an electromagnetic wave composed of oscillating magnetic and 

electric fields. The electric field and magnetic field of an electromagnetic wave are 

perpendicular to each other and to the direction of the wave. In vacuum, the electromagnetic 

wave travel with a constant velocity of 3 × 108 ms-1. 
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Figure 2.2: Electromagnetic Wave [46] 
 

2.2.1 Time Domain Form 

This research considering time domain form modeling, thus the differential equations 

or time-varying Maxwell’s equations are shown as below. Common Maxwell’s equation for 

the differential form of Faraday’s Law, Ampere-Maxwell’s equation, Gauss’s Law for the 

electric field and magnetic field, respectively [47]: 

 

𝛻 × 𝑬(𝑡) = −
𝜕𝑩(𝑡)

𝜕𝑡
 (2.1) 

∇ × 𝑯(𝑡) = 𝑱(𝑡) +
𝜕𝑫(𝑡)

𝜕𝑡
 (2.2) 

∇ ∙  𝑫(𝑡) =  𝜌(𝑡) (2.3) 

∇ ∙  𝑩(𝑡) =  0 (2.4) 

where 
 
𝑬 : Electric field (Volts/meter) 

𝑩 : Magnetic flux density (Webers/meter2) 
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𝑯 : Magnetic field (Amperes/meter) 

𝑱 : Electric current density (Amperes/meter2) 

𝑫 : Electric flux density (Coulombs/meter2) 

𝜌 : Electric charge density (Coulomb/m3) 

 

The relation of electric and magnetic flux densities, 𝑫 and 𝑩 to the field intensities 

𝑬  and 𝑯 can be shown by the simplest form of constitutive relationships as shown in 

Equation (2.5) to (2.7) [47]. 

 

𝑱(𝑡) = 𝜎(𝑡) ∙ 𝑬(𝑡) (2.5) 

𝑫(𝑡) = 𝜀(𝑡) ∙ 𝑬(𝑡) (2.6) 

𝑩(𝑡) = 𝜇(𝑡) ∙ 𝑯(𝑡) (2.7) 

where 

𝜀 : Electrical permittivity (Farads/meter) 

𝜇 : Magnetic permeability (Henrys/meter) 

𝜎 : Electric conductivity (Siemens/meter) 

 

2.2.2 Frequency Domain Form 

The mathematical expression for frequency domain form modelling can be 

simplified by reducing convolutions to simple expression through transformation of 

Equation (2.1) to (2.7). The differential form of Faraday’s Law, Ampere-Maxwell’s 

equation, Gauss’s Law for the electric field and magnetic field in frequency domain, 

respectively [47]: 
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𝛻 × 𝑬 = −𝑗𝜔𝑩 (2.8) 

∇ × 𝑯 = 𝑱 + 𝑗𝜔𝑫 (2.9) 

∇ ∙  𝑫 =  𝜌 (2.10) 

∇ ∙  𝑩 =  0 (2.11) 

as well as the three constitutive relationships: 
 
 

𝑱(𝑡) = 𝜎𝑬 (2.12) 

𝑫(𝑡) = 𝜀𝑬 (2.13) 

𝑩(𝑡) = 𝜇𝑯 (2.14) 

 
By substituting Equation (2.12) to (2.14) into Equation (2.9) to (2.11), the new 

differential forms of Faraday’s Law, Ampere-Maxwell’s equation, Gauss’s Law for the 

electric field and magnetic field in frequency domain are as follows. 

 
𝛻 × 𝑬 = −𝑗𝜔𝜇𝑯 (2.15) 

∇ × 𝑯 = 𝜎𝑬 + 𝑗𝜔𝜀𝑬 (2.16) 

∇ ∙  𝑫 = ∇ ∙ 𝜀𝑬 =  𝜌 (2.17) 

∇ ∙  𝑩 = ∇ ∙ 𝜇𝑯 =  0 (2.18) 

  

2.3 Forward-Backward Time-Stepping (FBTS) 

The Forward-Backward Time-Stepping (FBTS) was first introduced by Takenaka et 

al. [18] is a method of microwave imaging to solve the inverse scattering problem in the time 

domain.  Previous studies of FBTS have shown that the method is applicable to medical 

imaging such as in breast cancer detection. In [19-20], [26], [48], and [55], FBTS method 
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has been utilized to reconstruct breast composition and differentiate the contrast between 

normal and malignant breast tissue.  

A simple case of one-dimensional reconstruction has been reported in [49], the case 

has been extended to a two-dimensional reconstruction as mentioned in [19] and [48].  

Further addition of the case is in three-dimensional reconstruction as reported in [20] and 

[26]. Most of the researches more focused in two-dimensional cases compare to three-

dimensional due to the increment of its computational cost. In [19], FBTS has been proved 

its ability to sense a malignant tissue of 4 mm sized in the two-dimensional dielectric 

reconstruction in breast imaging. Besides the application of FBTS in medical imaging, there 

were also investigations of FBTS applied in Borehole radar application [50] and buried 

object detection [51]. 

FBTS method is a quantitative reconstruction technique which aims to provide the 

distributions of the unknown electrical properties for a target object within the region of 

interest. The unknown target object is considered embedded in free space. The electrical 

properties include the permittivity, permeability, electric conductivity, and magnetic 

conductivity. The useful information of the electrical properties will contribute to the 

reconstruction of an object as for its shape, size and location.  

FBTS utilized Finite-Difference Time-Domain (FDTD) to compute and solve the 

direct and adjoint microwave scattering problems. Through FBTS a large amount of 

information about the dielectric parameters obtained as it consuming a broad spectrum of 

frequencies in a single optimization. This allows for more accurate and precise quantitative 

reconstruction of the electrical properties. 

Figure 2.3 shows the simple configuration of an active microwave tomography set 

up in FBTS.  The scattering objects are by definition have different properties from the 
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background environment. In this research, the scattering objects are anticipated as a 

collection of an induced source, as the target object in the region of interest is illuminated 

by short-pulsed waves. In its initial state, the background of FBTS is assumed free of the 

scattering objects. 

 

 
 

Figure 2.3: Simple setup of FBTS with 8-Elements circular arrays and tabulation of 
antennas [19] 

 

 
For the forward time stepping, the transmitting antenna acted as a source, will 

transmit short pulsed waves to the target object. The incident wave as it has interacted with 

the target object will be transferred to other directions, which are known as scattering objects.  

The scattering objects will be collected by other antennas that acted as a receiver to be 

analyzed. 

For the backward time stepping, the difference between measured and simulated 

microwave scattering measurements for each transmitter and receiver combination is 

propagated back toward the target object. The errors between those measurements are 
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minimized by an optimizing technique. As FBTS is a gradient-based optimization method, 

the cost function is minimized iteratively by using the Conjugate Gradient Method. During 

each of the optimization process, the step size, and direction are estimated and updated for 

next iteration.  

Research in FBTS is continually progressing with incorporating the method with 

other enhancement technique to improve its efficacy in reconstructions development,  such 

as integrating the method with the filtered inversion algorithm [21], [52], a regularization 

technique [27], [53-54], frequency hopping technique [55], and iterative multiscaling 

technique [50],[56]. There are studies to improve FBTS computational time and reduce 

reconstruction costs such as time delay pulses [57], source group method [58], and parallel 

computing [59]. 

Some of the researches have focused on increasing the quality and resolution of the 

reconstructed objects or structures of different sizes, specifically with the high contrast 

content. It is shown in [54] and [60-61], the sensing of the imaging objects was correlated 

with the chosen spectral frequency.  

Large objects can be sensed at a lower spectral frequency [54]. However, imaging a 

smaller object or high contrast structure at a lower spectral frequency is always ineffective. 

In order to increase the sensing performance for the smaller object, the spectral frequency 

should be tuned higher. Selecting a suitable spectral frequency for the imaging will give a 

good tradeoff of the reconstructed resolution and hence providing a better approximation of 

the objects’ sizes [60-61].  

Frequency Hopping method incorporated with FBTS has been proposed in [55] 

utilizing a multiple spectral frequencies to improve the reconstructions accuracy of 

extremely dense breast composition. Exploiting a priori data into the reconstruction 
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algorithm should also enhanced the reconstruction of small objects or high contrast 

structures [61].  

 

2.4 Finite-Difference Time-Domain (FDTD) 

The Finite-Difference Time-Domain (FDTD) is a popular method and has been 

applied widely in the modeling of electromagnetic wave scattering. FDTD method was first 

proposed by K. Yee [47], and later on, has been improved by other researchers. FDTD has 

been chosen due to its simplicity of data decomposition and acquisition. FDTD also has the 

capabilities to solve complicated problems however, it is generally computationally 

intensive [57].  

The fundamental of FDTD for solving the electromagnetic problem is to discretize 

in time and space, Maxwell’s equations with central difference approximation. FDTD 

determines the allocation in space between the electric and magnetic fields components and 

the marching in time for the evolution of the procedure [62].  

Several studies have been published implementing FDTD to solve the inverse 

scattering problem such as in reconstruction of shapes and material distributions of unknown 

cylinders [63], microwave imaging for human head modeling [64], electromagnetic wave 

propagation modeling in one-dimensional, two-dimensional and three-dimensional cases 

[65-66], through the wall radar imaging with time reversal method [67] and analysis of 

electromagnetic fields with Overset Grid Generation (OGG) method [68]. 

In the FBTS algorithm, the forward and adjoint fields are calculated numerically by 

utilizing the FDTD method. The FDTD model used in FBTS to solve the forward and adjoint 

fields is shown in Figure 2.4.  The utilization of FDTD method in FBTS has been reported 
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in [20-21], [48-59]. The first numerical computation is to determine the numerical forward 

fields, and the second is the adjoint fields.  

From Figure 2.4, for each transmitter reaction in the FDTD model, the forward 

electrical fields are gained and used to solve the direct problem. The difference between the 

calculated and measured electrical fields at the measured point is computed and assumed as 

error signals. The adjoint electrical fields are solved by propagating the error signals reversed 

in time [62].  

 

 

Figure 2.4: The FDTD Model [58] 
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2.4.1 Stability 

The electromagnetic wave propagating in free space should not propagate faster than 

the speed of light, 3 × 108 ms-1.  The cell size, ∆𝑥 and time step, ∆𝑡 should be chosen carefully 

to maintain the FDTD method running unconditionally stable and without the constraint of 

Courant stability condition shown in Equation (2.19) [61]. 

 ∆𝑡 ≤
∆𝑥

√𝑛 ∙ 𝑐

 (2.19) 

where 𝑛 is the dimension of the simulation and 𝑐 is the speed of light in free space. 

 

2.4.2 𝑻𝑴𝒁 Polarization 

Considering the electric field propagation is in 𝑇𝑀 polarization where the magnetic 

field is transverse to the z-direction. The Maxwell’s equations satisfied for 𝑇𝑀 polarization 

are as shown in Equation (2.20) to (2.22) [47]. 

 
 

𝜇
𝜕𝑯௫

ሬሬሬሬሬ⃗

𝜕𝑡
+

𝜕𝑬௭
ሬሬሬሬ⃗

𝜕𝑦
= 0 (2.20) 

𝜇
𝜕𝑯௬

ሬሬሬሬሬ⃗

𝜕𝑡
+

𝜕𝑬௭
ሬሬሬሬ⃗

𝜕𝑥
= 0 

(2.21) 

𝜀
𝜕𝑬௭

ሬሬሬሬ⃗

𝜕𝑡
−

𝜕𝑯௬
ሬሬሬሬሬ⃗

𝜕𝑥
+

𝜕𝑯௫
ሬሬሬሬሬ⃗

𝜕𝑦
+ 𝜎𝑬௭

ሬሬሬሬ⃗ = 0 (2.22) 

where 

𝑬 : Electric field (Volts/meter) 

𝑯 : Magnetic field (Amperes/meter) 
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𝜀 : Electrical permittivity (Farads/meter) 

𝜇 : Magnetic permeability (Henrys/meter) 

𝜎 : Electric conductivity (Siemens/meter) 

 
Consequently, the unknown dielectric properties can be estimated by minimizing the 

cost functional shown in Equation (2.23) [62]. 

 
 

𝐹(𝜀, 𝐸ሬ⃗ ௭) =
1

2
  න ቛ𝐸ሬ⃗ ௭

, − 𝐸′ሬሬሬ⃗
௭
,ቛ

ଶ்



ெ

ୀଵ

ே

ୀଵ

𝑑𝑡 (2.23) 

where 𝜀 is the dielectric properties of the scatter 𝐸ሬ⃗ ௭
, and 𝐸′ሬሬሬ⃗

௭
, represent the measured and 

the calculated field at m-th measurement position for the n-th incident wave. 

 

2.4.3 Boundary Condition 

The application FDTD method of solving electromagnetic wave interaction if 

simulated in open region where the spatial domain of the computation field is unbounded in 

one or more coordinate direction will generate an infinite number of data in a computer. 

Therefore the computational domain should be limited in size or in enclosed geometry.  

The boundary condition allows the simulation of electromagnetic fields interacting 

in an unbounded region on a computer with finite memory. The computational field should 

be adequate to enclose the structure of interest with a suitable boundary condition thus 

preventing any reflection where the mesh ended. There are three types of boundary 

conditions; reflective, periodic and absorbing [69].  

The reflective boundary condition is the simplest condition whereas the field, in 

particular, is set equal to zero. The ways to implement reflective boundary condition are to 
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collide with the same wave propagating in inverse direction or multiplying the field by a 

really small value. However, it can be only used in a test program [69]. 

The periodic boundary condition is generally used for periodic structure modeling in 

the direction of one of the axis. The conditions can be implemented by setting the field on 

one boundary equal to the field on opposite boundary. The condition is simpler when applied 

one-dimensional case compared two or three-dimensional cases. Reflective and Periodic 

boundary condition are always applied for one-dimensional cases. 

The most flexible boundary condition, the absorbing condition is applying a 

conductive layer on the boundaries of the computational domain which is more than one 

cell. An absorbing boundary condition (ABC) is shown in Figure 2.4.  A type of ABC, 

Perfectly Matched Layer (PML) was introduced in [69], is used for the computational 

domain to truncate simulation boundaries and preventing spurious reflection from the edge 

of the problem space.  

PML works by setting the impedance in a way to match perfectly in the problem 

space. By matching the impedance, the outgoing reflections from the grid boundaries are 

absorbed and reflections are prevented to enter the lossy region.  Through PML computation, 

it is reported in [70], a small amount of numerical reflection obtained at the environment 

boundary which can be rectified by tuning the magnitude of the layer’s parameter.  

  

2.4.4 FDTD Source 

FDTD utilized a source excitation to radiate energy from a point of its grid to another 

for the computational modeling. The source excitation for FDTD is in transient with 

consideration of the time signature and bandwidth which will dictate the frequency band of 
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the propagating electromagnetic wave. The examples of sources are the Gaussian pulse, 

Blackman-Harris window, point source dipoles, and Plane wave [71].  

Sources in FDTD can be classified into the soft and hard source. Soft source permit 

the updating of the electromagnetic field at the source location and penetrable at the source 

location. The hard source is enforcing a field like excitation function at a certain location of 

the simulation domain to vary with a predefined function of time. The waves cannot pass 

through the hard source and are reflected off it.  

The soft source is a better choice as a wave source in FDTD due to more accuracy in 

radiating energy from a punctual source to the FDTD grid and when transmitted at high 

frequencies [69].  An exact method of controlling the direction of wave propagation in the 

soft and hard source has been reported in [72].  

The Gaussian pulse is commonly used as a wave source in FDTD computation and 

has been utilized as in [73-74]. A graph of a Gaussian pulse in Figure 2.5 has shown a 

symmetrically bell-shaped character that quickly falls towards plus and minus infinity.  

Equation (2.24) shows the general equation for a Gaussian pulse, where A = 1.0 , 𝑡 is the 

time delay, 𝑇ௌ = (0.646 / 0.45)-9 = 1.4356 ns is the half width of the pulse [71]. 

 

 

𝑓(𝑡) = A𝑒
ି

(௧ି௧బ)మ

.ଶଽ்ೄ  (2.24) 
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Figure 2.5: The Gaussian pulse at center frequency of 2 GHz referring to Equation (2.24)    
[71] 

 

2.5 Ill-Posed Problem in Image Reconstruction  

There are a considerable amount of studies and application of inverse problems in 

science and engineering where mathematical methods are preferably used. Hadamard [75] 

defined a linear and well-posed problem should satisfy three requirements; existence, 

uniqueness, and stability.  

Existence in the sense of Hadamard’s definition implied that there exists a solution 

to the problem, uniqueness is where there is at most one solution to the problem, and stability 

when the solution depends continuously on the data.  

If the problem did not fulfill one or more of those requirements, the problem is said 

to be ill-posed [76], and the inverse problem is typically ill-posed.  In operator language, let 

𝐴: 𝑋 → 𝑌  be an operator from normed space 𝑋 into a normed space 𝑌. The equation 𝐴𝑥 = 𝑦 
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is said to be well posed if 𝐴 is bijective and the inverse operator 𝐴ିଵ: 𝑌 → 𝑋 is continuous. 

Otherwise the equation is called ill-posed.  

In the early vision, a satisfactory theoretical framework of regularization of in certain 

class has been discussed and developed for providing a natural way to the solution [77-80].  

As was stated in [78], the three equivalent conditions that constraints the solution of the 

inverse problem. The first condition, the quasi-solution and the second condition, the 

discrepancy principle are classified in a constrained optimization problem. The third 

condition is an unconstrained optimization problem. 

 
i. Find 𝑥 that minimizes ‖𝐴𝑥 − 𝑦‖ that satisfied ‖𝑃𝑥‖ < 𝑐ଵ whereas 𝑐ଵ  is a 

positive scalar constant. 

ii. Find 𝑥 that minimizes ‖𝑃𝑥‖ that satisfied ‖𝐴𝑥 − 𝑦‖ < 𝑐ଶ whereas 𝑐ଶ  is a 

positive scalar constant. 

iii. Find 𝑥 that minimizes  ‖𝐴𝑥 − 𝑦‖ଶ + 𝜆‖𝑃𝑥‖ଶ , whereas 𝜆 is a regularization 

parameter (𝜆 =
𝑐ଶ

𝑐ଵ
ൗ ), 

For the conditions, 𝑥 is the solution, 𝑦 is the observation, 𝐴 and 𝑃 are the linear 

operators, and ‖∙‖ is a kind of norm operator depending on a specific physical scenario.  

Thus, in general, the solution of the ill-posed problem through regularization method can be 

formulated as Equation (2.25) [78]. 

 
 
 

𝑎𝑟𝑔 min
௫

‖𝐴𝑥 − 𝑦‖ଶ +  𝜆‖𝑃𝑥‖ଶ (2.25) 

 

 

The regularization method depends on parameter  𝜆 ≥ 0, is the penalty term of 

Equation (2.25). For a large enough  𝜆, the regularized solution of the ill-posed problem is 

stable from noise or perturbations. As 𝜆 goes to zero, the solution becomes less regularized 
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and more to originated solution. Thus, the regularization parameter 𝜆 controls the tradeoff 

between solution stability and nearness of the regularized solution to the non-regularized 

solution [79]. The role of regularization parameter has been outlined in [80-81]. The 

expressions of image reconstruction problems will be described in Section 2.5.1 by referring 

to [82]. 

 

2.5.1 Image Reconstruction Problems 

For image reconstruction, it is crucial to recover the desired image, 𝑓(𝑥, 𝑦) from the 

related observed image 𝑔(𝑥, 𝑦), which is always inaccurate. The distortion model in linear 

integral equation is shown in Equation (2.26) [82]. 

 
 

𝑔(𝑥, 𝑦) = න න ℎ(𝑥, 𝑦; �́�, �́�)𝑓(�́�, �́�)𝑑�́�𝑑�́�
ஶ

ିஶ

ஶ

ିஶ

 (2.26) 

 
 

where ℎ(𝑥, 𝑦; �́�, �́�) is the kernel or response function of the distorting system. Assuming the 

observed image is observed as continuous model, the data are often discrete.  

Thus for 𝑁  observations, Equation (2.26) can be expressed as Equation (2.27), 

where ℎ(�́�, �́�) = ℎ(𝑥, 𝑦; �́�, �́�) denotes the kernel corresponding to the i-th observation 

[82].  

𝑔(𝑥 , 𝑦) = න න ℎ(�́�, �́�)𝑓(�́�, �́�)𝑑�́�𝑑𝑦  ́
ஶ

ିஶ

               1 ≤ 𝑖 ≤ 𝑁

ஶ

ିஶ

 (2.27) 

 
 

The assumed unknown image 𝑓(𝑥, 𝑦) expressed in term of discrete and finite set of 

parameters for 𝑁  observations, is shown in Equation (2.28) [82]. 
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𝑓(𝑥, 𝑦) =  𝑓∅(𝑥, 𝑦)

ே

ୀଵ

 (2.28) 

 

The ∅(𝑥, 𝑦) is the basis function to be set of unit height boxes corresponding to an 

array of square pixels. By substituting Equation (2.28) into Equation (2.27), the discrete 

relationship between the observations 𝑔 and the unknown image coefficient 𝑓 yields 

Equation (2.29) [82]. 

 

𝑔 =  𝐻𝑓

ே

ୀଵ

               1 ≤ 𝑖 ≤ 𝑁 (2.29) 

 

where  𝐻 is given by 

 

𝐻 = න න ℎ(�́�, �́�)∅(�́�, �́�)𝑑�́�𝑑𝑦  ́
ஶ

ିஶ

      1 ≤ 𝑖 ≤ 𝑁,   1 ≤ 𝑗 ≤ 𝑁

ஶ

ିஶ

 (2.30) 

 

 
Hence, accumulating all the observations 𝑔 and the unknown image coefficient 𝑓 

into a single matrix equation can be written as Equation (2.31) [82]. 

 

𝑔 = 𝐻𝑓 (2.31) 

 

 

where the length of  𝑁 vector 𝑔, the length of  𝑁 vector 𝑓 and 𝑁 × 𝑁 matrix 𝐻 follow 

naturally from Equation (2.28) to Equation (2.30). 

However, measured data is always degraded by inevitable noise, 𝑞 therefore shown 

in Equation (2.32) [82]. 

 

𝑔 = 𝐻𝑓 + 𝑞 (2.32) 

 

 

 



28 
 

2.6 Regularization Method in Image Reconstruction 

Regularization theory has often been considered for the solution of an inverse 

problem in dealing with ill-posedness as it provides stability and increment in the solution’s 

accuracy. The inclusion of prior knowledge to stabilize solution is the purpose of 

regularization method. The solution is the constraint in a kind of way as to avoid the 

oscillatory nature of noise dominated solution. This allow better reasonable estimation of the 

solution. The expressions of the truncated Singular Value Decomposition (SVD), Tikhonov 

and Total Variation regularization will be described in Section 2.6.1 by referring to [82]. 

 

2.6.1 Truncated Singular Value Decomposition Regularization  

The singular value decomposition of a  𝑁 × 𝑁 matrix 𝐻 is usually referred to as 

the SVD is given as following equation [82]. 

𝐻 = 𝑈𝑆𝑉் =  𝜎𝑢𝑣
்



ୀଵ

 (2.33) 

 

where  𝑈 is an 𝑁 × 𝑁 matrix, 𝑉 is an 𝑁 × 𝑁 matrix, and 𝑆 is an 𝑁 × 𝑁 diagonal matrix,  

with the value 𝜎ଵ, 𝜎ଶ, … , 𝜎 arrange on its main diagonal and zeros where 𝑝 = min (𝑁, 𝑁). 

The orthogonal columns 𝑢 of 𝑈 are called left singular vectors, the 𝜎 are called the singular 

values, and orthogonal columns 𝑣 of 𝑉 are called the right singular vectors. The general 

solution of SVD can be expressed as follows [82]: 

 

𝑓መା = 
𝑢

்𝑔

𝜎
𝑣



ୀଵ

 (2.34) 
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The calculation of the entire SVD is can be computationally expensive for a solution 

to a larger problem. A way to solve this issue is to remove the irrelevant values from solution 

by simply truncating the small singular values to zero. This numeric filtering method is 

called truncated SVD or TSVD. The solution of regularized TSVD can be expressed in 

Equation (2.35) [82]. 

 

𝑓መ௧௦௩ௗ(𝜆) =  𝑤,ఒ

𝑢
்𝑔

𝜎
𝑣



ୀଵ

 (2.35) 

 

where 𝑤,ఒ is a set of weightage parameter given by, 

 

𝑤,ఒ = ൜
1     𝑖 ≤ 𝑘(𝜆)

0     𝑖 > 𝑘(𝜆)
 (2.36) 

 

where the 𝑘(𝜆) = [𝜆ିଵ], thus [𝑥] denote 𝑥 rounded to the next smaller integer. The solution 

of TSVD also can be expressed as follows [82]. 

 

𝑓መ௧௦௩ௗ(𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑓‖ଶ   subject to   𝑚𝑖𝑛‖𝑔 − 𝐻𝑓‖ଶ (2.37) 

 
 

Much work on improving the potential of TSVD has been carried out [83-85] with 

the aim to increase accuracy from the standard TSVD method. The application of TSVD as 

a regularization method in solving an ill-posed problem is been described in detail in [83]. 

According to in [84], TSVD performance of the solution approximation is depending 

on satisfaction of a discrete Picard condition.  TSVD analysis has been used in the study of 

microwave inverse scattering for breast imaging. In the study [86], TSVD was applied to 

systematically evaluate the quality of the information contained in simulated scattering data 

with respect to system design and problem formulation.  
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2.6.2 Tikhonov Regularization    

One of the well-known regularization methods, Tikhonov regularization, also known 

as ridge regression in statistics and is ℓଶ norm regularization method was developed by 

Andrey Tikhonov [87]. The estimation of Tikhonov regularization solution can be achieved 

by minimization problem of Equation (2.38) [82]. 

 

𝑓መ் (𝛼) = 𝑎𝑔 min


‖𝑔 − 𝐻𝑓‖ଶ
ଶ + 𝛼ଶ‖𝐿𝑓‖ଶ

ଶ (2.38) 

 

 
The first term of 𝑓መ் (𝛼) is the same ℓଶ norm for least-squares method which 

represent the fidelity to data while the second term is representing the regularization which 

contained the prior knowledge of expected solution. The Tikhonov regularization parameter 

𝛼 controls the weight given to the minimization of side constraint.  

The regularization parameter 𝛼 can be determined by employing a standard 

parameter selection method such as the Discrepancy Principle, Generalized Cross-

Validation (GSV), and the L-Curve criterion. The role of such parameter selections has been 

described and compared in [88].  

The Discrepancy Principle emphasized on adding a posteriori knowledge about the 

perturbation or noise as in Equation (2.32) in order to choose the practical regularization 

parameter. On the other hand, the GSV does not requiring the knowledge of the noise 

properties but is based on minimizing the set of prediction errors. Another popular parameter 

selection method in Tikhonov regularization is the L-Curve criterion.  

The L-Curve criterion in Figure 2.6 is based on a plot of the norm of the regularized 

solution versus the residual norm for a range of values of regularization parameter in a log 

scale. The optimal regularization parameter is at the corner between the horizontal and 

vertical line of the plot which defines the balance between under and over-smoothing of the 
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solution. A detail investigation of the application of the L-Curve criterion for Tikhonov 

regularization parameter has been described and demonstrated in [88]. A new criterion of 

choosing the practical regularization parameter has been introduced in [89], known as the 

U-Curve which is comparable to the L-Curve criterion. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6: A standard L-Curve for Tikhonov Regularization [82] 
 

 

Several studies have revealed that Tikhonov regularization is robust and provided a 

more efficient solution of an ill-posed problem. Tikhonov regularization has been applied to 

be an analysis tool to dynamic elastoplasticity problem [90], solving the image restoration 

problem with good results and faster convergence [91], and as a low-pass filter to refine two-

dimensional surface defect image in inversion process in the frequency domain [92].  

 

log ||𝑔 − 𝐻𝑓(𝛼)||ଶ 

𝛼∗ 

𝛼 too small  

𝛼 too large  

log ||𝐿𝑓(𝛼)||ଶ 
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2.6.3 Total Variation Regularization    

Total Variation (TV) minimizing function regularization was first introduced by       

L. Rudin, S.J. Osher, and E. Fatemi in [28] to use in image processing, particularly for 

regularizing the restoration of noisy images. The proposed method is also known as the ROF 

model. Other regularization methods like TSVD and Tikhonov assume the solution to be 

smoothed and continuous however the TV regularization is different. The ROF model has 

the ability for denoising image while recovers sharp discontinuities or edges of the image. 

The principle idea in TV regularization is to minimize the total 𝑇𝑉(𝑓) in the image, where 

 

𝑇𝑉(𝑓) = |[𝐷𝑓]|

ே

ୀଵ

 (2.39) 

 

where 𝐷 is a discrete approximation to gradient operator. According to the ROF model in 

[28], the constrained minimization that need to be solved is shown in Equation (2.40). 

 

𝑓መ் (𝜆) = 𝑎𝑟𝑔 min


‖𝑔 − 𝐻𝑓‖ଶ
ଶ + 𝜆ଶ |[𝐷𝑓]|

ே

ୀଵ

 (2.40) 

 

 

The parameter 𝜆 is the nonnegative regularization parameter (𝜆 ≥ 0) which 

represents the tradeoff between the noise sensitivity and closeness to the observed image. 

The formulation of TV regularization shown in Equation (2.40) seems similar to Tikhonov 

regularization as shown in Equation (2.38).  

However in TV regularization, it penalized only the total amount of gradient in the 

image and not its distribution, thus the regularization should containing localized steep 

gradient information. Consequently, the important attributes of an image, which is the edges 

of an image, can be preserved. 
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The research to date has tended to focus on utilizing TV regularization method in 

image processing. TV regularization method has been preferred to be incorporated into 

image reconstruction due to its potential to suppress noise while preserving edges in the 

image. It has been reported in [93], a fast computational compressive radar imaging based 

on TV regularization has improved the quality of reconstructed images.  A comparative 

study between the performance of linear and nonlinear microwave imaging with adaptive of 

TV regularization method has been carried out [94]. Throughout the study, TV regularization 

method to minimize the cost function for the nonlinear case had outperformed the linear 

case.  TV regularization has been very useful image restoration and is very efficient for 

denoising, deblurring, inpainting, and segmentation shown in Figure 2.7.   

 
 

  
(a) Denoising (b) Deblurring 

  
(c) Inpainting (d) Segmentation 

 

Figure 2.7: TV regularization method tasks in image processing [95] 
 

Image denoising is one of the fundamental problem in digital image restoration. 

Image denoising refers to the noise removal or recovery of a digital image that has been 

contaminate with noise such as additive white Gaussian noise (AWGN), speckle noise, 



34 
 

Poisson noise and impulse noise.  The presence of noise during formation or transmission 

process is unavoidable. Image denoising is crucial to preserve useful information of the 

digital image and enhanced the image’s quality [96, 97]. 

Image deblurring is the problem to recover a clear digital image that has degraded 

with blurring artifact and noise due to instrument and/or atmospheric factor. The blur 

processes described in continuous coordinate because the blurring takes place in continuous 

space. Therefore, blur always observed as the convolution of point spread function (PSF) 

which determined the quality of the deblurred image, and formulated as an inverse problem. 

Deblurring needed to deconvolve PSF of the blurred image with a hypothetical that the input 

image is sharp [97]. 

Image inpainting in image restoration is reconstructing the missing region of a digital 

image, which has corrupted, or deteriorate with plausible content so that the image will be 

more close resemblance with the original image. In inpainting task, an algorithm produced 

to predict the values of the missing pixel by the knowledge of pixels adjacent to the missing 

region [98, 99].  

Image segmentation is the process of segregating a digital image into multiple 

segments or regions to enable the computational analysis of the image. Typical task in image 

segmentation includes locating objects, reconstruction its boundaries such as lines, edges 

and curves, and separating foreground from background of a digital image [100].  
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2.7 Summary 

Chapter 2 describes the research of related literature and studies such as microwave 

imaging system, Maxwell’s equation, the FBTS, the FDTD, ill-posed problem focusing on 

the image reconstruction problems, and regularization method in image reconstruction such 

as the TSVD, Tikhonov regularization and Total Variation regularization method. In this 

research, the Total Variation regularization method is functioning as image denoising. The 

summary of related comparative studies to this research as shown in Table 2.1. The gist of 

the studies presented in the focus or objectives, the method proposed by the researchers, the 

results gained from the proposed method and the conclusion.  
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Table 2.1: Summary of related comparative studies 

Authors / Years Focus / Objectives Methods Results Conclusion 
Liu, G., & Zhang, Y. 
(2010) [26] 

Reconstruction of a three-
dimensional breast cancer 
imaging based on FBTS 
and a regularization 
method. 

Forward-Backward Time-Stepping 
with the Tikhonov’s regularization 
method to improve the quantitative 
reconstruction of a simple three-
dimensional nondispersive breast 
model.  

The presented algorithm is convergent.  

 The reconstruction for electrical 
properties of skin tissue has shown an 
improvement.  

 The location and shape of the tumors 
has successfully reconstructed. 

 However, the estimation of 𝜀  values 
is poorer than in the 𝜎 case.  
 

The presented method is 
feasible for early-stage 
breast cancer detection. 
The accuracy of the 
proposed method could be 
improve by adjusting the 
regularization parameter. 

Wei, N. S., et al. 
(2015) [55] 

Reconstruction of a two-
dimensional extremely 
dense breast composition 
in utilizing inverse 
scattering technique 
integrated with frequency-
hopping method. 

Forward-Backward Time-Stepping 
with frequency hopping method.  

 Estimating the large region of 
breast composition at lower 
central frequency while improve 
the resolution at higher central 
frequency. 
 

 The composition of the extremely 
dense breast significantly improved 
compared to reconstruction using a 
single central frequency.  

The reconstruction of the 
extremely dense breast 
significantly improved.  

Yong, G., et al. 
(2015) [101] 

Preliminary study for 
reconstruction of a two-
dimensional embedded 
object based on FBTS and 
an edge-preserving 
regularization method. 

Forward-Backward Time-Stepping 
with an edge-preserving 
regularization method to enhance the 
quantitative reconstruction of 
electrical properties in terms of 
convergence and stability of the 
optimization technique. 

 By incorporating an edge-preserving 
regularization method, the estimation 
of the object location, size and shape 
has been improve.  

 The rough surface of the reconstructed 
object has smoothed while preserving 
the discontinuity.  

 The efficacy of the proposed method 
has been verify with Mean Square 
Error (MSE). 

 

The integration on an edge-
preserving method with the 
FBTS has shown a 
potentially improved 
reconstruction of the 
electrical properties. 
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Table 2.1 continued 

Authors / Years Focus / Objectives Methods Results Conclusion 
Yong, G., et al. 
(2017) [54] 

Profile reconstruction is 
utilizing FBTS with the 
integration of automated 
edge-preserving 
regularization method for 
object detection. 

Forward-Backward Time-Stepping 
with an edge-preserving 
regularization method extended with 
the dynamic values of regularization 
parameters in each iteration process. 
The efficacy of the proposed method 
was verified by the calculation of 
Mean Square Error (MSE). 

 The paper had shown a comparison of 
the reconstruction profile of dielectric 
properties by the proposed method 
with and without the regularization 
method, and with Tikhonov 
regularization method.  

 The proposed method yields the 
reconstruction with the lowest 
calculation of MSE in the case of 
relative permittivity.  

 However, in the case of conductivity 
reconstruction, FBTS without 
regularization outperform the 
proposed method.  
 

The proposed method 
successfully increased the 
reconstruction quality and 
accuracy. The weighting 
parameters were automated 
and dynamically produced 
for each iteration process.   

Elizabeth, M. A et al. 
(2017) [102] 

Incorporating Chebyshev 
low pass filter with FBTS 
to filter the noisy 
environment as 
improvement of two-
dimensional breast 
reconstruction quality. 

The proposed method was presented 
via numerical simulations.  
Researchers add -3dB Gaussian noise 
in the measured field dataset. 
Chebyshev filter was applied at 
different order, k (k = 2, 3, 4 and 5) 
to determine and reconstruct breast 
image at the lowest loss. 

Noises made in the measurement dataset 
are always impulsive and are in high 
frequency. 

 Chebyshev second order (k=2) is gives 
the best performance of the 
reconstruction.  

 Introducing a low pass filter at range 
of 1.5GHz to 2.65GHz eliminates any 
impulsive data in reconstruction 
region.  

 However, the reconstruction also 
suffer from loss some of it information 
due to the filter application. 
  

The proposed filter has 
been sufficiently removing 
noise for the simple 
homogenous breast model. 
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3. CHAPTER 3 

METHODOLOGY 

 

3.1 Overview 

In this research, the Total Variation (TV) regularization scheme will be incorporated 

in the FBTS inverse scattering algorithm to improve the reconstructed image by giving 

information such as its shapes and location, smoothing the uninterested structures, and also 

reconstructing sharp edges in the enclosed region that should give a better estimation of the 

image’s boundaries. The algorithm was implemented in the C++ language while the 

reconstructed image is presented using MATLAB. The mathematical background of the TV 

method, and the parameters involved in the research will be discussed in this chapter.   

 

3.2 Forward-Backward Time-Stepping Method 

The Forward-Backward Time-Stepping (FBTS) method is applied to reconstruct 

images providing the electrical parameter profiles of the objects together with its size, shape, 

and position of the scatters or objects. This method achieved by solving the inverse scattering 

problem in the time domain, therefore allowing a broad spectrum of frequencies to be 

utilized in a single optimization. In return, a great amount of information of the electric 

parameter profiles of the objects obtained with FBTS method.   

In FBTS, the nonlinear inverse scattering data are formulated in the time domain by 

applying Finite-Difference Time-Domain (FDTD) scheme. The FDTD scheme is used to 

calculate the scattering signals in forward time-stepping and adjoint field in backward time-

stepping. The grid size for the FDTD configured at 1 mm x 1 mm. Convolution Perfectly 
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Matched Layer (CPML) applied in the FDTD solution space to outline simulation 

boundaries and preventing reflection of the signal in the environment. The particular of 

CPML applied considered as in [30]. Figure 3.1 shows a typical configuration of an active 

microwave tomography set up for FBTS inverse scattering problem.  

 

Figure 3.1: Configuration of the problem in two-dimensional [102] 

 

The assumption is that an unknown scatters or object is embedded in a free space 

region of interest (ROI), and illuminated successively by M short-pulsed waves generated 

by current sources 𝒔(𝒓, 𝑡) located at   𝒓 = 𝒓
௧ (𝑚 = 1,2, … … , 𝑀). The antennas act as 

transmitter and receiver sequentially whereas only a transmitter transmits a signal at a time 

as shown in Figure 3.2.  The other remaining antennas will act as a receiver collecting 

scattering signals as shown in Figure 3.3.  
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Figure 3.2: Forward Problem for the Estimated Object with Forward Time-Stepping 
 

 

Figure 3.3: Adjoint Field by Residual Sources with Backward Time-Stepping 
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The reconstruction of the electrical parameter profiles obtained from the knowledge 

of the transient field data measured at several observation points or antennas, 𝒓 = 𝒓
௧ (𝑛 =

1,2, … … , 𝑁) for each illumination.  For initial condition, the currents are assumed to be 

generated at time 𝑡 = 0 and there is no electromagnetic field before time,  𝑡 = 0. The total 

electromagnetic fields 𝐯(𝐫, 𝑡)  for the mth current sources  𝒔(𝐫, 𝑡)  satisfy the following 

Maxwell’s equation while 𝐿 is given by, 

𝐿𝐯 = 𝐬 (3.1) 

Under zero initial condition for 

𝐯(𝐫, 0) = 0 (3.2) 

The optimization problem formulated in the form of cost functional to be minimized and 

stated as Equation (3.3). 

𝑄(𝑝) = න   𝐾(𝑡)

ே

ୀଵ

ெ

ୀଵ

்



|𝐯(𝐩; 𝐫
 , 𝑡) − ṽ(𝐫

 , 𝑡)|ଶ 𝑑(𝑐𝑡) (3.3) 

 

where p is a medium parameter vector function, 𝐾(𝑡) is a nonnegative weighting function 

which takes a value of zero at time 𝑡 = 𝑇 (T is the time duration of the measurement), and 

 𝐯(𝐩; 𝐫
 , 𝑡) and  ṽ(𝐫

, 𝑡) are the calculated electromagnetic fields for an estimated 

medium parameter vector p and the measured electromagnetic fields due to the mth source 

excitation. M is the number of transmitters and N is the number of receivers. 

Each optimization requires a complete dataset of all antennas transmitting and 

receiving scattering signals. A sinusoidal modulated Gaussian pulse is used as a source 

signal as shown in Figure 3.4.  The source signal centered at 2 GHz frequency and its 

bandwidth is 1.3 GHz.  The number of search steps, nsteps is 2380. The frequency range 
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chosen to give an optimal performance of the reconstructed image, which balanced for both 

image resolution, and convergence of the proposed algorithm.  

 
Figure 3.4: Sinusoidal Modulated Gaussian Pulse for Center Frequency of 2 GHz 
 

 

Figure 3.5 shows the received signal at an antenna when there is no object embedded 

in the ROI. The amplitude of the receiving signal is lower than the illuminating source signal 

showing attenuation happens as the signal propagate through time as measurement taken. 

 

 
Figure 3.5: The Receiving Signal without Object in ROI 
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The substance of the FBTS method is the formulation of cost functional that 

compares error between measured and simulated microwave scattering measurement. The 

measurement of measured and simulated microwave scatters are summed for each 

transmitter-receiver combination and integrated over a time period from 𝑡 = 0 to  𝑡 = 𝑇.   

By taking the Frechet derivative of Equation (3.3), the gradient of the functional of 

𝜀 and 𝜎 is given by Equation (3.4).  

𝑔ఌೝ
(𝐫) = න   𝑤

ଶ

ୀଵ

ெ

ୀଵ

்



(𝐩; 𝐫, 𝑡)
𝑑

𝑑𝑡
𝑣(𝐩; 𝐫, 𝑡)𝑑𝑡 

(3.4) 

𝑔ఙ(𝐫) = න   𝑤

ଶ

ୀଵ

ெ

ୀଵ

்



(𝐩; 𝐫, 𝑡)
𝑑

𝑑𝑡
𝑣(𝐩; 𝐫, 𝑡)𝑑𝑡 

where 𝑤(𝐩; 𝐫, 𝑡)  is the calculated adjoint field and 𝑣(𝐩; 𝐫, 𝑡) is the calculated 

electromagnetic field in the reconstruction region, r.  The adjoint field 𝑤(𝐩; 𝐫, 𝑡) is obtained 

from the received residual scattered signals [𝐯(𝐩; 𝐫
 , 𝑡) − ṽ(𝐫

 , 𝑡)] being reversed in 

time.  

This is executed through FDTD method with backward stepping at 𝑡 = 𝑇.  The term  

𝑖 = 1 till 𝑖 = 2 represents the calculated summation of the gradient of  𝑤 and 𝑣  in x and 

y directions. The gradient terms in Equation (3.4) allow the conjugate gradient method to be 

applied to minimize the error functional in Equation (3.3) in which providing the estimation 

of the electrical parameter profile, p.   

The flow chart of Forward-Backward Time-Stepping given in Figure 3.6. In 

predefined setting where information can be controlled and set up for the algorithm 

execution such as for antenna setting, initial guess for optimization technique, frequency 

scaling, synthetic data setting, and source signal setting will be discussed in Section 3.3.1.  
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Figure 3.6: Forward-Backward Time-Stepping Flow Chart 

 

The test is carried out for 100 iterations, and it is sufficiently yield optimum 

performance of the algorithm, ensured that only a minimal decrement in the error functional 

observed for the following iterations. The simple object is a rectangle shaped object 

embedded inside the ROI with the length of 40 mm and width of 16 mm surrounded by 
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number of antennas as shown in Figure 3.1.  While the ROI is a circular shape with 80 mm 

of diameter for all cases. Increasing the ROI size will increase the number of computed 

pixels thus the computational time. The object is assumed to be unknown shape and located 

in center of the ROI.  

The relative permittivity of 21.45 and the conductivity of 0.45 S/m is determined for 

the electrical properties of the object. As for the ROI, the relative permittivity was set to be 

9.98 and conductivity is 0.18 S/m. Due to nonlinearity of the inverse problem, the 

optimization technique, conjugate gradient method does not always find its global minimum 

and its result is dependent on a proper initial guess [10].  

A proper initial guess will avoid optimization to be trap in local minimum. The initial 

guess chosen for relative permittivity is 13.7 and the conductivity is 0.20 S/m for all cases. 

The conjugate gradient method applied to the minimization of the cost functional as in 

Equation (3.3). For each step of iteration, forward scattering problem and adjoint fields are 

solved numerically utilizing finite-difference time-domain method. 

 

3.3 FBTS-TV Regularization Method 

The Total Variation (TV) regularization method incorporated in the FBTS inverse 

scattering algorithm to improve the reconstructed image by giving information such as its 

shapes and location, and reconstructing sharp edges in the enclosed region that should give 

a better estimation of the image’s boundaries.  

The cost functional of FBTS-TV regularization method to be minimize stated as in 

Equation (3.5), [18]. 
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𝐹(𝐩) = 𝑄(𝐩) + 𝑄்(𝐩)  

           = ∫ ∑ ∑ 𝐾(𝑡)|𝐯(𝐩; 𝐫
 , 𝑡) − ṽ(𝐫

, 𝑡)|ଶ𝑑𝑡ே
ୀଵ

ெ
ୀଵ

்


  

                 +𝜆ఌೝ
∫ ට|∇𝜀(𝐫)|ଶ + 𝛼ఌೝ

𝑑𝐫 +
ஐ

𝜆ఙ ∫ ඥ|∇𝜎(𝐫)|ଶ + 𝛼ఙ𝑑𝐫
ஐ

  

(3.5) 

where 𝑄்(𝐩)  is total variation regularization terms, 𝜆𝜀𝑟
 , 𝜆𝜎  regularization parameters, 𝛼𝜀𝑟

  

and 𝛼𝜎  small parameters,  an estimation region surrounding unknown objects and the 

medium parameter of vector function is given by [18],  

𝐩(𝐫) = (𝜀(𝐫), 𝜎(𝐫)) (3.6) 

The gradient of the second term 𝑄்(𝐩)  is derived as followed [18], [101]. 

𝑄்(𝐩) = 𝜆ఌೝ
𝑄

𝑇𝑉𝜀𝑟
(𝜀𝑟) + 𝜆ఙ𝑄

𝑇𝑉𝜎
(𝜎) 

𝑄்(𝜀) = න ට|∇𝜀(𝐫)|ଶ + 𝛼ఌೝ
 𝑑𝐫

ஐ

 

𝑄்(σ) = න ඥ|∇𝜎(𝐫)|ଶ + 𝛼ఙ  𝑑𝐫

ஐ

 

(3.7) 

The Frechet differential of 𝑄்ഄೝ
(𝐩)  is given by [18], 

𝑄ᇱ
்ഄೝ

(𝜀)ℎఌೝ
= − න ℎఌೝ
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⎝

⎛
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The Frechet differential of 𝑄்
(𝐩)  is given by [18], 
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(3.9) 

 

where ℎ = (ℎఌೝ
(𝑥, 𝑦), ℎఙ(𝑥, 𝑦))  is the differential of the parameter vector  𝐩 .  The gradient 

of  𝑄்(𝜀) with respect to 𝜀 and 𝑄்(σ) with respect to 𝜎 given by Equation (3.10) and 

Equation (3.11) which also gives the information about the discontinuities in the 

reconstructed image. Therefore, the gradient magnitude of the  𝑄்(𝜀) with respect to 𝜀  

is given by [26], 

𝑔்ഄೝ
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The gradient of the  𝑄்(σ) with respect to  𝜎  is given by [26], 

𝑔்
(𝑥, 𝑦) = ∇. ቆ

∇𝜎(𝐫)
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ଶ + 𝑢ఙ௬
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(3.11) 

 

3.3.1 FBTS Simulation Primary Setup 

The image reconstruction of a two-dimensional numerical model as explained in 

Section 3.2 considered to demonstrate the efficacy of FBTS technique. The resolution              

1 mm x 1 mm is determined for the grid size of two-dimensional Finite-Difference Time-

Domain (FDTD).  Gaussian pulse with center frequency of 2 GHz, and 1.3 GHz of 

bandwidth applied as the signal source. The measured scattering data accumulated through 

numerical simulation and considering for 𝑇𝑀 polarization, where the magnetic field is 

transverse to the z-direction. Absorbing boundary condition, CPML has been use to 

terminate the grid as shown in Figure 3.7.   

In Figure 3.7, an example of eight arrays of antennas is surrounding the Region of 

Interest (ROI) where each of the antennas will act as a transmitter and receivers sequentially.  

The behavior of the antenna has been explain in Section 3.2.  In FDTD-CPML set up, the 

background is using free space which the relative permittivity, 𝜀, and conductivity, 𝜎 are 

fixed to 𝜀 = 1.0 and 𝜎 = 0.0, respectively. 
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Figure 3.7: Two-Dimensional FDTD-CPML Set up in Object Reconstruction 

 

The distance between the opposite antennas is 170 mm.  The region of interest (ROI) 

is a circular shape with 40 mm of diameter.  For the electrical properties of the object, the 

relative permittivity, 𝜀 is 21.45 and the conductivity, 𝜎 is 0.45 S/m. As for the ROI, the 

relative permittivity, 𝜀 was set to be 9.98 and conductivity, 𝜎  is 0.18 S/m. The initial guess 

chosen for relative permittivity, 𝜀 is 13.7 and the conductivity, 𝜎 is 0.20 S/m. The electrical 

properties values of the ROI, embedded objects, and initial guess remained the same for all 

simulations. The value of the regularization parameters, 𝜆 in this research was determined 

by means of numerical experiments as stated in Section 3.2.  The individual values of 𝜆 are 

𝜆ఌೝ
 = 0.05 for relative permittivity regularization parameter and  𝜆ఙ = 0.006 for conductivity 

regularization parameter. The value of small parameters is  𝛼ఌೝ
= 𝛼ఙ = 1.0 × 10-24. These 

parameters set up are summarized as in Table 3.1 and be applied for all simulations. 
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Table 3.1: Simulation set up for object detection in free space 

Object Initial Guess ROI Region Background 

𝜀  𝜎 
(S/m) 

𝜀 
 

𝜎 
(S/m) 

𝜀 
 

𝜎 
(S/m) 

𝜀 
 

𝜎 
(S/m) 

21.45 0.45 13.7 0.20 9.98 0.18 1.00 0.00 

𝜆ఌೝ
   𝜆ఙ 𝛼ఌೝ

 𝛼ఙ 

0.05 0.0006 1.0 × 10ିଶସ 1.0 × 10ିଶସ 

 

The accuracy of the algorithm quantified by measuring the Mean Square Error 

(MSE). The MSE calculated as stated in Equation (3.12).  𝑈(𝑥, 𝑦) is the actual profile, 

𝑈ሖ (𝑥, 𝑦) is the reconstructed profile, and 𝑀 × 𝑁 is the dimension of the image. 

𝑀𝑆𝐸 =
1

𝑀𝑁
 ൣ𝑈(𝑥, 𝑦) − 𝑈ሖ (𝑥, 𝑦)൧

ଶ
ே

௬ୀଵ

ெ

௫ୀଵ

 
(3.12) 

 

3.3.2 Selection of Optimal Lambda Parameter and Small Parameter in TV 

Regularization Method 

Determining an optimal value of regularization parameter is essential as it is an 

important criterion and should be determine carefully for a good solution.  The regularization 

parameters, 𝜆𝜀𝑟
 and 𝜆𝜎  in Equation (3.5) are the smoothing agent for the TV gradient, if it is 

too large for the solution, the reconstructed image will be over-smoothed. Applying a small-

scale value of the parameters will give no effect of regularization for the reconstruction 

image.  In this research, the value of 𝜆𝜀𝑟
 and 𝜆𝜎  were considered by means of numerical 

experiments with references as in [28-30].   
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The ratio of the actual image over the reconstruction image are calculated in term of 

Improvement in Signal-to-Noise Ratio (ISNR) metric.  A larger ISNR value indicates a 

greater quality of the reconstructed image, as it also yields a low Mean Square Error (MSE).  

The reconstructions executed for 100 iterations involving varying lambda values while other 

measurement set up remains the same.   

The data obtained plotted into ISNR versus  𝜆.  The value of were 𝜆𝜀𝑟
 and 𝜆𝜎  were 

determined by taking the highest peak value of the ISNR versus 𝜆 plot.  Figure 3.9 and   

Figure 3.10 illustrate the plotted within the scale limit in order to ease finding the peak value, 

the optimal 𝜆𝜀𝑟
 and  𝜆ఙ.  The regularization parameters in this research are 𝜆ఌೝ

= 0.05 and   

 𝜆ఙ = 0.006. These parameters values, 𝜆𝜀𝑟
 and 𝜆𝜎  were assumed applicable only for noise 

less environment.  

 

Figure 3.8: Selection of the Optimal Value of 𝜆ఌೝ
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Figure 3.9: Selection of the optimal value of 𝜆ఙ 

Other parameters that need to take into consideration is the small parameters, 𝛼ఌೝ
 

and  𝛼ఙ.  As the TV gradient is not differentiable at zero, the small parameters 𝛼ఌೝ
 and 𝛼ఙ 

with positive constant value are added in Equation (3.5).  These parameters function are to 

avoid division by zero.  The small parameters value should be small enough and not affect 

the TV gradient.  In this research, the value of the small parameters is 1 × 10-24.  

 

3.3.3 FBTS-TV Regularization Flow Chart 

The process flow of FBTS with TV regularization method represented as in          

Figure 3.11.  Electrical properties obtained from FBTS method will be determined as initial 

condition for TV method. Throughout TV method calculation, new values of electrical 

parameters profiles are produced in which will be utilized in image reconstruction of 𝜀 and  
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𝜎 will improve the correction to the estimation in optimization technique by giving a new 

values of gradient.  

 

Figure 3.10: FBTS-TV Regularization Method Flow Chart 
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The gradient of conjugate gradient method, which has been utilize for FBTS, 

considered incorporating of TV method as in Equation (3.13).  The weightage parameter 𝛽 

added to balance the TV gradient term [26].  

 

𝑔ఌೝ
= න   𝑤

ଶ

ୀଵ

ெ

ୀଵ

்



(𝐩; 𝐫, 𝑡)
𝑑

𝑑𝑡
𝑣(𝐩; 𝐫, 𝑡)𝑑𝑡 + 𝛽𝑔்ഄೝ

 

(3-13) 

𝑔ఙ = න   𝑤

ଶ

ୀଵ

ெ

ୀଵ

்



(𝐩; 𝐫, 𝑡)
𝑑

𝑑𝑡
𝑣(𝐩; 𝐫, 𝑡)𝑑𝑡 + 𝛽𝑔்

 

 

3.4 Summary 

Chapter 3 discusses the methods to be carried out in the research, which include 

FBTS method, and FBTS-TV regularization method. FBTS-TV method in Section 3.3 

subdivided into the simulation primary setup, selection of optimal regularization parameters 

and small parameters, and flow chart of FBTS-TV method.  
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4. CHAPTER 4 

RESULTS, ANALYSIS AND DISCUSSION 

 

4.1 Overview 

In this research, the Total Variation (TV) regularization method will be incorporate 

with Forward-Backward Time-Stepping (FBTS) inverse scattering technique to improve the 

reconstructed image by giving information such as its shape and location, and reconstructing 

sharp edges in the enclosed region that should give a better estimation of the image’s 

boundaries. Numerical simulations carried out to investigate the effectiveness and any 

improvement of the reconstructed image of FBTS-TV regularization method. The image 

reconstruction considered of a two-dimensional numerical model. The analysis and 

discussion done based on the results obtained from the simulations.  

 

4.2 Reconstruction of a Simple Object in Free Space by FBTS and FBTS-TV 

Regularization Method 

Reconstruction of a simple object involving FBTS and FBTS-TV regularization 

simulation setup have been carried out to investigate the effectiveness and any improvement 

of the reconstructed image as regularization method applied to the FBTS system.  The 

primary setup as explained in Section 3.3.1 is applied and presented.  A simple object added 

into the ROI.  The object is a rectangle shaped object with the length of 40 mm and width of 

16 mm.  The object placed at the center of the ROI.  The ROI is a circular shape with 80 mm 
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of diameter.  Figure 4.1 shows the actual profile of relative permittivity and conductivity of 

the embedded object through the accumulation of synthetic data. 

  
 (a)   (b)  

Figure 4.1: Actual profile of the embedded object (a) relative permittivity (b) conductivity 

 

4.2.1 Reconstruction of a Simple Object in Free Space with FBTS and FBTS-TV 

Regularization Method after 100th Iteration 

The tests were been carry out in free space with 100 iterations and using 16 antennas.   

Figure 4.2 shows the reconstructed image of relative permittivity and conductivity of the 

embedded object by FBTS without applying regularization method. The results show that 

with FBTS simulation, both of the relative permittivity and conductivity been successfully 

reconstructed.  However, the reconstructed ROI and embedded object have some vibrations, 

uneven surfaces, and smoothed edges. The uneven surfaces of the object is production of 

high total variations due to ill-posed in nature of solving inverse scattering problem. TV 

regularization method applied to improve FBTS image reconstruction.  Figure 4.3 shows the 

reconstructed image of relative permittivity and conductivity of the embedded object by 

FBTS incorporating TV regularization method. The embedded object is reconstructed more 

firm and fewer vibrations which make the object detection more accurate. The uneven 
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surfaces appeared more flatten and smoothed as TV regularization method is implemented.  

TV regularization method regularize the high variations, smoothed out the surface and 

handle proper edges in the reconstructed object. 

  
(a)  (b)  

Figure 4.2: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS 
method) 

  
(a) (b) 

Figure 4.3: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS-TV 
regularization method) 

 

Figure 4.4 shows the cross-sectional view of comparing image reconstructed by 

FBTS with and without TV regularization method along the x-axis at y = 110 mm. From 

cross-sectional view, it is clear that the reconstructed image of relative permittivity and 

conductivity with TV regularization method is smoothed of irregular surface and more 
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accurate, thus resembling the actual image comparing to without using regularization 

method.   

 
(a) 

 
(b) 

Figure 4.4: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS with 
and without TV regularization method) at cross sectional, y = 110 mm 

 

Reconstruction of relative permittivity utilizing FBTS with regularization method, 

1.3221 has a lower MSE value compare to the reconstruction without TV regularization 

method, 1.5488. The lower value of MSE indicated a better production of image 
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reconstruction which is by utilizing TV regularization method because TV regularization 

gave the proper side constraints that lead to more stabilized solution. Conductivity 

reconstruction utilizing FBTS with regularization method also give a good result and shown 

a small value of MSE. Table 4.1 shows the MSE value of the performance of FBTS 

incorporated with and without TV regularization method after the 100th iteration. The 

algorithm is executed until 100 iterations because the solution has met convergence criterion.  

 
Table 4.1: The MSE value of reconstruction by using FBTS with and without TV 

Regularization Method 

MSE Value 𝜀 𝜎 

Without TV regularization 1.5488 0.0011 

With TV regularization 1.3221 0.0012 

 

The MSE value for reconstruction of relative permittivity without TV regularization 

method is 1.5488 while with TV regularization method is 1.3221. The percentage of 

improvement for the reconstruction of relative permittivity with TV regularization method 

over the reconstruction of relative permittivity without TV regularization is 14.64%.  The 

MSE value for reconstruction of conductivity without TV regularization method is 0.0011, 

and with TV regularization, method is 0.0012. The percentage of the reconstruction of 

conductivity with TV regularization method over the reconstruction of conductivity without 

TV regularization is -9.10%. The negative value shown a slight degradation for 

reconstruction of conductivity when regularization applied. The degradation for 

reconstruction of conductivity expected due to the cost functional as stated in  Equation (3.5) 

is more sensitive to relative permittivity variations than in conductivity variations. 
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4.2.2 Reconstruction of a Simple Object in Free Space with FBTS-TV Regularization 

Method after 200th Iteration 

Reconstruction of a simple object of FBTS-TV regulation with similar simulation 

setup as in Section 3.3.1 has been carry out to investigate for any improvement in 

reconstruction due to a higher number of iteration. The actual profile of relative permittivity 

and conductivity are as shown in Figure 4.1. Reconstructions of relative permittivity and 

conductivity through FBTS-TV regularization method are as shown in Figure 4.5. Based on 

the results, it is observed that reconstruction of relative permittivity and conductivity shown 

the presence of an object in the ROI accurately. The embedded object is reconstructed more 

firm and the uneven surface observed more flat and smoothed, therefore, it is easily 

differentiated from the background.   

  
(a) (b) 

Figure 4.5: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS-TV 
regularization method) after 200th iteration 

 

In Figure 4.6 the cross-sectional view is taken along the x-axis at y = 110 mm to 

compare the actual object with reconstruction image. For reconstruction of relative 

permittivity, it is proven that the reconstruction has been successfully assembled as it actual 
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object. There is an improvement in the reconstruction of the conductivity compared than in 

100th iteration. The reconstruction at 200th iteration in Figure 4.6 had shown a more even 

and fewer vibrations surface for both relative permittivity and conductivity comparing than 

in Section 4.2.1, due to increment of optimization processes in finding optimal or nearly 

optimal solution for FBTS-TV method.    

 
(a) 

 
(b) 

Figure 4.6: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS with 
TV regularization method) at cross sectional, y = 110 mm 
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The MSE value for FBTS-TV regularization through 200th iteration of reconstructing 

relative permittivity and conductivity shown as in Figure 4.7.  MSE value for FBTS with TV 

regularization method of relative permittivity decreased proportionally with iteration as 

expected. The smallest value of MSE yields at 198th iteration, whereas the MSE value of 

relative permittivity is 0.9982 and conductivity is 0.0012, respectively. Throughout this 

simulation, the reconstruction of relative permittivity and conductivity is improving along 

the increment of the number of iteration.   

After 198th iteration, the MSE value for relative permittivity and conductivity 

increased, hence concluded the best performance of the TV regularization algorithm is at 

198th iteration and does not need further iterations thereafter.   

Both of the plots showed a rapid decrement of MSE value until the 40th iteration. 

However, for conductivity, MSE value increased from the beginning of iteration and then 

rapidly decreased starting from the fifth iteration. It observed that the reconstruction relative 

permittivity and conductivity are progressing positively to shape up as the actual object 

starting from the 20th iteration. Figure 4.8 shows the Normalized Error Functional of the 

FBTS-TV regularization method through 200th iteration. This shows that the iteration of 

FBTS-TV regularization method is convergence enough for all simulations.  
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(a) 

 
(b) 

Figure 4.7: MSE calculation for reconstruction of (a) relative permittivity (b) conductivity 
(by using FBTS-TV regularization method) versus number of iteration 
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Figure 4.8: Normalized Error Functional versus number of iteration of FBTS-TV    
                    regularization method 
 

4.2.3 Reconstruction of a Simple Object in Free Space with FBTS-TV Regularization 

Method with Different Regularization Parameter, 𝝀 Selection 

Reconstruction of a simple object of FBTS-TV regulation with similar simulation 

setup as in Section 3.3.1 has been carry out to investigate for any improvement in 

reconstruction with the different value of the regularization parameters. The tests were carry 

out in free space with 100 iterations and using 16 antennas. The efficacy of the FBTS-TV 

depends on the selection of its non-negative regularization parameter, the optimal lambda,  𝜆. 

Thus, the selection of 𝜆 should be carefully chosen. The regularization parameter 

compromises the level of irregularities of the reconstruction with the closeness 

reconstruction toward the actual object. The regularization parameters involved in this 

section are 𝜆ఌೝ
 for relative permittivity and 𝜆ఙ for conductivity reconstruction. The actual 
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Figure 4.9 shows the relative permittivity reconstruction with three different values 

of regularization parameters,  𝜆ఌೝ
; 0.005, 0.05 and 0.5. The cross-sectional view of the 

relative permittivity reconstructions for those varying regularization parameters are taken 

along the x-axis at y = 110 mm is shown in Figure 4.10.   

 

  
(a) (b) 

 
(c) 

Figure 4.9: Reconstruction of relative permittivity (by using FBTS-TV regularization 
method) with 𝜆ఌೝ

 values (a) 5 × 10-3 (b) 5 × 10-2 (c) 5 × 10-1 
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(a) 

 
(b) 

 
(c) 

Figure 4.10: Reconstruction of relative permittivity (by using FBTS-TV regularization 
method) with 𝜆ఌೝ

 values (a) 5 × 10-3 (b) 5 × 10-2 (c) 5 × 10-1 at cross sectional, 
y = 110 mm 
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It is observed from Figure 4.9 and 4.10, for the case of relative permittivity 

reconstruction, when the value of 𝜆ఌೝ
 increased the irregularities of the reconstruction is also 

increased. Hence, for the reconstruction of relative permittivity with  𝜆ఌೝ
 = 5 × 10-1, the 

object suffers from many irregularities that make the reconstructed corrupted and failed to 

recognize.  

However, for a smaller value of  𝜆ఌೝ
 = 5 × 10-3 , the image reconstruction of the 

relative permittivity resembled the FBTS reconstruction without regularization as shown in 

Figure 4.2(a), as if there is no regularization applied. Reconstruction of relative permittivity 

for 𝜆ఌೝ
 = 5 × 10-2 yields a better performance as it gave a tradeoff between a very irregular 

reconstruction and non-regularized reconstruction. 

Figure 4.11 shows the image reconstruction of conductivity with three different 

values of  𝜆ఙ; 6 × 10-6, 6 × 10-4 and 6 × 10-3. The cross-sectional view of the conductivity 

reconstructions for those varying regularization parameters are taken along the x-axis at          

y = 110 mm is shown in Figure 4.12. In Figure 4.11 and Figure 4.12, varying the 

regularization parameters,  𝜆ఙ gave impact to the conductivity reconstruction. In the case of 

conductivity reconstruction, the regularization parameter, 𝜆ఙ controls how much smoothing 

is performed, a higher value of the 𝜆ఙ will give a higher degree of smoothing. For the higher 

value of  𝜆ఙ = 6 × 10-3, conductivity reconstruction of the object is over-smoothed and do 

not preserve the interesting edges. Selection of a small value of 𝜆ఙ = 6 × 10-6 in return gives 

a no regularization effect to the conductivity reconstruction and it is similar as FBTS 

reconstruction as shown in Figure 4.2(b).  
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(a) (b) 

 
(c) 

 
Figure 4.11: Reconstruction of conductivity (by using FBTS-TV regularization method) 

with values 𝜆ఙ values (a) 6 × 10-6 (b) 6 × 10-4 (c) 6 × 10-3 
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(a) 

 
(b) 

 
(c) 

Figure 4.12: Reconstruction of conductivity (by using FBTS-TV regularization method) 
with values 𝜆ఙ values (a) 6 × 10-6 (b) 6 × 10-4 (c) 6 × 10-3 at cross sectional,  
y = 110 mm 
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Regularization parameter of 𝜆ఙ = 6 × 10-4 is preferable to give optimal quality of 

reconstruction because it provides a compromised solution between over-smoothed and no 

regularization of the conductivity reconstruction. 

Table 4.2 shows the MSE calculation for reconstruction by using FBTS-TV 

regularization method for different values of regularization parameters. From Table 4.2, as 

compared for all regularization parameter values, relative permittivity reconstruction with 

regularization parameter 𝜆ఌೝ
 = 5 × 10-2 gives the smallest MSE value, 1.3221. Reconstruction 

of conductivity showed no improvement as the regularization parameter increased from       

𝜆ఙ = 6 × 10-6 to 𝜆ఙ = 6 × 10-4   however, worsen if the parameter is too high, as in the case  

𝜆ఙ = 6 × 10-3. The degradation of conductivity reconstruction at the higher regularization 

parameter,  𝜆ఙ = 6 × 10-3 due to the fact it is a high sensitivity field, whereas a small 

difference by the parameter will fluctuate data measurement. The reconstruction of both 

relative permittivity and conductivity suffer the most degradation when higher value of 

regularization parameter is applied. For the highest regularization parameter 𝜆ఌೝ
 = 5 × 10-1 

the MSE value is 2.9383 and for 𝜆ఙ = 6 × 10-3 the MSE value is 0.0037. 

 

Table 4.2: The MSE value for reconstruction of relative permittivity and conductivity (by 
using FBTS-TV regularization method) with different regularization parameter 
values 

 

𝜆ఌೝ
 MSE Value 𝜆ఙ MSE Value 

5 × 10-3 1.5565 6 × 10-6 0.0012 

5 × 10-2 1.3221 6 × 10-4 0.0012 

5 × 10-1 2.9383 6 × 10-3 0.0037 
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(a) 

 
(b) 

Figure 4.13: MSE calculation for reconstruction of (a) relative permittivity (b) conductivity 
(by using FBTS-TV regularization method) with different regularization 
parameter values versus number of iteration 
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MSE values for the reconstructions or relative permittivity and conductivity with 

different regularization parameter values as presented in Figure 4.13. Smaller MSE value 

yields less error hence more accurate reconstruction and vice versa. Based on Figure 4.13, it 

is proven that the selection of optimal lambda for relative permittivity, 𝜆ఙ = 6 × 10-4 and 

conductivity 𝜆ఙ = 6 × 10-6 give a better performance of FBTS-TV reconstruction because 

they give the smallest MSE value.  

 

4.3 Reconstruction of a Simple Object in Free Space by FBTS-TV Regularization 

Method with Different Number of Antennas 

This section focuses on the reconstruction of a simple object by FBTS-TV 

regularization utilizing the different number of antennas. The simulation setup applied as 

described in Section 4.2.  A simple object of rectangular shape with the length of 40 mm and 

width of 16 mm embedded in the ROI.  The object placed at the center of the ROI.  The ROI 

is a circular shape with 80 mm in diameter.  The test carried out in free space for 100 

iterations. The actual profile of relative permittivity and conductivity are as shown in      

Figure 4.1. The different number of antennas located surrounding the ROI to investigate if 

the number of antennas will contribute to the effectiveness of the image reconstruction. Four 

different set of antenna configuration is applied in this section are 4, 8, 16 and 20 antennas 

setup.  Figure 4.14 shows the antennas setup in the FDTD lattice. The coordinates for 4, 8, 

16 and 20 antennas were summarize in Table 4.3 through Table 4.6.   
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(a) (b) 

  
(c) (d) 

Figure 4.14: Antenna configurations of (a) 4 antenna (b) 8 antenna (c) 16 antenna (d) 20 
antenna arrays 

 

Table 4.3: Coordinate for 4 antenna arrays 

Antenna 
Coordinate 

X Y 

1 26 111 

2 111 26 

3 196 111 

4 111 196 
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Table 4.4: Coordinate for 8 antenna arrays 

Antenna 
Coordinate 

Antenna 
Coordinate 

X Y X Y 

1 111 196 5 111 26 

2 51 171 6 171 51 

3 26 111 7 196 111 

4 51 51 8 171 171 

 

Table 4.5: Coordinate for 16 antenna arrays 

Antenna 
Coordinate 

Antenna 
Coordinate 

X Y X Y 

1 171 171 9 51 51 

2 144 190 10 79 32 

3 111 196 11 111 26 

4 78 190 12 144 32 

5 51 171 13 171 51 

6 32 144 14 190 79 

7 26 111 15 196 111 

8 32 78 16 190 144 

 

Table 4.6: Coordinate for 20 antenna arrays 

 

 

 

 

 

 

 

 

Antenna 
Coordinate 

Antenna 
Coordinate 

X Y X Y 

1 180 161 11 42 61 

2 161 180 12 61 42 

3 137 192 13 85 30 

4 111 196 14 111 26 

5 85 192 15 137 30 

6 61 180 16 161 42 

7 42 161 17 180 61 

8 30 137 18 192 85 

9 26 111 19 196 111 

10 30 85 20 192 137 
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While one of the antennas acts as a transmitter, the other antennas remain as receiving 

antennas. The set of scattering calculation representing transmitter-receiver combinations is 

as shown in Table 4.7. Adding more antennas will increase the number of scattering 

calculations and provide more collection of the electric field data, hence will improve the 

reconstruction of the relative permittivity and conductivity. However, the addition of antenna 

will increase the computational time and data storage.                                            

Table 4.7: Set of scattering calculation of transmitter-receiver combinations 

 Array of Antenna Configuration 

4 8 16 20 

Set of scattering calculation 12 56 240 380 

 

Figure 4.15 shows the reconstruction of the relative permittivity of FBTS-TV 

regularization method acquired by the different number of antenna configurations. The 

reconstruction of relative permittivity quality is progressing successfully as the number of 

antenna added.  An addition of antenna will give more information of the unknown 

parameter and allowing a more accurate reconstruction of the object. There is a significant 

improvement of reconstruction obtained from 4 arrays to 16 antenna arrays configuration. 

There is a slight improvement obtained from 16 to 20 antenna arrays. 
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 (a)   (b) 

  
 (c)  (d) 

Figure 4.15: Reconstruction of relative permittivity (by using FBTS-TV regularization 
method) by (a) 4 antenna (b) 8 antenna (c) 16 antenna (d) 20 antenna arrays 

 

The comparison of image reconstruction of relative permittivity obtained by the 

different number of antenna arrays at cross sectional y = 110 mm as shown in Figure 4.16. 

The detection and reconstruction of the embedded object is successful by all antenna arrays. 

The 4 antenna arrays showed the poorest reconstruction of the object and the best 

reconstruction of the object is obtained by 20 antenna arrays configuration.  
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Figure 4.16: Reconstruction of relative permittivity (by using FBTS-TV regularization 
method) for different antenna arrays at cross sectional, y = 110 mm 

 

The comparison of the relative permittivity reconstruction is also determined through 

calculation of MSE value as described in Equation (3.12). The MSE value obtained 

throughout the time of iterations for each antenna configuration represented in Figure 4.17. 

The MSE values for all simulation declining through 100 iterations.  After the 100th iteration, 

the 4 antenna arrays configuration have the highest MSE value, 2.5937 while the lowest 

MSE value with the least error in relative permittivity reconstruction of the object is 

produced by the 20 antenna arrays configuration, 1.3152.  There is a slight improvement of 

1.3% for relative permittivity reconstruction by 20 over 16 antenna arrays.  
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Figure 4.17: MSE calculation for reconstruction of relative permittivity (by using FBTS-
TV regularization method) for different antenna arrays  

 

Image reconstruction of a simple object for conductivity with FBTS-TV 

regularization method obtained by the different number of antenna configurations as 

illustrated in Figure 4.18. Through observation, increasing the number of antennas will 

produce more information about the object and therefore improve the quality of image 

reconstruction. The detection and reconstruction of the object can be achieved for all antenna 

configurations except for 4 antenna arrays. The reconstruction of conductivity using 4 

antenna arrays is distorted and poorly reconstructed because of insufficient information 

about the scattering field gathered from the antennas. Image reconstruction of conductivity 

with 8 antenna arrays shown a noticeable object but has some vibrations. On the other hand, 

16 and 20 antenna arrays configuration give a good quality of reconstruction and closer to 

the actual properties of the object.  
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(a) (b) 

  
(c) (d) 

Figure 4.18: Reconstruction of conductivity (by using FBTS-TV regularization method) by 
(a) 4 antenna (b) 8 antenna (c) 16 antenna (d) 20 antenna arrays 

 

Figure 4.19 shown the cross-sectional view taken at y = 110 mm the reconstruction 

of conductivity for all antenna configurations. Reconstruction of conductivity using                   

4 antenna arrays is distorted whereas the boundary of the object was poorly reconstructed, 

while the other reconstruction by 8, 16, and 20 antenna arrays configurations show a small 

scale of variances among them. Reconstruction by 16 and 20 antenna arrays were closer to 

actual object compare than using other antenna arrays.   
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Figure 4.19: Reconstruction of conductivity (by using FBTS-TV regularization method) for 
different antenna arrays at cross sectional, y = 110 mm 

 

Summary of MSE values for all antenna configurations for relative permittivity and 

conductivity reconstruction described in Table 4.8. From this table the MSE values of 

relative permittivity are declining as the number of antenna increased. Smaller MSE value 

means more accurate the reconstructed of the object. Increasing the number of antenna will 

provide more scattering data and improve the quality of reconstruction. The smallest MSE 

value in relative permittivity reconstruction is given by 20 antenna arrays, 1.3152 and the 

highest MSE value is given by 4 antenna arrays, 2.5937.  

In the case of conductivity reconstruction, the value of MSE from 4 antenna to 16 
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conductivity reconstruction is given by 16 and 20 antenna arrays, 0.0012 and the highest 

MSE value is given by 4 antenna arrays, 0.0077. 

 
Table 4.8: Summary of MSE value for each antenna arrays after 100th iteration 

Antenna Configurations 4 Arrays 8 Arrays 16 Arrays 20 Arrays 

Relative Permittivity, 𝜀 2.5937 1.3810 1.3221 1.3152 

Conductivity, 𝜎 0.0077 0.0013 0.0012 0.0012 

 

MSE value for each antenna configuration for conductivity compared in a plot as 

shown in Figure 4.20 to further understanding of the reconstruction. From this figure, it is 

concluded that 4 antenna arrays could not be utilized for the reconstruction as the MSE value 

shows no sign of descending. The highest peak of MSE value is given by 8 antenna arrays. 

MSE values of 8, 16 and 20 antenna arrays configurations increase for the first five times of 

iterations before it declines rapidly. 

 
Figure 4.20: MSE calculation for reconstruction of conductivity (by using FBTS-TV 

regularization method) for different antenna arrays 
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Through observation, the value of MSE will continuously decrease as the number of 

antenna increased. However, in conductivity reconstruction, addition of antenna from 16 to 

20 did not give a great difference or improvement in MSE value. The improvement using 20 

antenna over 16 antenna for relative permittivity reconstruction is 0.5% while for 

reconstruction is no improvement. This behavior can be observe in Figure 4.17 and         

Figure 4.20 whereas the MSE value for conductivity reconstruction are becoming less 

differentiable toward increment of the number of antenna. Adding more antenna also 

increase the computational cost. Due to this reason, 16 antenna arrays is more preferable 

than 20 antenna arrays for both relative permittivity and conductivity reconstruction.  

Figure 4.21 shows the FBTS-TV computational time when utilizing single 

computing with Intel® Core ™ i7-4510U CPU at 2 GHz processor and 16 GHz of RAM. 

The computational time increased as the number of antennas increased.  The computational 

time utilizing 20 antenna arrays doubled than using 16 antenna arrays. Reconstructions 

utilizing 20 antenna arrays provide a slightly better improvement as compared to 16 antenna 

arrays.  Nevertheless, in term of saving computational time, the 16 antenna arrays is 

preferred than 20 antenna arrays. 
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4.4 Reconstruction of Multiple Objects in Free Space by FBTS-TV Regularization 

Method at Different Center Frequency 

In this section, the research extended to reconstruction of multiple objects in free 

space utilizing FBTS-TV regularization method by varying center frequency. To investigate 

its effectiveness for the detection of objects with different sizes, three different center 

frequencies applied in the reconstruction; 1 GHz, 2 GHz and 3 GHz.  

 

4.4.1 Reconstruction of Multiple Circular Objects in Free Space by FBTS-TV 

Regularization Method at Different Center Frequency 

Three circular objects with different sizes added in the ROI with primary set up as 

mentioned in Section 4.2. The same object setting will be utilize for entire simulations with 

different center frequencies. The simulations carried out in free space for 100 iterations 

utilizing 16 antennas. Figure 4.22 shows the actual profile of relative permittivity and 

conductivity of the multiple objects. From the rightmost, the diameter of the object sized 6 

mm, 14 mm, and 10 mm. The objects placed in series to ease observation at its cross-

sectional view.   
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 (a)  (b) 

Figure 4.22: Actual profile of the embedded objects (a) relative permittivity                      
(b) conductivity 

 

Figure 4.23 shows reconstruction of relative permittivity of multiple objects by 

FBTS-TV regularization method at different center frequencies of 1 GHz, 2 GHz and 3 GHz. 

FBTS-TV regularization method shows the ability to reconstruct and allocate multiple 

objects with different sizes but the performance is varied according to the center frequency.  

At the center frequency of 1 GHz, the largest object, 14 mm diameter was 

successfully reconstructed while the other objects, 10 mm and 6 mm are unsuccessful. At 2 

GHz, reconstruction for objects 14 mm and 10 mm are successful, and while for object 6 

mm, the object is partially been reconstructed.  At 3 GHz, reconstructions for all objects 

achieved, but the 6 mm object is been roughly reconstructed. Reconstruction of relative 

permittivity at 3 GHz has shown the best performance compared to center frequency of           

1 GHz and 2 GHz because it had successfully detected and reconstructed all of the different 

sizes objects.  
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(a) (b) 

 
(c) 

Figure 4.23: Reconstruction of relative permittivity (by using FBTS-TV regularization 
method) obtained at (a) 1 GHz (b) 2 GHz (c) 3 GHz center frequency 

 

Figure 4.24 is the cross-sectional view at y = 110 mm shows the reconstruction of 

relative permittivity for different center frequency, 1 GHz, 2GHz and 3GHz. It is observed 

that reconstruction of multiple objects from 6 mm to 14 mm can be achieved by FBTS-TV 

regularization method at center frequency of 3 GHz. Reconstruction of relative permittivity 

at center frequency of 1 GHz showed the poorest quality and the objects are appeared to be 

widen that its actual size. The quality of reconstruction at 2 GHz is in between the 

performance of reconstruction at lower frequency, 1 GHz and the highest frequency, 3 GHz, 

indicates that the detection of small size object can be achieve at higher center frequency, 

while larger object can be accomplished by a lower center frequency. 
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Figure 4.24: Reconstruction of relative permittivity (by using FBTS-TV regularization 
method) for different center frequency at cross sectional, y = 110 mm 

 

The MSE value comparing the relative permittivity reconstruction at 1 GHz, 2 GHz, 

and 3 GHz as shown in Figure 4.25.  The curve of the plot gradually decaying toward the 

number of iterations. The MSE value will decrease if the number of optimizing increased as 

explained in Section 4.2.2. At 100th iteration, the reconstruction of relative permittivity at     

1 GHz showed the highest MSE value while the lowest MSE value shown at 3 GHz. 
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Figure 4.25: MSE calculation for reconstruction of relative permittivity (by using FBTS-
TV regularization method) for different center frequency 

 

Figure 4.26 shows reconstruction of conductivity of multiple objects by FBTS-TV 

regularization method at center frequency of 1 GHz, 2 GHz and 3 GHz. At center frequency 

of 1 GHz, the reconstruction of the 14 mm and 10 mm are achievable however for 6 mm is 

unsuccessful. At 2 GHz, the reconstructions for all objects achieved. However, at 3 GHz, the 

reconstruction of conductivity distorted, and the objects could not be distinguish. The best 

performance for conductivity reconstruction is at the center frequency of 2 GHz. Table 4.10 

summarizes the MSE value for relative permittivity reconstruction at different center 

frequency. 
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 (a) 1 GHz  (b) 2 GHz 

 
 (c) 3 GHz 

Figure 4.26: Reconstruction of conductivity (by using FBTS-TV regularization method) 
obtained at (a) 1 GHz (b) 2 GHz (c) 3 GHz center frequency 

 

The reconstruction of conductivity at different center frequencies at a cross-sectional 

view of the reconstruction at y = 110 mm is shown in Figure 4.27. Reconstruction of the 

multiple object at 1 GHz appeared to be widen that its actual size, and at 3 GHz, the multiple 

objects is degraded severely. Center frequency of 2 GHz gave the best tradeoff of the 

reconstruction for both the smallest and the largest object.  
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Figure 4.27: Reconstruction of conductivity (by using FBTS-TV regularization method) 

for different center frequency at cross sectional, y = 110 mm 
 

Figure 4.28 shows the comparison of MSE value for each center frequency. At 100th 

iteration, the highest MSE value of conductivity is the reconstruction at 3 GHz while the 

smallest is the reconstruction at center frequency of 2 GHz.  

 
Figure 4.28: MSE calculation for reconstruction of conductivity (by using FBTS-TV 

regularization method) for different center frequency 
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Table 4.9 summarizes the MSE value for conductivity reconstruction at different 

center frequencies. For reconstruction of multiple objects in relative permittivity, the MSE 

value decreased as the central frequency increase from 1 GHz to 3 GHz, whereas the smallest 

value of MSE is 1.1249 (3 GHz), and the highest value is 2.0593 (1 GHz).  For reconstruction 

of multiple objects in conductivity, the MSE value decreased as the central frequency 

increase from 1 GHz to 2 GHz, whereas the smallest value of MSE is 0.0014 (2 GHz), and 

the highest value is 0.0053 (3 GHz).  

 

Table 4.9: The MSE value of reconstruction of relative permittivity and conductivity (by 
using FBTS-TV regularization method) with different center frequency 

Center Frequency 1 GHz 2 GHz 3 GHz 

Relative Permittivity, 𝜀 2.0593 1.3487 1.1249 

Conductivity, 𝜎 0.0018 0.0014 0.0053 

 

The best value of central frequency for FBTS-TV method is 2 GHz. The 

reconstruction of conductivity object is corresponding to reconstruction of relative 

permittivity object with the same size and location as searching for better estimation to 

improve the convergence of reconstruction. Consequently, to choose the best center 

frequency both reconstruction, relative permittivity and conductivity performance should be 

considered. Therefore, center frequency of 2 GHz is chosen because it give the best tradeoff 

in image reconstruction for both relative permittivity and conductivity.   
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4.4.2 Reconstruction of Multiple Square Shaped Objects in Free Space by FBTS-TV 

Regularization Method at Center Frequency of 2 GHz 

Three objects of square shaped with different sizes added in the ROI with primary 

setup as mentioned in Section 3.1. The simulations carried out in free space for 100 iterations 

utilizing 16 antennas. The center frequency is at 2 GHz due to result of Section 4.4.1 that 

shown a great potential and feasibility in reconstruction by using center frequency of 2 GHz 

as compared to 1 GHz and 3 GHz. 

Figure 4.29 shows the actual profile of relative permittivity and conductivity of the 

multiple objects, from the rightmost, the objects’ sizes are 12 mm x 12 mm, 16 mm x 16 mm 

and 8 mm x 8 mm,. The objects placed in a series at its cross-sectional view, y = 110 mm. 

Square shape chosen to observe the efficacy of FBTS-TV regularization method to 

reconstruct the objects’ edges. 

  
 (a)  (b) 

Figure 4.29: Actual profile of the embedded objects (a) relative permittivity                      
(b) conductivity 

 

Figure 4.30 shows the reconstruction of relative permittivity and conductivity by 

FBTS-TV regularization method for three square objects with different sizes at center 

frequency of 2 GHz. It is observed that FBTS-TV regularization method capable to detect 
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and reconstruct multiple objects together with its location, shape and size. The reconstruction 

of the largest object, 16 mm x 16 mm square was rough, and for the reconstruction of               

12 mm x 12 mm, and 8 mm x 8 mm, the shape of the objects is changed from square to 

circular. This occurs due to over-smoothing by the TV regularization method.  

Though FBTS-TV regularization method able to sense and locate the multiple object, 

the edges of the object do not successfully reconstructed at 90 degree angle as perfectly as 

its original shape. This is due to the results are trapped in local minima during the 

optimization process. Therefore, the edges of the multiple square objects could not be 

successfully perfectly preserved.  

  
(a) (b) 

Figure 4.30: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS-
TV regularization method) at center frequency of 2 GHz 
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successfully detected and became widen, thus can successfully make separation of the three 

objects.  

 
(a) 

 
(b) 

Figure 4.31: Reconstruction of (a) relative permittivity (b) conductivity (by using FBTS 
with and without TV regularization method) at cross sectional, y = 110 mm 
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number of iteration increased. The MSE value at 100th iteration for relative permittivity is 

2.3496 and for conductivity is 0.0020.  

 
(a) 

 
(b) 

Figure 4.32: MSE calculation for reconstruction of (a) relative permittivity (b) conductivity 
(by using FBTS-TV regularization method)  
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4.5 Summary 

Chapter 4 presents and discusses the findings of numerical experiments, which 

demonstrate the performance of the FBTS-TV regularization method. FBTS-TV has the 

good performance for reconstruction of a simple embedded object in dielectric properties 

with the knowledge of its size, shape and location. The reconstruction of relative permittivity 

is better quality than reconstruction of conductivity. The comparison of reconstruction of a 

simple object with and without regularization method shows improvement of 15% in 

reconstruction of relative permittivity. Optimal regularization parameter, lambda will dictate 

the performance of reconstruction in relative permittivity and conductivity. The optimal 

regularization for relative permittivity is 0.05 while conductivity is 0.0006. Increasing 

number of optimization and antenna will increase the quality of reconstruction but gain in 

more computational cost. Due to this reason, the number of optimization is 100 iterations, 

and number of antenna is 16 antenna. FBTS-TV shows a good potential in reconstructing 

multiple object. The smallest embedded object it can recover is 6 mm. It also proven that 

selecting the right center frequency for imaging will aid in reconstructing the size of the 

embedded object. The large object can be image by low center frequency, while small object 

can be image by high frequency. 
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5. CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Overview 

This chapter assesses the conclusion of this research and its limitations. 

Recommendations for future improvement were proposed. 

 

5.2 Conclusion 

In this research, an image reconstruction based on a combination of an inverse 

scattering technique, Forward-Backward Time-Stepping (FBTS) and Total Variation (TV) 

regularization method in the two-dimensional transverse magnetic case has been described 

and presented. The effectiveness of the proposed method is confirmed by numerical 

simulations and presented through computational electromagnetic modeling. The FBTS-TV 

algorithm is developed in C++ language with a single computing.  

The Forward-Backward Time-Stepping (FBTS) had proven its potential to 

reconstruct images that give information about the size, location, shape and the internal 

composition of the scatter or objects. By solving the inverse scattering problem in the time 

domain, FBTS will provide generous valuable quantitative information of the 

electromagnetic properties. Despite bearing a highly potential outcome, reconstruction of 

relative permittivity and conductivity by FBTS method have shown evident irregularities on 

the object surfaces and minor differences between the object’s boundaries. 
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The TV regularization method is incorporated with the FBTS imaging algorithm to 

deal with the irregularities of the object’s textures while retaining the edges of the 

reconstructions, henceforward increase the method accuracy and stability.  TV 

regularization method is known to have a unique ability to enhance image reconstruction by 

smoothing irregular contours while preserved the boundaries. The results have demonstrated 

the potential of the FBTS-TV regularization method in image reconstruction of object 

detection in different size, shape and location.  

The first objective of this research is to formulate edge preserving with Total 

Variation (TV) regularization method is achieved. The formulation of TV regularization 

method has been outline and described in Section 3.3. 

The second objective is to analyze the effect of TV regularization method with 

different parameter setting such as regularization parameter, number of antenna, and center 

frequency is achieved. The results and findings are discussed and presented in Section 4.2.3, 

4.3 and 4.4. 

The third objective of this research is to incorporate Total Variation (TV) 

regularization method with the time-domain inverse scattering technique for edge-

preserving image reconstruction is achieved. The integration of FBTS with TV 

regularization method as referred to FBTS-TV regularization has successfully achieved 

according to Equation 3.5. The reconstruction with TV regularization method is more 

accurate than without regularization method. 

In Section 4.3.1, FBTS performance with and without TV regularization method has 

been compared and presented. Throughout the numerical simulations, adaptive of TV 

regularization method have shown a noticeable improvement in performance of FBTS 
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algorithm. It is proven that FBTS-TV regularization method capable to reconstruct images 

of relative permittivity and conductivity in free space medium with quantitative information 

about the size, location, and shape. The reconstructions were showing a good result, 

smoothing the uninterested textures and preserve the significant edges.  

Reconstructions of relative permittivity with TV regularization method are more 

accurate and efficient. The efficacy of the reconstruction has been remarked with the small 

MSE calculation as shown in   Table 4.1.  After the 100th iterations, the MSE value for 

relative permittivity is 1.3221 while for conductivity is 0.0012.  Although conductivity 

reconstruction with FBTS-TV regularization method presented similarities with FBTS 

reconstruction, the differences between relative permittivity reconstruction with FBTS-TV 

and FBTS are pronounced. Improvement over reconstruction without applying 

regularization method is 15%. 

In Section 4.3.2, the number of iteration was extended to 200 to investigate the 

efficacy of FBTS-TV regularization method with an increment of iteration. While there is a 

striking improvement in relative permittivity reconstruction, for the conductivity the 

reconstruction is stagnant. At 200th iterations, the MSE values for relative permittivity is 

0.9982 and for conductivity is remain as equal as at 100th iteration, that is 0.0012.  

In Section 4.3.3, the test shown that an appropriate value of the regularization 

parameter 𝜆 is highly important and affect the outcome of reconstruction. In FBTS-TV 

regularization method, the optimal value of the regularization parameter will give a tradeoff 

between the level of roughness and smoothness of the estimated image reconstruction. 

Reconstruction of relative permittivity and conductivity utilizing three selections of 

regularization parameters with the calculation of MSE is as shown in Table 4.3.  In FBTS-
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TV regularization method, a higher value of 𝜆ఌೝ
 will give more vibrations in relative 

permittivity reconstruction and a higher value of  𝜆ఙ will give more smoothing in 

conductivity reconstruction. The optimal value of relative permittivity is 𝜆ఌೝ
 = 0.05 and of 

conductivity is  𝜆ఙ = 0.0006. The optimal regularization parameter, lambda when are applied 

will give the smallest MSE value compared to other values. 

In Section 4.4, the configuration of the antenna varies from 4, 8, 16 and 20 antenna 

arrays.  The quality of reconstruction also depends on the number of antennas. The increment 

of antenna gave rise to the number of scattering calculation dataset and hence more 

information for reconstruction. Through the test, reconstruction with 20 antenna arrays gave 

the best performance, especially in relative permittivity reconstruction. Conductivity 

reconstruction did not show much improvement as the number of antennae increased. The 

MSE value for 100th iteration for relative permittivity reconstruction is 1.3152 while for 

conductivity is 0.0012. Although reconstruction with 20 antenna arrays bears remarkable 

reconstruction, it undergoes complexity and intensive computational cost compared to 

reconstruction with a lower number of antenna. Due to this reason, reconstruction by 16 

antenna arrays configuration is preferred for FBTS-TV regularization method. Furthermore, 

the margin of improvement from 16 arrays to 20 arrays is rather small. Conversely, due to 

the very poor reconstruction of relative permittivity and conductivity, it is also concluded 

that reconstruction by 4 antenna arrays configuration is unusable and not recommended for 

FBTS-TV regularization method. 

In Section 4.5.1 and Section 4.5.2, the FBTS-TV regularization method has shown 

its ability to sense multiple objects in the region of interest.  The object with the diameter of 

6 mm, 10 mm, and 14 mm was in the circular shape in Section 4.5.1 and square shape in 

Section 4.5.2.  The reconstructed was carried out for three different center frequency, 1 GHz, 
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2 GHz and 3 GHz. The source for the FDTD is as explain in Section 3.3.1 is a sinusoidal 

Gaussian pulse is transmitted at different center frequency; 1 GHz, 2 GHz and 3 GHz into 

the FDTD lattice environment. The lowest center frequency (1 GHz) gave the best result for 

the largest object imaging (14 mm) while the highest center frequency (3 GHz) managed to 

resolve the smallest object imaging (6 mm). Despite the success of sensing the smallest 

object, the center frequency 3 GHz also produced a degraded image in term of the object’s 

shape compared to other center frequencies. Hence, it is concluded that center frequency of 

2 GHz is preferable to give an optimal tradeoff of the image’s resolution and also the imaging 

performance of relative permittivity and conductivity in the reconstructed image. The 

reconstruction of the circular objects is found out to be more successful than the 

reconstruction of the square objects. The FBTS-TV is able to sense an object as small as 6 

mm. Through this observation, it is shown that choosing the right central frequency is 

important to produce a better approximation of the reconstructed image and will dictate the 

minimum and maximum sizes of the reconstruction object.  

 

5.3 Recommendations 

TV regularization method was applied in FBTS and through the numerical 

simulations, the proposed method have shown a good performance of preserving image’s 

boundaries for the reconstructed images, and hence improve the FBTS algorithm stability 

and accuracy.   

Future studies on extending from two-dimensional to three-dimensional 

reconstruction cases are recommended.  Due to scattering behavior, the microwaves are 

sensitive, and reconstruction in two-dimensional algorithm is habitually less accurate in real 
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world. Reconstruction in three-dimensional will increase the image’s quality and accuracy 

together with the information about the shape, location, tissue structure identification of an 

unknown object through the measurement of the scattering field. 

In future research work, the FBTS-TV regularization method can be utilized in 

medical imaging such as reconstruction of numerical model like breast composition 

reconstruction in [20, 26]. The reconstruction of breast composition is useful in breast cancer 

imaging. FBTS-TV regularization method can be applied to detect the presence of any 

malignancies in breast tissue due to the significant of the dielectric properties contrast.  

Besides medical imaging, FBTS-TV regularization method can be applied for buried object 

detection such as reconstruction of unknown objects in a certain search region with sufficient 

resolution [47].  
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