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ABSTRACT 

A new emerging nature-inspired algorithm named Bacterial Foraging Optimisation 

Algorithm (BFOA) that mimics the foraging behaviour of E. coli bacteria has drawn lots of 

attention from other researchers due to its high convergence rate and global search capability 

compared to others. Technically, BFOA has been applied as supplementary algorithm for 

optimizing weight, parameters for other classifier algorithms and selecting optimised 

features for other classifiers. However, none of the available works had proposed BFOA as 

a classification algorithm despite of its good performance. Thus, this study aims to adopt 

and modify the BFOA into Instance Selection (IS) classifier by manipulating its global 

search capability and high convergence rate for data classification problem. There are two 

modified instance-based classifiers of BFOA were developed in this study. Both classifiers 

are inspired based on Prototype Selection (PS) and Prototype Generation (PG) known as 

BFOA-S and BFOA-G respectively. BFOA-G statistically outperformed BFOA-S by 

achieving 80.73% in the average testing accuracy with 5.16% average storage requirement, 

and 3 times faster in term of time complexity against BFOA-S in the benchmark experiment 

using 42 datasets. In addition, BFOA-G also performed well against ten existing IS 

algorithms by obtaining 83.1% in the average accuracy with 95.51% reduction rate and 

ranked first in the comparison study. On the other hand, BFOA-S showed competitive 

performance in the comparison against ten existing IS algorithms by obtaining 96.25% in 

reduction rate and ranked third in the ranking. Therefore, we conclude that the proposed 

BFOA-G is the best algorithm in the study, and PG approach is recommended for further 

development of BFOA as an IS algorithm. 

Keywords: Bacterial foraging optimisation, data classification, instance-based classifier, 

nature-inspired algorithm 
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Algoritma Pengoptimuman Pengayaan Bakteria menggunakan Pemilihan Prototaip dan 

Penjanaan Prototaip untuk Pengkelasan Data 

 

ABSTRAK  

Algoritma Pengoptimuman Pengayaan Bakteria (APPB) yang menyerupai tingkah laku 

pencarian makanan oleh bakteria E. coli telah menarik perhatian ramai penyelidik kerana 

mempunyai kadar penumpuan yang cepat dan keupayaan pencarian global lebih baik 

berbanding algoritma lain. APPB telah digunakan sebagai algorithma sampingan untuk 

mengoptimumkan berat, parameter untuk algoritma pengkelasan yang lain dan memilih 

ciri-ciri yang optimum untuk algoritma pengkelasan lain. Perkembangan terkini APPB 

menunjukkan bahawa APPB boleh diadaptasi dan digunakan sebagai algoritma 

pengklusteran untuk menyelesaikan masalah pengklusteran data. Walaubagaimana pun, 

setkat ini tiada lagi hasil kerja yang menggunakan APPB sebagai algoritma pengkelasan 

walaupun mempunyai reputasi yang baik dari segi keupayaannya. Oleh itu, kajian ini 

bertujuan untuk mengadaptasi dan mengubahsuai APPB sebagai algoritma Pemilihan 

Contoh (algoritma pengkelasan) bagi mengkaji keupayaan dan prestasi APPB dalam bidang 

pengkelasan data. Dua jenis pengkelas berasaskan contoh APPB telah dibangunkan dalam 

kajian ini. Kedua-dua pengkelas ini diilham daripada Pemilihan Prototaip dan Penjanaan 

Prototaip dan dikenali sebagai BFOA-S dan BFOA-G. BFOA-G secara statistik mengatasi 

keupayaan  BFOA-S dengan mencapai 80.73% dalam purata ketepatan pengujian dengan 

purata keperluan penyimpanan sebanyak 5.16%, dan 3 kali lebih cepat dari segi kerumitan 

masa berbanding BFOA-S dalam eksperimen penanda aras dengan menggunakan 42 data. 

Tambahan lagi, BFOA-G juga berjaya menandingi sepuluh algoritma IS sedia ada dengan 

memperoleh 83.10% dalam purata ketepatan dengan kadar pengurangan 95.51% dan 

menduduki tempat pertama dalam kajian perbandingan. Di samping itu, BFOA-S 
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menunjukkan prestasi yang kompetitif dalam perbandingan terhadap sepuluh algoritma IS 

sedia ada dengan memperoleh 96.25% dalam purata kadar pengurangan dan menduduki 

tempat ketiga dalam carta perbandingan. Oleh itu, BFOA-G adalah algoritma yang terbaik 

di dalam kajian ini dan kaedah PG disyorkan bagi pembangunan yang selanjutnya untuk 

APPB sebagai algoritma IS.  

Kata kunci: Pengoptimuman pengayaan bakteria, pengkelasan data, pengkelas berasaskan 

contoh, algoritma alam semula jadi 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Overview 

Nature-inspired algorithm is an interesting area of research that aims on designing 

and constructing innovative computing techniques by observing on how the nature behaves 

in various situations to solve complex problems. There are about 40 different nature-inspired 

algorithms have been proposed to solve many real-world optimisation problems (Fister et 

al., 2013). They are not only applicable to optimisation problem, but it can be extended to 

other domains with minimal modification.  

Most of the nature-inspired algorithms that have been applied in other domains work 

as an optimisation algorithm to facilitate the process and improve another algorithm’s 

performance. Besides that, the successfulness of the nature-inspired algorithms is not limited 

to improving other algorithms, but they also have been proposed as new algorithm in other 

domains. It applied on data mining problem such as data classification and data clustering 

that nature-inspired algorithms are preferable to be proposed as a new algorithm. 

There are several examples of nature-inspired algorithms such as Genetic Algorithm 

(Kuncheva, 1997), Artificial Immune Systems (Carter, 2000), Particle Swarm Optimisation 

(Cervantes et al., 2007; Nanni & Lumini, 2009) and Ant Systems (Parpinelli et al., 2002) 

that have been proposed into new algorithm for data mining task. Their performances are 

comparable and most of them are better than non-nature-inspired algorithm. Recently, a new 

nature inspired algorithm named Bacterial Foraging Optimisation Algorithm (BFOA) has 

caught the attention of many researchers because of its successfulness in optimisation 
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domain compared to other nature-inspired algorithms (Hongwei & Liwei, 2015; Bensujin et 

al., 2016; Rani & Mangat, 2016; Lv et al., 2018). 

BFOA was introduced in 2002 by Passino (2002) for solving optimisation problem. 

Since its inception, the BFOA has been applied successfully to engineering problems, such 

as optimal control (Kim & Cho, 2005), transmission loss reduction (Tripathy et al., 2006), 

timetabling (Shivakumar & Amudha, 2012) and image processing (Feng et al., 2012). 

According to survesy (Hongwei & Liwei, 2015; Bensujin et al., 2016; Rani & Mangat, 2016; 

Lv et al., 2018), BFOA has better optimisation capability compared to PSO and GA in term 

of global search capability. Furthermore, BFOA also have a high convergence rate that make 

the algorithm faster in finding optimal solution. In the recent development, BFOA has been 

actively being used in data analysis (Cho & Kim, 2011), as an optimiser in data classification 

(Damodaram & Phil, 2013) and already being introduced as new clustering algorithm (Lei 

et al., 2011; Garcia et al., 2012; Wan et al., 2012). In those works, it has been proven that 

BFOA has better performance as compared other successful algorithms such as GA, PSO 

and ACO. Although BFOA is actively being applied in data classification in a few studies, 

none of them has proposed BFOA as a new classification algorithm. 

Basically, BFOA mimics the foraging behaviour of Escherichia coli (E.coli) bacteria, 

which exhibit chemotaxis, swarming, reproductive, elimination and dispersal process 

(Passino, 2002). Each of bacterium is representing the potential solution for an optimisation 

problem. An optimisation problem can be solved by minimizing or maximizing the objective 

function with the aim to find optimal values for that problem. In natural process, bacterium 

searches or forages for a better food source by swimming in rich nutrients concentration 

environment and tumble to avoids the noxious environment during chemotaxis process. The 
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decision-making process during the foraging is determined by two factors which are the 

concentration of the nutrients and the signals from the other foraging bacteria. Once a 

bacterium consumes enough nutrient the bacterium will undergo reproduction process with 

the presence of suitable temperature. During reproduction process, the bacterium will split 

in the middle and forms two identical individuals. In the presence of extreme condition, a 

group of bacteria either will be destroyed and dispersed into new environment in searching 

for rich food sources. This process is called elimination and dispersal. 

As data grow bigger over the time, classification tasks become more challenging. 

The process to train data and produces a predictive model to classify the unknown input data 

become more difficult as the size of data grows. Most of the classical classifiers are unable 

to function properly and suffered several drawbacks due this challenge. Nearest Neighbour 

classification is an example of classifiers that critically suffered from several drawbacks due 

to the increasing size of the data. Nearest Neighbour Classification (kNN) is one the famous 

classification algorithm due to its simplicity and easy to implement, yet it has a powerful 

classification performance (Wu et al., 2008). However, it suffers several limitations such as 

high storage requirement, low noise tolerance and high computational time since it stores all 

the data to enable the classification capability.  

Data reduction techniques are designed to overcome the limitation for classifiers that 

are unable to adapt the mass size of data. Reduction techniques can be categorized into 

feature selection, feature-value discretization and instance selection (Liu & Motoda, 2002). 

This study will emphasize Instance Selection as the reduction mechanism. There are some 

alternative names for Instance Selection which are reduction technique (Wilson & Martinez, 

2000), Prototype Selection (Kruatrachue & Hongsamart, 2008; Garcia et al., 2012; Miloud-
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aouidate et al., 2012; Triguero et al., 2012) and Prototype Reduction technique (Nanni & 

Lumini, 2011; Triguero et al., 2011; Triguero & Herrera, 2012). There are two main 

approaches in Instance Selection which are Prototype Selection (PS) and Prototype 

Generation (PG).  

According to Garcia et al. (2012), PS and PG are considered as an optimisation 

problem since its objective is to find the optimal trade-off point between generalization 

ability, storage requirement and time complexity for Nearest Neighbour classification. Thus, 

it is preferable to adopt nature-inspired algorithms optimisation algorithm to solve PS and 

PG problems. Furthermore, the performance of other nature-inspired algorithms such as 

Genetic Algorithm, Ant Colony Optimisation and Particle Swarm Optimisation were better 

as compared to non nature-inspired algorithms as the PS or PG algorithm (Acampora et al., 

2016). They have better searching mechanism and able to find the global solution. In the PS 

and PG term, those nature-inspired algorithms are commonly known as evolutionary 

algorithm since they use evolution of the populations to search for optimal solution (Cano et 

al., 2003; Garcia et al., 2010; Garcia et al., 2012; Triguero et al., 2012). 

Since BFOA have advantage in optimisation capability, high convergence rate and 

global search capability compared to other successful nature-inspired optimisation 

algorithms, this study attempts to propose BFOA as Instance Selection classification 

algorithm which is focusing on producing an efficient algorithm with high generalization 

ability and small cardinality to improve the Nearest Neighbour Classification. To the best of 

our knowledge, the application of BFOA in and data classification still not thoroughly 

explored unlike PSO, GA and ACO. Thus, it is a great opportunity to study the full potential 

of BFOA in another domain. 
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1.2 Problem Statements 

Recently, a new nature-inspired optimisation algorithm named Bacterial Foraging 

Optimisation Algorithm(BFOA) has emerged and shown better performance than other 

successful nature-inspired algorithms such as GA, ACO and PSO in term of global search 

capability and convergence rates (Hongwei & Liwei, 2015). Many of the nature-inspired 

algorithms have successfully been adopted as the classification algorithm especially as an 

Instance Selection (IS) algorithm. The IS algorithm is an instance-based classifier with aims 

to overcome the limitation of Nearest Neighbour Classification. The problem with Instance 

Selection is it difficult to search for the optimal trade-off between reduction rate and 

generalization performance without degrading the accuracy of the reference set or model. 

This problem is considered as NP-problem since the solutions only can be obtained through 

exhaustive search in large problem space. Furthermore, there is no guarantee that the 

obtained solution is the optimal solution for the problem (Ho et al., 2002).  

Good optimisation algorithms such as Genetic Algorithm (Kuncheva, 1997), 

Artificial Immune Systems (Carter, 2000), Particle Swarm Optimisation (Cervantes et al., 

2009; Nanni & Lumini, 2009) and Ant Systems (Parpinelli et al., 2002) become favourable 

choices to be adopted as an IS classification algorithm because they have better capability 

and faster in searching for solutions compared to exhaustive search algorithms.  

The conversion of those optimisation algorithms into IS algorithms are different to 

each other due to the differences in the structure of the algorithms. There are many new IS 

algorithms have been introduced with the aim to produce an efficient IS algorithm with good 

generalization capability to solve nearest neighbour classification. In the latest surveys, PSO 

is currently a popular optimisation algorithm for the development of IS algorithm (Garcia et 
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al., 2012; Triguero et al., 2012; Sakinah & Ahmad, 2014; Rosales-Pérez et al., 2017). 

However, it is questionable either BFOA can be adopted as new IS algorithms or not since 

there is no works done before in adopting BFOA as a classification algorithm. 

The problem with the conversion of BFOA into IS algorithm is that original structure 

of the algorithm cannot be converted directly into IS. The main reason is the current 

representation of solution and information encoding in original BFOA are not suitable and 

it is impossible to adopt the IS concept directly into the algorithm’s structure. Furthermore, 

there are two major approaches in IS that are different in their concept. Both approaches 

need different kind of representation and the modification only can be made based on the 

solution representation (Cano et al., 2003; Derrac et al., 2010). Without suitable modification 

on the algorithm’s structure, the algorithm is unable to process the information to produce 

the desired results. Since there is no work done in BFOA for IS before, it is unclear which 

solution representation is suitable and what kind of modification can be made to enable the 

conversion of BFOA into IS.   

1.3 Research Questions 

From the problem that has been mentioned, there are some questions that are needed 

to be pointed out. The research questions that will be answered are described as follows. 

i. How to design an optimisation BFOA into IS algorithms that based on PS approach 

and PG approach? 

ii. Which approaches between PS and PG is the best classifier for BFOA as an IS 

algorithm? 
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iii. How is the performance of the proposed BFOA algorithms as an IS algorithm as 

compared to other IS algorithms based on generalization, reduction rate and time 

efficiency? 

1.4 Research Objectives 

There are four specific objectives to be fulfilled in this research. The objectives are 

as follows: 

i. to design a data classification version of BFOA using prototype selection and 

prototype generation approaches; 

ii. to analyse both proposed algorithms with existing IS algorithms (nature-inspired and 

non-nature-inspired) based on generalization ability (accuracy), reduction rate and 

time efficiency using several data sets (vary in terms of domain, dimensionality and 

volume);  

iii. to recommend the best modified version of BFOA for data classification problem. 

 

1.5 Research Scope 

This study focuses on the development and conversion of an optimisation algorithm 

named Bacterial Foraging Optimisation Algorithm (BFOA) into Instance Selection (IS) 

algorithm to improve the IS technique in finding the optimal subset of representative of a 

dataset for nearest neighbour classification. Since there is no work done on BFOA as a 

classifier before, thus this research will design and develop two IS algorithm based on 

Prototype Selection (PS) and Prototype Generation (PG) approaches to adopt the 

optimisation BFOA into IS classifiers. The performance of the proposed algorithms will be 

evaluated using 42 various domains of benchmark datasets from the UCI machine learning 
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and compared with ten existing IS algorithms. The datasets used in the experiments consist 

of small and medium size only. Majority of the datasets used were imbalanced, but it will 

not be discussed and covered in this study.   

1.6  Research Contributions 

There are two major contributions that have been achieved in this study. They are 

listed as follows. 

Contribution 1: The study has proposed a framework for the conversion of BFOA into IS 

algorithm that based on PS approach to improve nearest neighbour classification. The 

proposed framework was successfully implemented and produce an IS algorithm named as 

Prototype Selection Bacterial Foraging Optimisation Algorithm or in short as BFOA-S. This 

framework was used as a pioneer study for the latter improvement of BFOA with PS 

approach. 

Contribution 2: A framework has been proposed for the conversion of BFOA into IS 

algorithm that based on PG approach to improve nearest neighbour classification. The 

proposed framework was successfully developed and named as Prototype Generation 

Bacterial Foraging Optimisation Algorithm or in short as BFOA-G. This study was used as 

a pioneer study for further development of BFOA with PG approach. 

1.7 Organisation of the Thesis 

There are six important chapters presented in this thesis.  A brief explanation of each 

chapter is described as follows: 

Chapter 1 is introducing a brief explanation on the research problems encounter in 

this research field, research objectives, research scopes and research contribution. 
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Chapter 2 presents the literature review on the background of BFIA and its existing 

application in data mining. This chapter continues with the review on Instance Selection and 

its major categories and present in details on the previous works that related to the conversion 

or modification of nature-inspired algorithm for Instance Selection.  

Chapter 3 presents the research methodology used to conduct the study. All dataset 

involved and preparation method for these datasets are explained in this chapter. This chapter 

also present the evaluation methods that have been used to evaluate the performance of the 

proposed algorithms. 

Chapter 4 presents the detailed explanation on the conversion framework for both 

proposed algorithms. This chapter also presents the parameter configuration for the proposed 

algorithm and discuss their effect on the performance of the algorithms. 

Chapter 5 presents the experimental results and the analysis using statistical tests to 

evaluate the performance of the proposed algorithms. An additional comparison against 

existing IS algorithms are explained and discussed in this chapter. Overall finding is 

discussed to highlight important finding to improve the proposed algorithms. 

Finally, Chapter 6 draws conclusion of this study. Limitation and future work are also 

presented in this chapter.
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Overview 

This chapter presents the background and recent works on the nature-inspired 

algorithm named Bacterial Foraging Optimisation Algorithm (BFOA). The objective of this 

thorough review is to study the basic concepts, characteristics, structures, capabilities and 

the successfulness of BFOA application in various domains. The timeline of BFOA’s 

application is presented to describe the current trends on the development of BFOA in data 

mining and especially focusing on data classification. Apart from that, this chapter also 

includes the literature on the modification of other nature-inspired optimisation algorithms 

into Instance Selection (IS) algorithms to study how the modification is being made for IS. 

Two approaches in the IS that were reviewed in this study which is Prototype Selection and 

Prototype Generation. This review shows the general idea on how the other optimisation 

algorithm can be converted into an IS algorithm. It has been used as a reference for the 

modification of an optimisation BFOA into a data classification algorithm, mainly as an IS 

algorithm.  

2.2 Bacterial Foraging Optimisation Algorithm 

Bacterial Foraging Optimisation algorithm (BFOA) is an optimisation algorithm 

proposed by Passino (2002) to solve optimisation problem and control system. The details 

of on biological background and the application of BFOA in optimisation approach are 

explained in next subsections.  
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2.2.1 Biological Background 

BFOA works by mimicking the foraging behaviour of Escherichia coli (E. coli) 

bacteria that refers to the foraging strategy of bacteria swarms in multi-optional function 

optimisation. Foraging strategy is a method for locating, handling and ingesting food by 

animals. Bacteria search and obtain nutrients in a manner to maximise the energy intake. By 

sending signals, it enables an individual bacterium to communicate with other bacteria. 

Biologically, an E. coli bacterium has a plasma membrane, cell wall, and capsule that 

contains the cytoplasm and nucleoid. It has several flagella that randomly distributed around 

its cell wall as shown in Figure 2.1.  The flagella play an important role for the bacterium 

locomotion or so-called chemotaxis. They move in a rotation manner and counter clockwise 

direction that enable the bacteria to move forward with large displacement. This process 

called “swim”. When the flagella move clockwise, bacteria will move in a random direction 

with very small displacement and it is called “tumble” process. With the help from flagella, 

a bacterium able swim in a very fast pace due to its tiny in size. The size of E. Coli bacterium 

is about 1 µm in diameter, 2 µm in length, 1 picogram in weight with about 70% of it being 

water. 

 

 

 

 

Figure 2.1: A Bacterium Cell 

 

Body 

Flagella 
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E. Coli bacteria always try to search for a place that contain higher concentration of 

nutrients and try to avoid any noxious places using a specific locomotion pattern called 

“taxes”. While climbing up to high concentration of nutrient area, bacteria will release a 

chemical substance called attractant and they release repellent substance when countered 

harmful places. A bacterium swims continuously in similar direction and it will spend more 

time in a high concentration environment. This pattern keeps repeating as it counters a 

favourable environment. Otherwise, the movement pattern will change if it encounters a 

lower concentration of nutrient (noxious environment). The bacterium will move in random 

direction as an escape mechanism to avoid harmful place and this process is called “tumble” 

process. These foraging behaviour processes are occurred in a major process known as 

“chemotaxis”. Figure 2.2 shows how the tumble and swim process are done. The chemotaxis 

process can be carried out due to the sensing capability that reside in the bacterium. 

 

Figure 2.2: Locomotion of E. Coli Bacteria (Passino, 2002) 

 

As mentioned earlier, bacteria have demonstrated an interesting group behaviour 

when they are placed in a semisolid nutrient media. They form an intricate stable 

spatiotemporal pattern (swarms) of bacteria and travel by moving up the nutrient gradient. 

This event occurred because the bacteria cells are stimulated by a high level of succinate 
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(repellent) that triggered them to release an attractant aspartate. The attractant helps the 

bacteria to aggregate into groups and resulting a high bacterial density that move together to 

a better environment. This pattern is formed based on cell-to-cell signal and foraging stimuli.  

Once a bacterium consumes enough nutrients (a healthy bacterium), it will result to 

the significant increase in the bacterium’s length and size. Then, the bacterium will split in 

the middle to form an exact replica of itself in the presence of suitable temperature. On other 

hand, the unhealthy bacterium (bacterium with poor foraging capability) will die or eliminate 

from the population. This process is called reproduction. The mechanism of replication of 

healthy bacteria will keep the population constant and it ensures only bacteria with a good 

foraging strategy are able to survive for the next cycle. Under some circumstances, the 

population of bacteria will change due to some external factors. For example, a sudden 

significant increase in temperature will cause the death of bacteria population. It is not only 

limited to the death of bacteria population, but a group of bacteria can disperse into a new 

environment with some trigger from the external factors. 

2.2.2 Bacteria Foraging Optimisation Algorithm Concept 

The biological concept of the foraging E. coli is modelled into an optimisation 

technique by adopting their foraging mechanism. Suppose that a problem needs to find the 

global minimum of J(θ), θ ∈p, where θ is the position of the bacterium and J(θ) represents 

the nutrient level in the medium at the current θ. There are no measurements or an analytical 

description of the gradient ∇J(θ). Here, it can be seen as a minimization problem which it 

can be solved using non-gradient optimisation technique adopted from the foraging 

behaviour of E. Coli bacteria. There are three possible condition of J(θ) which are J(θ) < 0, 

J(θ) = 0, and J(θ) > 0.  These values indicate the nutrient level at the current position θ of a 
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bacterium either rich, neutral or noxious. Then, the foraging of bacteria will occur in the 

manner of climbing up the nutrient concentration (J(θ) < 0), avoiding the noxious 

environment (J(θ) > 0) and search for the way out when the environment is neutral.  

  The basic optimisation concept of BFOA consists four principal mechanisms known 

as chemotaxis, swarming, reproduction, and elimination-dispersal. There are several 

important parameters need to be considered before applying BFOA to solve a problem. The 

parameters are listed and described in the Table 2.1.  

Table 2.1: List of Parameters in Bacterial Foraging Optimisation Algorithm  

Symbol Meaning 

P Dimension of the search space 

S Total number of bacteria in the population 

Nc The number of chemotactic steps 

Ns The swimming length 

Nre The number of reproduction steps 

Ned The number of elimination-dispersal events 

Ped Elimination-dispersal probability 

C(i) The size of the steps taken in the random direction 

specified by the tumble 

 

2.2.2.1 Chemotaxis 

Chemotaxis is a process that simulates the movement of a bacterium searching for 

food. There are two types of movements that reside in chemotaxis which are swimming and 

tumbling. A bacterium moves in these two modes alternately in its entire lifetime with the 

help of bacterium’s flagella during foraging process (Das et al., 2009). Bacteria swim for a 

longer period or distance in a high concentration of nutrients (friendly environment) and 

avoid a noxious environment by tumbling. 
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Equation 2.1 

In the optimisation perspective, chemotaxis is a process perform by the bacteria in a 

manner of minimizing the cost function (lower J(θ) value). Let denotes the position of each 

bacterium in the population with P( j, k, l) ={ 𝜃𝑖(𝑗, 𝑘, 𝑙)| i =1,2,..., S} with its corresponding 

nutrient value at j-th chemotactic step, k-th reproduction step, and l-th elimination-dispersal 

events. Then, J(i, j, k , l ) is denoted as the cost at the location of the i-th bacterium. The cost 

is referring to the concentration of the nutrient and it will be the important criterion to 

determine the direction of movement of bacteria in the next iteration. In a formal 

mathematical notation, chemotaxis is represented in Equation 2.1, 

 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖)
𝛥(𝑖)

√(𝛥𝑇(𝑖)𝛥(𝑖))
 

 

where C(i) is denoted the length of steps taken in the random direction manner 

specified by the tumble during the run and Δ (i) is a random vector with each element lying 

in [−1, 1]. If the value of 𝐽(𝑖 + 1, 𝑗, 𝑘 , 𝑙 )   at position  𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) is lower than J(i, j, k , l 

) at previous position, then the bacterium will move in a similar direction into the position 

𝐽(𝑖 + 1, 𝑗, 𝑘 , 𝑙 )  with the predefined C(i). This process is repeated until the necessary 

condition is met. The movement pattern is called swim. The bacterium will stop to swim 

when the maximum value of Ns is met. Then, the bacterium needs to tumble to forage. 

2.2.2.2 Swarming 

Swarming process is occurred along the foraging process of the bacteria. The bacteria 

release an attractant when they consume enough succinate due to chemical reaction in the 

cell. This attractant signals other bacteria as a trigger to keep them closer to each other and 
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Equation 2.2 

congregate them into groups. Once they receive the signal, they will move as concentric 

pattern of groups with high density of bacteria climbing the nutrient concentration. As the 

bacteria has the capability to release attractant, they also can release repellent to avoid other 

bacteria from consuming its nearby nutrients. It is not possible to have two bacteria at the 

same nutrient location since the resource is limited. The swarming process is represented in 

Equation 2.2, 

 

𝐽𝑐𝑐(𝜃, 𝑃(𝑗, 𝑘, 𝑙))   =  ∑ 𝐽𝑐𝑐
𝑖 (𝜃, 𝜃𝑖(𝑗, 𝑘, 𝑙))                                                        

𝑆

𝑖=1

 

                                 = ∑ [−𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡 𝑒𝑥𝑝 (−𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡 ∑ (𝜃𝑚 − 𝜃𝑚
𝑖 )

2
𝑃

𝑚=1

)]

𝑆

𝑖=1

  +   

                                      ∑ [−ℎ𝑟𝑒𝑝𝑒𝑙𝑙𝑒𝑛𝑡 𝑒𝑥𝑝 (−𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑒𝑛𝑡 ∑ (𝜃𝑚 − 𝜃𝑚
𝑖 )

2
𝑃

𝑚=1

)]

𝑆

𝑖=1

   

 

Which denotes the combination of cell-to-cell attraction and repellent affect, where 

Jcc(θ, P( j, k, l)) is the objective function value that to be added to the actual objective 

function to present time varying objective function. The notation of S is denoting the total 

number of bacteria while p is denoting the number of variables involved in the search space. 

On the other hand, θ = [θ1, θ2, . . . , θp]
T is representing a point on the optimisation domain, 

and θi
m is denoting the m-th components of the ith bacterium position θi. dattract, wattract, 

hrepellant, and wrepellant are different coefficients used for signalling. Some researchers claim 

that swarming works as a penalty function to the actual objective value. The idea is to let the 

algorithm to converge into an optimal value. When the penalty value becomes zero, it is 

expected that the bacteria are converged in an optimal value. 
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Equation 2.3 

Equation 2.4 

2.2.2.3 Reproduction 

Reproduction is a process of eliminating poor bacteria and reproducing the good 

bacteria to maintain the population bacteria with strong survival capability. This event can 

be seen clearly when the bacteria population increase significantly in a concentration nutrient 

media and decrease rapidly when there is low concentration of nutrient present in the 

medium. When a bacterium consumes enough nutrient, its length and size will increase. 

Then, the bacterium is ready to reproduce. For the optimisation technique, reproduction 

process is started after maximum Nc chemotactic size is met. The cost function of each 

bacterium in the population is used as indicator to determine their health. The lower cost 

function value indicates healthier bacterium and higher cost value means that the bacterium 

does not consume enough nutrient (poor health). In a formal notation, the health of the 

bacteria is represented in Equation 2.3. 

 

𝐽ℎ𝑒𝑎𝑙𝑡ℎ      =  ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)  

𝑁𝑐+1

𝑗=1

 

 

The bacteria in a population is sorted in ascending order based on the accumulative of their 

cost function for each bacterium. Then, they will be divided into two halves, Sr which is 

represented in Equation 2.4. The first half is the bacteria with a better health and the other 

half is the poor health bacteria. 

𝑆𝑟 =  
𝑆

2
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The poor health bacteria will die and the bacteria with better health will reproduce. 

A bacterium will split into two individuals and both have similar characteristics with their 

mother at the same location. This mechanism maintains the size of bacteria in the population. 

Once the bacteria are reproduced, they will undergo chemotactic process again and repeat 

the whole process until the maximum iteration of Nre is met.  

2.2.2.4 Elimination and Dispersal 

The bacteria population is easily affected by the external factors such as sudden rises 

of temperature or catastrophic that can cause the bacteria to be eliminated or dispersed into 

a new environment. This event is called the elimination and dispersal. It plays an important 

role in preventing algorithm from trapped at the local solution. In the algorithm, this event 

is started after maximum iteration of Nre is met. To model the elimination and dispersal 

process, each bacterium is supplied with a probability between 0 to 1. Through the value of 

the probability, it will determine whether it will be eliminated and dispersed. A predefined 

threshold, Ped is used to indicate which bacterium will eliminated and reinitialized into new 

region. Bacterium with a lower probability value than Ped is eliminated and dispersed by 

reinitialized it into new region and bacterium with higher probability value than threshold 

Ped will not affected. After the elimination and dispersal process complete, bacteria will 

undergo chemotaxis and followed by reproduction again. This process is repeated until 

maximum iteration of Ned is met. The detailed pseudocode for BFOA can be referred in 

Figure 2.3. 
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[Step 1] Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i)(i=1,2…S). 

 

[Step 2] Elimination-dispersal loop: l=l+1 

 

[Step 3] Reproduction loop: k=k+1 

 

[Step 4] Chemotaxis loop: j=j+1 

a) For i =1,2…S take a chemotactic step for bacterium i as follows.  

b) Compute fitness function, J(i, j, k, l). 

Let, J(i, j, k , l ) = J(i, j, k , l ) + Jcc(θ
i ( j, k , l ), P( j, k , l )) (i.e.  

add on the cell-to-cell  

attractant–repellant profile to simulate the swarming behaviour) 

where, Jcc is defined in (2). 

 

c) Let Jlast=J (i, j, k, l) to save this value since a better cost could 

be found via a run. 

d) Tumble: generate a random vector ∆(i) ∈ ℜ p with each element 

i, m =1,2,..., p, a ∆ random number on [-1, 1].  

e) Move: Let 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖)
𝛥(𝑖)

√(𝛥𝑇(𝑖)𝛥(𝑖))
 

This results in a step of size C (i) in the direction of the tumble 

for bacterium i. 

f) Compute J(i, j+1, k, l) and let 
 J(i, j, k , l ) = J(i, j, k , l ) + Jcc(θ

i ( j+1, k , l ), P( j+1, k , l )) 
   

g) Swim 

i. Let m = 0 (counter for swim length). 

ii. While m < Ns (if have not climbed down too long). 

• Let m=m+1. 

• If J (i, j + 1, k , l) < Jlast ( if doing better), let 

Jlast = J (i, j + 1, k , l) and let 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖)
𝛥(𝑖)

√(𝛥𝑇(𝑖)𝛥(𝑖))
 

And use this 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) to compute the new  

J (i, j + 1, k , l) as we did in (f) 

• Else, let m= Ns . This is the end of the while 

statement. 

h) Go to next bacterium ( i+1) if i ≠ S (i.e., go to (b) to process the 

next bacterium). 

 

[Step 5] If j < Nc, go to step 4. In this case, continue the chemotaxis process since the 

life of the bacteria is not over. 
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[Step 6] 

 

Reproduction: 

a) For the given k and l, and for each i = 1,2,..., S , let 

 

𝐽ℎ𝑒𝑎𝑙𝑡ℎ
𝑖 = ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)                                      

𝑁𝑐+1

𝑗+1

 

Be the health of bacteria i (a measure of how many nutrients it got 

over its lifetime 

and how successful it was at avoiding noxious substances). Sort 

bacteria and chemotactic 

parameters C(i) in order of ascending cost Jhealth (higher cost 

means lower health). 

b) The Sr bacteria with the highest Jhealth values die and the 

remaining Sr bacteria with the best values will split (this process 

is performed by the copies that are made are placed at the same 

location as their parent). 

 

[Step 7] If k < Nre, go to step 3. In this case, the algorithm had not reached the number 

of specified reproduction step, so it starts the next generation of the 

chemotactic loop. 

 

[Step 8]   Elimination-dispersal: For i = 1,2..., S with probability Ped, eliminate and 

disperse each bacterium (this keeps the number of bacteria in the population 

constant). To do this, if a bacterium is eliminated, simply disperse another 

one to a random location on the optimisation domain. If l < Ned, then go to 

step 2; otherwise end. 

 

Figure 2.3:  Pseudocode for Bacterial Foraging Optimisation Algorithm (Passino, 2002) 

 

2.3 Bacterial Foraging Optimisation Algorithm in Data Mining 

Originally, Bacterial Foraging Optimisation Algorithm (BFOA) was invented by 

Passino (2002) for control system. Since its inception, BFOA has been applied successfully 

to engineering problems, such as optimal control (Kim & Cho, 2005), transmission loss 

reduction (Tripathy et al., 2006), timetabling (Shivakumar & Amudha, 2012), image 

processing (Feng et al., 2012) and harmonic estimation (Mishra, 2005). To the best of our 

knowledge, the use of BFOA in data analysis (Cho & Kim, 2011) and data classification 

(Damodaram & Valarmathi, 2013) are not thoroughly explored by the researchers. There a 
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lot of potential areas that BFOA can be applied to improve the current performance. The 

latest development of BFOA, it has been employed on data clustering to improve the 

clustering performance (Olesen et al., 2009; Lei et al., 2011; Wan et al., 2012). The 

application of BFOA in several areas are shown as below. 

2.3.1 Classification 

This study has categorized the current implementation of BFOA for data 

classification into two categories which are optimising the feature selection and optimizing 

the parameters of the existing classifiers. This categorisation is based on the role of BFOA 

in the previous works.   

The role of BFOA in feature selection is to determine directly or indirectly (combined 

with other feature selection algorithm) the most relevant features and discard the noise 

features to prepare the data for further classification process. Most of the BFOA current 

applications in feature selection are in medical domain (Jakhar et al., 2011; Rani & Mangat, 

2013; Bensujin et al., 2016; Rani et al., 2016; Sindhu, 2016). Especially for the image data 

where the dimension of the features is large, and it is a necessity to employ feature selection 

to speed up the process. Feature selection works by selecting the most relevant features and 

remove the redundant one. By reducing the redundant and noise features, it will improve the 

classification results.  

The implementation of BFOA in those previous works are motivated by the 

successfulness of other evolutionary algorithms such as GA, ACO and PSO in improving 

the current selection method. Since BFOA has advantage in optimisation especially in term 

of global search capability as compared to other evolutionary algorithms, it draws the 

researchers’ attention to implement it for feature selection as summarized in Table 2.2.  
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BFOA has been implemented in various ways for feature selection. Some researchers 

solely use BFOA to select relevant features and some of them combine BFOA with other 

evolutionary algorithms such as PSO to improve the performance. PSO is currently a popular 

algorithm that has been applied in many applications. However, due to some limitation in 

PSO, BFOA is used to overcome the issue (Olesen et al., 2009; Zhang & Wu, 2012; Wan et 

al., 2012; Chen et al., 2014). BFOA shows a better result in selecting the relevant features 

compared to the other optimisation algorithms such as Particle Swarm Optimisation (PSO) 

(Jakhar et al., 2011; Rani & Mangat, 2016), Principal Component Analysis (PCA) and 

Laplacian Score (LS) which are popular algorithms for feature selection. Furthermore, the 

combination of PCA and LS is unable to outperform the performance of BFOA for feature 

selection (Rani & Mangat, 2016).  

Besides, it is found that BFOA is also being used to optimise the learning capability 

of classifiers during the training process. There are several ways to enhance learning 

performance of classifiers such as optimising weight and optimising the parameters of the 

classifier. Most of algorithms behaviours were controlled by their parameters to halt the 

process or to force some conditions during the process. The enhancement of the learning 

capability of classifier is done through finding the optimal parameters or weights for the 

classifier. The convergence rate of the algorithm is depended on these parameters that also 

affects the product of the result. However, the process of optimising the parameters of an 

algorithm is considered optimisation problem because there is no clear relation between the 

parameters to the performance of the algorithm. Each parameter in the algorithm has its own 

role and it behaves differently to each other. Hence, it is not an easy task to predict the 

optimal values for these parameters. The recommendation to overcome this issue is to 



23 

 

employ the stochastic optimisation algorithms to predict the optimal values for the 

parameters.  

Table 2.2: Application of BFOA in Data Classification 

Data 

classification 

problems 

Authors Role of BFOA 

Noise 

features 

present in 

dataset 

 

Jakhar et al., 

(2011) 

BFOA was used to further reduce the extracted features 

of Cambridge Online Research Laboratory (ORL) gray-

scale face dataset that made by Discrete Cosine 

Transform (DCT) technique. 

Rani & 

Mangat, 

(2013)  

BFOA was adapted to select relevant features in the 

Pima Indian Diabetes dataset to improve the 

generalization ability of Feed-Forward Back 

Propagation neural network classifier. 

Kora &  

Kalva, (2015) 

A hybrid BFOA and PSO known as BFPSO has been 

employed for feature selection of ECG signals and these 

selected features have been used as the input for 

Levenberg-Marquadt Neural network classifier. 

Bensujin et al., 

(2016) 

The frequency dependent adaptive chemotactic 

bacterial foraging optimisation algorithm (FDABFOA) 

has been proposed to optimise and fine-tune the 

extracted features of ST elevation Myocardial Infraction 

(STEMI) dataset 

Rani et al., 

(2016) 

BFOA was utilized at the pre-processing stage for 

feature selection in ANN classifier to discard irrelevant 

features in lung image dataset for the ANN and SVM 

classifiers. 

Sindhu, (2016) BFOA was employed to select a small subset of 

informative or relevant genes from thousands of genes 

of cancer expression dataset. 

Low learning 

capability of 

classifier 

Chakrabarty et 

al., (2012) 

Employed BFOA to optimise the kernel function of 

Support Vector Machine (SVM) for hyperspectral 

image classification 

Qiang & Ai-

Min, (2013) 

BFOA has been applied to optimise the operation 

parameters of SVM regression model. 

Putra et al., 

(2014) 

The BFOA has been employed to optimise the weights 

and bias parameter of Backpropagation Neural network 

to predict Forex Gold Index (XAUUSD) 

Chen et al., 

(2014) 

The hybrid PSO and BFOA was introduced known as 

BFPSO to optimise Neural Fuzzy Classifier (NFC) for 

several benchmark datasets and skin colour detection 

problem. 
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Table 2.2 continued 

Low learning 

capability of 

classifier 

Al-Hadi et al., 

(2011) 

BFOA was applied to optimise the weights and 

parameters of Feed-Forward Neural Network for 

several benchmark datasets. 

Varghese et 

al., (2012) 

BFOA was used to tune the Backpropagation Neural 

network parameters for MRI images of Alzheimer 

Disease dataset 

Chakrabarty et 

al., (2012) 

Employed BFOA to optimise the kernel function of 

Support Vector Machine (SVM) for hyperspectral 

image classification 

Qiang & Ai-

Min, (2013) 

BFOA has been applied to optimise the operation 

parameters of SVM regression model. 

Putra et al., 

(2014) 

The BFOA has been employed to optimise the weights 

and bias parameter of Backpropagation Neural network 

to predict Forex Gold Index (XAUUSD) 

Chen et al., 

(2014) 

The hybrid PSO and BFOA was introduced known as 

BFPSO to optimise Neural Fuzzy Classifier (NFC) for 

several benchmark datasets and skin colour detection 

problem. 

Kaur & Kaur, 

(2014) 

BFOA has been applied to adjust the weight and 

parameter values of Feed-Forward Neural Network and 

Cascade-Forward Neural Network 

Pal et al., 

(2014) 

Hybrid BFOA and Learning Automata algorithm have 

been employed to identify the optimal features subset 

from a given imagery electroencephalography (EEG) 

based on brain-computer interfacing (BCI) dataset 

Lv et al., 

(2018) 

BFOA has been improved by adopting opposition-based 

learning strategy and it becomes new algorithm called 

IBFO for parameter optimisation in kernel extreme 

learning machine (KELM).  The study is proposed to 

improve the prediction of severity of somatization 

disorder. 

 

2.3.2 Clustering 

The involvement of BFOA is not limited in classification task only, it is also has been 

applied in clustering for pattern discovery. Clustering task can be defined as a task to 

discover the classes by itself through partitioning the training data into clusters based on the 

similarity of attributes (features). In literature, clustering task is known as an unsupervised 

learning (Greene et al., 2008).  
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The earliest work on BFOA for data clustering was on 2009 (Olesen et al., 2009). 

The authors proposed two algorithms which are a new clustering algorithm based on BFOA 

named AutoCB and a hybrid approach between PSO and BFOA as a new clustering 

algorithm called AutoPCB.  Since then, many works have been proposed to study the 

capability of BFOA to solve the data clustering problem as shown in Table 2.3. A study has 

proposed a new clustering algorithm based on BFOA using different fitness functions to 

improve clustering results (Wan et al., 2012). The results show that BFOA outperformed the 

popular k-means algorithm, PSO-based and ACO-based clustering algorithm in term of 

clustering performance and it manages to handle data sets with various cluster sizes, 

densities and multiple dimensions. Furthermore, a study was conducted to improve a BFOA-

based clustering algorithm by incorporating the cooperative approach (Hongwei & Liwei, 

2015). The internal structures of the algorithm were modified to make it more stable and 

accurate. This study reported that the proposed algorithm able to distinguish the sample 

precisely and automatically improving the clustering quality. 

Apart from that, Zhang and Wu (2012) has proposed a new fitness function called 

Variance Ratio Criterion (VRC) to find the maximum value of the proposed fitness function 

to improve cluster analysis (Zhang & Wu, 2012). This cluster analysis needs to be converted 

into an optimisation to be able to apply the proposed method. It is reported that BFOA is a 

better optimiser for cluster analysis as compared to GA and combinatorial PSO (CPSO) since 

it can find the highest value with a least time (Zhang & Wu, 2012). It concludes that BFOA 

is an efficient algorithm.  Instead of being proposed as a new algorithm, BFOA’s advantage 

has also been exploited to overcome the influence of cluster numbers on the experimental 

result on Protein-Protein Interaction (PPI) networks (Lei et al., 2011). Based on result 

reported, BFOA can improve the clustering result. It is proven that BFOA does not rely on 
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the initial point to obtain the optimal solution. It is possible because BFOA is flexible during 

the searching process thus it can move freely in the search space. Thus, the initial points do 

not affect the performance of algorithm. In addition, a comparative study has been carried 

out to evaluate the performance of BFOA in clustering against two famous evolutionary 

optimisation algorithms PSO and GA (Rupal & Kataria, 2014). The result reported that 

BFOA outperformed PSO and GA by having higher value of Cohesion, Precision, Recall 

and small value of Variance.  

Table 2.3: Application of BFOA for Data Clustering 

Data 

clustering 

problem 

Authors Role of BFOA 

Difficulty 

in finding 

optimal 

cluster to 

represent 

clusters 

Olesen et al., 

(2009) 

A novel clustering algorithm using BFOA which is 

known as AutoCB. Then, there is an improve version of 

AutoCB with PSO named as AutoPCB to sharpen the 

chemotactic steps in BFOA. 

Lei et al., 

(2011) 

BFOA was used as a base algorithm to overcome the 

influence of cluster number on experimental result of 

clustering Protein to Protein Interaction (PPI) networks. 

Wan et al., 

(2012) 

A new clustering algorithm based on BFOA which is 

known as BF-C to find the center or representation for 

each cluster by optimizing the objective function. The 

Sum Squared Error (SSE) was used as a fitness function 

to evaluate the representativeness. 

Zhang & Wu, 

(2012) 

Adopted the BF-C with new fitness function (variance 

ratio criterion) to determine the optimal cluster points. 

Rupal & 

Kataria, (2014) 

BFOA is used to enhance the accuracy H-Mean 

clustering. It is a comparative study to evaluate the 

performance of three evolutionary optimisation 

algorithms which are BFOA, GA and PSO. 

Hongwei & 

Liwei, (2015) 

A cooperative approach of BFOA for clustering, which is 

known as Cooperative Bacterial Foraging Optimisation 

(CBFO) to improve clustering results.  

 

2.3.3 Regression 

Regression is a task in data mining that make prediction of numerical value by 

building a model based on one or more predictors. Table 2.4 shows the existing works on 
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BFOA for regression problem. BFOA was integrated with regression models to improve its 

prediction and performances. The implementation of BFOA in regression started in 2012 

where it has been used to improve the robot routing by optimizing the interpolation of linear 

regression to make robots moving in a curving manner and remove conventional zigzag 

motion (Darvishi et al., 2012). Since then, a few works have been proposed such as adopting 

BFOA as an optimisation tool to reduce error in the models for ground water prediction 

(Kumar, 2014) and as a parameter optimisation tool for LS-SVM regression model for the 

Burning-Through-Point (BTP) forecasting (Song et al., 2016). In summary, BFOA is a 

flexible algorithm that can be applied in many domains. However, full capability of BFOA 

in regression is not fully explored yet. For instance, it can be adopted as a BFOA-based 

regression algorithm which is similar to the clustering domain. 

Table 2.4: Application of BFOA for Regression 

Regression 

problems 

Authors Role of BFOA 

Errors in 

regression 

models 

Darvishi 

et al., 

2012 

BFOA was used to improve the robot improve the robot routing 

by optimizing the interpolation of linear regression to make 

robots moving in a curving manner and remove conventional 

zigzag motion. 

Kumar, 

2014 

BFOA was used as an optimisation tool for linear regression and 

Multiple Linear Regression to reduce errors in the models. 

Song et 

al., 2016 

BFOA was adapted to optimise the parameters of LS-SVM 

regression model for the Burning-Through-Point (BTP) 

forecasting. 

 

2.4 Instance Selection 

Instance Selection is one of the data reduction methods by scaling down data. There 

are three types of data reduction method which are feature selection, feature-value 

discretization and instance selection (Liu & Motoda, 2002; García-Pedrajas et al., 2010). 

Nowadays, instance selection is also known with other alternative names such as Prototype 
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Selection (Kruatrachue & Hongsamart, 2008; Garcia et al., 2012; Miloud-aouidate, Baba-

ali, Alia, & Ezzouar, 2012; Triguero et al., 2012), Prototype Reduction technique (Nanni & 

Lumini, 2011) and reduction technique (Wilson & Martinez, 2000). In instance selection, its 

main objective is to reduce the number of rows in the dataset while maintaining the original 

goal of a data mining process as if the whole dataset is being used. By minimizing the size 

of the data, it is possible to reduce the computational cost of the data mining algorithm and 

improve the generalization capability since less noise is presented.  

The Nearest Neighbour classification is quite powerful classifier instead of its 

simplicity, it suffered some critical limitations. Those limitations are large storage 

requirement of prototypes, long response time classification and have low noise tolerance 

(Kuncheva & Bezdek, 1998; Liu & Motoda, 2002; Garcia et al., 2012; Triguero et al., 2012). 

NN classifier takes longer time (time complexity) and very sensitive to noise when it 

processes a larger size of dataset because it needs to process the whole dataset to enable the 

classification task. Thus, it critically depended on the quality of the data to have a better 

generalization capability. Those limitation can be solved by applying instance selection 

method since instance selection objective is to reduce the number of the dataset. As 

mentioned before, instance selection pursues reduction, generalization ability (classification 

performance) and time complexity (Garcia et al., 2012; Triguero et al., 2012) simultaneously 

which is reducing the size of dataset will remove the noises present in the dataset and 

simultaneously reduces the time complexity of the classifier.  

Technically, IS method is specifically designed to overcome the NN classifier’s 

limitation. However, there are some challenges faced by instance selection that it is always 

struggles to balance between the optimal size of subset of the representatives and the mining 
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quality. Reducing the number of instances sometime lead to the loss of information and 

results in reducing the mining quality. Due to this trade-off, instance selection is considered 

as an optimisation problem (Liu & Motoda, 2002). 

Since instance selection can be seen as an optimisation problem, the optimisation 

technique like stochastic heuristic search can be used to locate the optimal subset of 

representatives (a set of the prototype (reference set) or combination of instances) in a search 

space that can balance between the size of subset of representatives and mining quality. The 

earliest work on adopting optimisation technique for instance selection was carried out by 

Kuncheva and Bezdek (1998). The study investigates the effectiveness of heuristic and 

stochastic technique compared to the random search and clustering-based method. Genetic 

Algorithm (a nature-inspired optimisation algorithm) was converted into an instance-based 

classifier (using 1-NN rule) and was compared with other searching strategies. It turned out 

that heuristic and stochastic method able to find a better subset of representatives compared 

to the other searching strategies. Since then, several works were proposed on modifying the 

optimisation algorithms into the instance selection algorithms in order to find which 

optimisation framework is the best in finding the optimal subset of representatives. 

Instance selection consists of two major approaches which are prototype selection 

and prototype generation (abstraction) (Garcia et al., 2012; Triguero et al., 2012). Algorithms 

that developed with these approaches can be categorised with another subcategory under 

each approach. They are evolutionary and non-evolutionary IS algorithms. The evolutionary 

term was introduced by Cano et al. (2003) to address the algorithm that process and produce 

result based on the evolution of population. The details explanation for both approaches and 

subcategories will be discussed in following subsections.  
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2.4.1  Prototype Selection Approach 

In general, Prototype Selection (PS) approach is a method of selection of subset of 

relevant prototypes(instances) from the original dataset that can performs similar or better 

as if the whole dataset is used. In a formal notation of PS problem, let S ⊆ TR become the 

subset of a training set named as TR, and if there are query instances that need to be classified 

named as X, then classify them using the subset S instead of using the whole training set 

where the classification accuracy using subset S must be similar or better than using the 

whole data in TR. Figure 2.4 portrays how the selection mechanism work. 

 

Figure 2.4: Prototype Selection in Instance Selection (Kuncheva & Bezdek, 1998) 

 

The main advantage of PS approach is its capability to select relevant prototypes 

without generating new prototypes to represent the whole dataset. PS approach is suitable 

for the data that have been managed and each of classes has their own prototypes. In many 

real-world applications, data are collected and managed well. Thus, generating new data to 

replace them are irrelevant because sometimes the generated data could not represent the 

real situation in some problem or domain.  

According to the study conducted by Garcia et al. (2012), there are more than 50 

available PS algorithms that have been proposed to improve the nearest neighbour 

classification problem. PS algorithms can be categorised into evolutionary PS algorithm and 

non-evolutionary PS algorithm. Evolutionary PS algorithms are derived from the nature-
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inspired algorithms such as Genetic Algorithm (GA) (Kuncheva & Bezdek, 1998; Bezdek 

& Kuncheva, 2001; Gil-Pita & Yao, 2007; Suguna & Tanushkodi, 2010), Evolutionary 

Algorithm (EA) (Cano et al., 2005; Garcia-Pedrajas et al., 2010), Ant Colony Optimisation 

(ACO) (Miloud-Aouidate & Baba-Ali, 2012; Miloud-Aouidate & Baba-Ali, 2013), and 

Particle Swarm Optimisation (PSO) (Hu & Tan, 2015). All these algorithms preserved its 

originality and applied stochastic heuristic search to locate the solution (a reference set) by 

transforming this searching problem into optimisation problem. For non-evolutionary PS 

algorithms, they were developed without the evolutionary concept. The examples of 

successful non-evolutionary PS algorithm are IB3 (Aha et al.,1991), DROP3 (Wilson & 

Martinez, 2000), ICF (Brighton & Mellish, 2002) and there are a lot of non-evolutionary PS 

algorithms that have been proposed until today.  

This study focuses on the development of evolutionary PS algorithms. The 

evolutionary PS algorithms work directly with the classification performance as their 

objective function and optimise them using evolutionary computation to get the optimal 

prototypes. Through evolutionary strategy, the algorithm searches for global best solution 

through the selection of the best combination of prototypes.  Along the process, these 

prototypes can be evolved, eliminated and reproduced to obtain better objective function. 

The earliest work on evolutionary PS algorithm was proposed by Kuncheva and Bezdek 

(1998) by adopting Genetic Algorithm (an evolutionary algorithm) into a PS classifier. Since 

then, researchers started to take interest in other evolutionary algorithms which are mostly 

based on natured-inspired algorithm. The following reviews are the recent development of 

evolutionary PS algorithm for nearest neighbour classification. 
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Gil-Pita and Yao (2007) adopted genetic algorithm for editing k-nearest neighbour 

classifier. It aims to improve the classification performance of the classifier by proposing 

three techniques such as using objective function called mean square error, the 

implementation of a clustered crossover and a fast-smart mutation scheme. New clustered 

crossover minimized the objective function by considering the relationship between the 

different bits of the bit stream. On the other hand, fast-smart mutation scheme helps the 

algorithm to select the best gene by taking account the variations of objective function for a 

given set of each gene. It managed to improve the classification accuracy of k-NN classifier 

compared to standard k-NN.  

Kruatrachue and Hongsamart (2008) proposed a combination of MCSI method and 

Genetic Algorithm (GA) for nearest neighbour classification. This study focuses on the 

condensing the prototypes to find the minimal consistent subset of prototypes. The 

condensation problem is considered as hard combinatorial problem because there is no exact 

solution can be obtained in a limited time for the problem. The weakness of MCSI is it 

always trapped at local minimum and this disadvantage was tackled by GA. GA is used for 

global search and MCS1 is responsible to find the local solution. By exploiting both 

advantages, the proposed algorithm has significant difference in the cardinality of the 

prototypes for small dataset compared to standard GA and MC1. However, the difference in 

performance is not so significant for the large dataset (more than 700 instances). 

Garcia et al. (2008) proposed a model of memetic algorithm that incorporates an ad 

hoc local search for optimizing the prototype selection problem named Steady-State 

Memetic Algorithm (SSMA). Memetic algorithm is an evolutionary algorithm that shares 

similar concept to the popular evolutionary algorithm such as genetic algorithm that follow 
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the survival of the fittest through evolution. The result shows that the proposed algorithm 

outperformed the non-evolutionary algorithm and had a competitive result against the other 

evolutionary prototype selection algorithms in term of accuracy and reduction rate. 

In other work, García-Pedrajas et al. (2010) proposed cooperative coevolutionary 

instance selection (CCIS) for instance-based learning. This study used divide and conquer 

concept by decomposing a complex problem into simpler subproblems. This method is 

called as cooperative coevolution technique. The simpler problems are being solved 

separately and the result will be combined to obtain the global solution. The instances are 

divided using stratification approach. However, stratification process will make the 

algorithm suffers from the partial knowledge it has on the dataset. In term performance, the 

proposed algorithm shows a good performance in term of generalization ability and 

reduction rate as compared to the other evolutionary algorithm such as genetic based instance 

selection algorithm. 

Figueredo et al. (2012) proposed an IS algorithm based on natural immune system’s 

suppression mechanism. The author claimed that the proposed algorithm was faster and 

demand less computational resources than the evolutionary method. It focuses on 

condensing the training instances to reduce redundancies in dataset and this training set can 

be applied on any classifier. However, in their proposed method, the author employed the 

nearest neighbour rule to determine the smallest size of the relevant training set. The 

proposed algorithm achieves better classification accuracy compared to CHC (genetic 

algorithm based) algorithm. However, CHC have better reduction rate as compared to the 

proposed method. 
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Miloud-Aouidate & Baba-Ali (2012) proposed a hybridization of ant colony 

optimisation (ACO) algorithm with K-nearest neighbour. The authors focus on the 

condensation technique for prototype selection approach. They aim for the minimal size of 

consistent subset from the training set that can improve the standard nearest neighbour 

classification by exploiting the ACO optimisation capability. The proposed algorithm named 

ANT-KNN consist of three steps which are the creation of the associate’s chain, the 

application of condensing technique and noise filter process to remove the prototypes that 

cause misclassification. The reference prototypes obtained from the training will be used for 

classification using 1-NN rule. ANT-KNN outperforms standard KNN, TRKNN and 

DROP3 in term of reduction rate and classification accuracy. 

Sakinah & Ahmad (2014) proposed a method using cooperative binary PSO for 

nearest neighbor classification. The authors adopt feature selection and instance selection in 

their works. It aims for the relevant prototypes and select the most relevant features to 

improve the classification performance. The proposed method divides the candidate solution 

into several sub-components named sub-swarms. The proposed method only considered the 

accuracy performance and does not include the reduction rate in the evaluation. 

2.4.2 Prototype Generation Approach 

Prototype Generation (PG) is a suitable method to solve the problems had by NN 

classifier especially when it comes to the data that do not have instances to represent some 

classes. Although PG has an almost similar problem and goals with Prototype Selection (PS) 

approach, but they are slightly different compared to each other. PS approach is using the 

original training data to find the optimal subset of representative instances through the 

process of discarding the noise and redundant instances.  However, PG approach can 
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generate and replace the original instances with new artificial instances which is contradicted 

to PS approach (Garcia et al., 2012; Triguero et al.,2012). However, both PG and PS are 

sharing the same goals that they want to reduce the training data as much as possible and 

simultaneously attempt to achieve the highest possible classification accuracy using 1-

nearest neighbour (1-NN) when dealing with the unseen data (Garcia et al., 2010).  

 

Figure 2.5: Prototype Generation in Instance Selection (Kuncheva & Bezdek, 1998) 

 

Similar to PS approach, researchers started to improve PG algorithms by adopting 

evolutionary algorithm to improve its performance over NN classification. The empirical 

study shows that the evolutionary PS algorithm outperformed the non-evolutionary PS 

algorithms (Nanni & Lumini, 2009). As a result, abundance of evolutionary PS algorithms 

were produced by adopting nature-inspired algorithm such as genetic algorithm (GA) 

(Kuncheva & Bezdek, 1998; Bezdek & Kuncheva, 2004; Gil-Pita, 2007; Suguna & 

Tanushkodi, 2010), evolutionary algorithm (EA) (Cano et al., 2005; Garcia-Pedrajas et al., 

2010), ant colony optimisation (ACO) ( Miloud-Aouidate & Baba-Ali, 2012; Miloud-

Aouidate & Baba-Ali, 2013) and Particle Swarm Optimisation (PSO) (Chang, 1974; 

Cervantes, 2007; Triguero & Garcia, 2011; Hu & Tan, 2015). All these algorithms preserve 

its originality and applied stochastic heuristic search to locate the solution (a reference set) 

by transforming this searching problem into optimisation problem. 
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Over the years, a lot of algorithms have been proposed using prototype generation 

method. Prototype generation can be categorised into three groups which are data 

condensation approach, prototype tuning approach and evolution-based approach (Hu & 

Tan, 2015).  The general idea for condensation-based prototype generation algorithms is it 

works by condensing the data without taking NN classification into consideration. It assumes 

the prototype generation as a common condensation problem. The examples of condensation 

based prototype generation algorithms are vector quantization (Xie et al., 1993), self-

organizing map (SOM) (Kohonen, 1990; Li, Manry et al., 2005) and Gaussian mixture model 

(Lozano et al., 2006). Most of these algorithms usually performed poorly in NN 

classification as compared to other prototype generation algorithms that had been 

incorporated with some strategies that includes the NN classification performance.   

The prototype tuning approach involves with relabelling, merging, moving or 

deleting the training instances to generate prototypes. This approach is usually followed by 

heuristic mechanisms to ensure good performance in NN classification. However, there are 

some studies that solely use merge operation based on instance’s class to generate prototypes 

(Chang, 1974) and some of them adopted different method such as bootstrap to merge 

training instances to produce prototypes (Hamamoto, Uchimura, & Tomita, 1997). In 

addition, prototype tuning also can be carried out by editing scheme  (Koplowitz & Brown, 

1981), moving instances (Geva & Sitte, 1991) where the human-defined rules are introduced 

to enable the movement of prototypes and converting the prototype generation problem into 

optimisation problem by tuning its cost function (Decaestecker, 1997) to obtain better 

classification performance.  In brief, the prototype tuning approach depends on the human-

defined rules to tune the prototype and establish correlation toward NN classification 

performance. These rules are expected to improve the classification performances. However, 
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it is not guaranteed that the classification performance will be optimal due to the difficulty 

in establishing clear relationship between rules and final classification performance. 

Since most of the nature-inspired algorithms are converted into evolutionary IS 

algorithm, thus this study will focus more on the evolution-based prototype generation 

approach. This approach is recognized as performance-driven approach (Hu & Tan, 2015). 

The evolution-based prototype generation algorithms work directly with the classification 

performance as their objective function and optimise them using evolutionary computation 

to obtain the optimal prototypes or reference set. The algorithm will search for the global 

best solution through the evolution of prototypes that during the process, the prototypes can 

be altered, eliminated and reproduced to obtain a better objective function. There are many 

existed PG algorithms and their numbers are steadily increasing until today.  

Cervantes et al. (2009) in their proposed PG algorithm was based on PSO with 

Michigan approach called AMPSO. The authors encoded each particle as a prototype and 

assigned each of them with a fixed class. In Michigan approach, an individual of the 

population does not encode the whole solution to the problem but only a part of it. Thus, the 

whole swarm of particles in AMPSO represented the potential solution to the problem. Due 

to the representation of particles, local fitness was introduced to evaluate prototypes. This 

approach was able to reduce the dimension of the search space since each particle was 

encoded as a single prototype (instance) and it offered a flexible size of prototypes in the 

population (represented the solution to a problem). Besides, AMPSO also allows insertion 

and removal of new particles in swarm to produce a good combination of prototypes. 

Nanni and Lumini (2009) proposed prototype generation algorithm based on PSO. 

The study generates prototypes called particles by selecting k numbers of instances randomly 



38 

 

from training data and encodes them in form of vectors. Each particle represents a potential 

solution to a problem. The proposed algorithm works by minimizing the error rate of the 

training process of each particle through PSO mechanism. Due to randomness in generating 

particles, the operation is repeated several times to produce high performance particle. 

Voting rule is used for the classification process of unknown instances. 

Triguero et al. (2011) proposed a hybrid of prototype selection and position 

adjustment with Differential Evolution (DE) or PSO. The prototypes are encoded using 

random stratified selection of prototype that have similar ratio to the number of instances in 

each class. This method ensures at least one instance is encoded into an individual. It means 

that one individual is having many instances that represents a potential solution to a problem. 

In 2014, the development of evolutionary Prototype Generation algorithm has 

extended using the multiobjective method.  Rosales-Pérez et al. (2014) introduced 

Multiobjective (MO) scheme for evolutionary Prototype Generation algorithm called 

EMOPG and as they consider the Prototype Generation problem as multiobjective 

optimisation problem. The objective of Prototype Generation is to find the optimal solution 

that can produce higher classification performance with small cardinality of solution (high 

reduction rate). The author stated that the normal PG algorithm only focussed on maximizing 

the classification performance. As suggested, the algorithm with MO scheme attempt to 

optimise two objectives separately by employing Pareto optimality to find the optimal trade-

off between classification performance and reduction rate. In MO case, there is no single 

solution that can optimise and satisfy both conflicting objectives. At the end of the process, 

MO returns a set of solutions instead of a single solution. A weighting scheme is proposed 

to measure the instance’s discrimination power in the training set. Furthermore, the weight 
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is also being used to generate the initial prototypes. Position adjustment using PAES (Pareto 

Archived Evolution Strategy) is employed to move the prototypes in order in order to 

maximize the classification performance and simultaneously reduce the cardinality of the 

solution. PAES will return a set of non-dominated solutions and Tchebycheff metric is used 

to select a single solution from them. Later, EMOPG has been extended by the authors by 

adopting feature selection to maximise the classification accuracy (Rosales-Pérez et al., 

2017). 

Hu and Tan (2015) introduced new evolution-based prototype generation algorithm 

called MOPSO. The authors encoded the prototypes based on the distribution of data in each 

class with prespecified reduction rate to ensure each there is at least one instance for each 

class in a single prototype or particle. A particle in the swarm is represented a potential 

solution for a problem. Then, PSO mechanism is deployed to optimise the objective function 

to search for good solutions. Multiobjective (MO) and error rank are deployed as the fitness 

function for the proposed algorithm to improve classification performance. Error rank is 

proposed specifically to improve the generalization ability of NN classifier by taking the 

misclassified instances into consideration for evaluation.  

2.5 General Framework of An Evolutionary IS Algorithm 

As explained in formal notations in previous section, evolutionary PS and PG share 

some similarities in general framework for their implementation. Figure 2.6 simplified both 

formal notations into a figure to show the basic idea for implementing the evolutionary PS 

and PG algorithms. 
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 The evolutionary IS algorithms process the training set by selecting or generating a 

subset of instances that can represent the whole dataset. After several iterations or cycles, a 

small cardinality of reference set (selected or generated) will be produced as a model for the 

problem. The classification of the unknown instances will be using the reference set instead 

of the whole dataset to assign class to them by using 1NN rule. This is the basic procedure 

of an evolutionary IS algorithm processes. 

 There are two important criteria that need to be considered in developing 

evolutionary IS algorithm that PS and PG both approaches shared. They are the 

representation for the population and fitness function that will evaluate the performance of 

the candidate solutions (Cano et al., 2003; Derrac et al., 2010). The detail for each criterion 

is discussed as follow. 

2.5.1 Data Representation 

Representation of the data involved with encoding information of instances into a 

form that can be process by evolutionary PS or PG algorithms to produce solution for a 

problem. This is one of the important criteria need to be considered before developing the 

Training 

Dataset 
Selected 

Reference 

Set 

Test 

Dataset 

Evolutionary PS 

or PG Algorithms 

1-NN Classifier 

Figure 2.6: Basic Steps for Evolutionary Prototype Selection and Prototype 

Generation Processes 
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evolutionary PS and PG algorithms. According to Cano et al. (2005), the representation of 

solution (prototype) can also affect the efficiency of the evolutionary IS. Improper 

representation will not able to bring out the full potential of the algorithm.  

Generally, evolutionary algorithm represent individual in a population in form 

chromosome, thus the individual in evolutionary IS algorithms is normally represented in a 

string-like chromosome form that contain the information about the dataset (Cano et al., 

2005; Garcia-pedrajas et al., 2010). Every individual (known as prototype) undergoes 

evolution process within specific cycles and evolves into a better solution for a problem at 

hand. There are two ways to represent solution in an individual or prototype (some 

researchers used encoding term) for evolutionary IS algorithm. They are Pittburgh and 

Michigan approaches (Cervantes et al., 2005). Pittburgh approach encoded a solution into a 

single individual in a population and a population is comprised with many individuals. This 

approach is commonly used in most of the standard evolutionary IS algorithms. On the 

contrary, Michigan approach encoded a part of solution into a single individual of the 

population. Thus, the whole population is representing a solution for a problem. From the 

literatures, most of discussion on these approaches are towards the evolutionary PG 

algorithms and evolutionary PS algorithm did not employed Michigan approach for solution 

encoding. According to Cervantes et al. (2005, 2007, 2009) in his comparison work, 

Michigan approach is more efficient compared to Pittburgh on PSO for evolutionary PG 

algorithms. 

Once the solution representation is decided, the next step is to encode the information 

into individuals in the population. The typical information encoding scheme for evolutionary 

IS algorithm is the binary representation. In binary encoding scheme, every instance will be 
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assigned with value either ‘1’ or ‘0’ that indicate selected instances or not selected instances 

in an individual. Value of ‘1’ indicates the selected instances and ‘0’ indicates non-selected 

instances. Thus, an individual in population will be represented in a string (chromosome) 

with combination of ‘0’ and ‘1’ as depicted in Figure 2.7. Only selected instances will be 

evaluated to produce the solution for the problem. This method was employed by the earliest 

work on evolutionary IS algorithm by Kuncheva (1995). There is a continuation on the usage 

of this encoding scheme in latter proposal for evolutionary IS algorithms (Ho et al., 2002; 

Cano et al., 2005; García et al., 2008; Kruatrachue & Hongsamart, 2008; Ahmad, 2014). 

From the trend, most of evolutionary PS algorithms used binary encoding more compared 

to evolutionary PG algorithms.  

 

Figure 2.7: Binary Representation Scheme 

 

There are other information encoding available such as real number (Suguna & 

Thanushkodi, 2010; Miloud-Aouidate & Baba-Ali, 2012; Figueredo et al., 2012), integer 

number and other alternative encoding schemes (Rosales-Pérez et al., 2016). The real 

number encoding is used to encode the position index of instances in dataset into the 

prototypes or encode continuous values such as normalized value of the attributes since they 

are normally ranged from [0,1].  

2.5.2 Fitness Function  

Most of the evolutionary IS algorithms employed fitness function to evaluate the 

quality of the solution. Based on the problem at hand, the fitness function is set either to 

minimize or maximize the value of the fitness. Most of IS algorithms are naturally employed 
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the classification accuracy (becomes reference set) to measure the generalization ability of 

the classifier or solution. On the other hand, reduction rate of the size of selected instances 

from the original size of dataset is also commonly used to measure the performance of 

evolutionary IS algorithms (Derrac et al., 2010; Garcia et al., 2012; Triguero et al., 2012).  

Most of evolutionary PS considered both of accuracy and reduction rate performance in 

determining better solution.  

On the other hand, most of PG only employed classification accuracy obtained from 

the generated reference sets or solution (classification with 1NN). Interestingly, the 

reduction rate is not considered as the performance measure since generally the size of 

solution generated by PG is normally small (Derrac et al., 2010). They are usually in a fixed 

concrete value. Thus, the size of solution did not give much impact on efficiency of the 

algorithm and it can focus solely on maximising the quality of the generated solution. 

2.6 Summary 

This chapter has discussed two important components for the study. The first 

component in this chapter has explained the BFOA’s background, structure, capability and 

its performance in its original domain which is optimisation. Then, a thorough reviews have 

been done on the application of BFOA in data mining to study the current trend of the 

development for BFOA. The second component is this study focusses on data classification 

especially in Instance Selection. This chapter has included the background of the Instance 

Selection and its advantages for the data classification. Finally, this chapter present the 

current development and modification on the nature-inspired algorithms using Prototype 

Selection and Prototype Generation approaches as IS algorithms.  
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CHAPTER 3  

 

 
RESEARCH METHODOLOGY 

3.1 Overview 

The objective of this chapter is to present the methodology used in conducting the 

study. This chapter discusses all the research steps involved. Besides, it also describes in 

detail all the benchmark datasets that are being used in the experimental study. Furthermore, 

this chapter is also explained in detail on pre-processing the benchmark datasets to prepare 

them for experiment. All system requirements, evaluation and analysis methods that are 

being used in this study are discussed in detail. Finally, this chapter is ended with a summary 

that concludes all materials in this chapter.  

3.2 Research Flow  

The processes and procedures used in this study will be elaborated in this section. 

This study employs the combination of build and empirical research methodology. The 

summarisation of the research procedures is shown in Figure 3.1. 
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Figure 3.1: Research Methodology 

 

Step 1 - Thorough reviews on previous study: This study focuses on the converting 

an optimisation algorithm BFOA into data classification algorithm specifically as Instance 

Selection algorithms. Therefore, this study begins with a review on original structures of 

Bacterial Foraging Optimisation Algorithm (BFOA). Then, the various existing Prototype 
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Selection (PS) and Prototype Generation (PG) algorithms especially the natured-inspired 

algorithm such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Ant 

Colony Optimisation (ACO) are thoroughly reviewed to study on how those optimisation 

algorithms can be converted into IS algorithms. Those natured-inspired algorithms are meant 

for optimisation and they have successfully been adopted as instance selection (IS) 

classifiers either in PS or PG approaches. The important criteria for conversion of an 

optimization algorithm into an IS classifier are extracted and considered for designing the 

conversion frameworks of BFOA.  

Step 2.1 - Design a framework for the conversion of an optimisation BFOA into 

IS algorithm using Prototype Selection approach: This phase concerned about designing 

and converting the original BFOA into an instance selection (IS) algorithm using prototype 

selection (PS) approach. Based on the reviews, there are some criteria need to be considered 

which are the solution representation and fitness function for the conversion of an 

optimization algorithm into IS algorithm. The design or structure of an algorithm is mostly 

affected by the structure of the data that they work on. In earliest work of evolutionary 

instance selection algorithm (Kuncheva & Bezdek, 1998), the authors proposed 

chromosomes like representation for the dataset to enable the Genetic Algorithm to process 

them. Without any modification of the original structure of GA, the dataset could not be 

processed, and classification task could not be produced. The authors clearly stated how the 

modification of GA make it possible to be employed as an IS algorithm with PS approach. 

In addition, some parameters are also suggested to control and improve the algorithm. Thus, 

this study used Kuncheva and Bezdek (1998) work as a main reference to develop an 

Instance Selection BFOA with PS approach since the study used a very basic and clear 

implementation with solution representation and fitness function for conversion of 
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optimization algorithm into IS algorithm with minimal modification. A framework will be 

designed for the conversion of BFOA into Prototype Selection algorithm is produced at the 

end of this phase that reflect to the first objective of the study. 

Step 2.2 - Design a framework for the conversion of an optimisation BFOA into 

IS algorithm using prototype generation approach: This phase involved with designing 

the framework for the second version of BFOA for instance selection algorithm using 

prototype generation approach. As mentioned in the previous chapter, prototype generation 

is literally more dynamic than prototype selection because the data itself can be generated or 

fabricated. Due to this feature, the concept for the second proposed algorithm is quite 

different with the PS approach. According to literature, there are two ways for representation 

of the solution. The first representation is one population consist of many candidate solutions 

and the second representation is a population represented as a solution for a problem. The 

second representation method was chosen study to represent the solution for the proposed 

PG algorithm. This method is suitable with the dynamical nature of generation approach. 

The detailed framework and modification of the BFOA structure for the proposed PG 

algorithm will be discussed further in Chapter 4.3. The designed produced from this phase 

is reflected to the second objective of the study. 

Step 3 - Implementation of both proposed frameworks for experiments: Based 

on the design that have been proposed, both proposed frameworks are implemented using 

MATLAB programming for experiment in this phase.  

Step 4 - Analysis and Evaluation: This phase involved with the process of 

evaluating the performance of the proposed algorithms with existing Instance Selection (IS) 

algorithm in term of generalization ability, reduction rate and time efficiency. An 
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experimental study was conducted to observe and compare the performance of the proposed 

algorithms with some benchmark algorithms. A preparation must be made before executing 

the experiment. All datasets and its pre-processing method will be explained in this chapter.  

Experimental Setup: There are three algorithms involved in the experiment which are 

BFOA-S, BFOA-G, the earliest evolutionary Instance Selection algorithm GA (IS-GA) 

(Kuncheva & Bezdek, 1998) and 1NN classifier. Each algorithm needs an optimised 

parameter configuration to perform well in classification. 

Most of parameter configurations for IS-GA are adopted from its original work. Only 

parameter Pini is adopted from Hossin et al. (2017) for IS-GA because the algorithm worked 

with variety size of datasets. On the other hand, there is no parameter setting for 1NN 

classifier since there is no parameter in it. These algorithms will be the benchmark 

algorithms for the experiment. Apart from that, a heuristic setting was conducted for BFOA-

S and BFOA-G since there is no recommended optimised parameter for these proposed 

algorithms. The heuristic process is done using MATLAB where the proposed algorithm is 

executed with several chosen parameter’s combination. It started with the smallest value of 

parameters with a selected dataset which is using small dataset for faster processing and 

result. Each combination of parameter is running 10 times using a similar fold and dataset. 

The value of each parameter is increased with 5 to observe any improvement in term of 

accuracy and size of prototypes. The average of 10 times for each combination are recorded 

and compared to see which value is suitable for a specific parameter. The effect of changes 

in parameter value on the results are also recorded and plotted as shown in Figure 3.2 and 

Figure 3.3 for each parameter settings that can be documented as a guideline for further 

heuristic setting for the proposed BFOA algorithms. Figure 3.2 is generated from MATLAB 
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based on chemotactic iteration and Figure 3.3 is plotted based on reproduction iteration. 

There final configurations for both algorithms are presented in Chapter 5 (Subsection 5.1).  

Figure 3.2: MATLAB Graph based on Chemotactic Iteration for Heuristic Setting. 

 

Figure 3.3: MATLAB Graph based on Reproduction Iteration for Heuristic Setting.  
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Evaluation: It is an inadequate to measure the generalization ability by taking the average 

values of the testing accuracy when it involved with comparing multiple classifiers using 

multiple datasets.  It is hard to analyse them by relying only on the overall recognition values 

because in some cases, there is not so much different on the average values itself due to 

unnatural condition such as outliers in the testing results. To overcome the issue, two 

statistical tests were employed to evaluate and validate the results that are Sign Test and 

Wilcoxon Test. These two statistical tests were proposed by Demsar (2006) to evaluate the 

performance of multiple algorithms with multiple data. Furthermore, García-Pedrajas et al. 

(2010) and Garcia et al. (2012) also used similar evaluation methods to compare the 

performance between IS classifiers in their work. Through comparative descriptive statistics 

results obtained by these two studied measures, the proposed algorithms and the benchmark 

algorithm were compared using win-draw-loss number of datasets. The win, draw and loss 

record are counted by comparing each model in specific column with each model in each 

particular row. In this evaluation, win record is determined if a particular model in a 

particular column is performed better than the model in a particular row. Otherwise, the 

comparison result is counted as loss. Meanwhile draw (tie) is determined if both models in 

a particular column and row obtained the same result.  

For further analysis, the sign test was applied to describe the significant difference 

between two models by interpreting the p-value based on two-tailed sign test. If the p-value 

of two-tailed sign test is below than 0.05 (5%), this study concluded that the two studied 

measures have significant difference. However, according to Demsar (2006), the sign test 

result has some limitations that makes the sign test results become less reliable. Therefore, 

the Wilcoxon test analysis is proposed as complementary test for comparing the two studied 

measures. In fact, this test is safer than the parametric test since the normal distributions or 
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homogeneity of variance can be ignored. Furthermore, this statistical test also can be applied 

to any specific criterion for comparison. Empirical results from (Demsar, 2006) have proven 

that non-parametric test is better than the parametric test for evaluation of multiple datasets 

over multiple classifiers. For easy understanding, this study also uses scatter plots to 

summarize the results obtained from 42 datasets that are categorized into small and medium 

datasets. Better result in the scatter plots are shown as the points are closer to the origin (0,0). 

It is easier to see which algorithms performs better in small and medium datasets.  

This study also employed stratified 10-fold cross validation in the experiment to 

obtain the average of the training and testing error to measure the model produced by the 

algorithms (Garcia et al., 2010, 2012). It is used to measure the performance of the algorithm 

and it is reliable because the method can reduce variance and also bias.  Each dataset is 

divided into approximately equal subset where k-1 is used for training and the remaining 

fold is used as testing dataset. Since the value of k is 10 for the experiment, thus the training 

and testing datasets are repeated for 10 times for each dataset and each algorithm. Then, the 

average of 10 independent experiments are taken and calculated to indicate and measure the 

performance of the algorithm. The stratification process is important to ensure that each fold 

has instances from every class so that each of them can be a good representative for the 

whole dataset. 

Step 6 - Documentation: All designs, experimental results and analysis are collected 

and recorded in form of thesis and paper articles. 

3.3 Datasets and Preprocessing Process 

Various benchmark datasets were selected for the comparative experiments for the 

purpose of evaluation of the proposed algorithms. These datasets were obtained from the 
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UCI Machine Learning database (Frank & Asuncion, 2011). It consists of 19 binary class 

datasets and 23 multi-class datasets that varies in domain applications. In addition, there are 

a variation in term of relative proportions between each class in every dataset. Brief 

descriptions on the selected dataset are summarised in Table 3.1. There are three categories 

of the class proportion for the datasets which are balanced (B), imbalanced (IB) and extreme 

imbalanced (EIB). The dataset that has a minority class with 5% or less proportion compared 

to other classes will be classified as extreme imbalanced (Han et al., 2009). However, this 

study did not go further on the proportion of the classes because the focus is to evaluate the 

generalization capability and performance of the proposed algorithm on the various type of 

datasets. For the size of dataset (number of instances), it divided into three categories which 

are small (S), medium (M) and large (L). This specification is based on Garcia (2010), Garcia 

et al. (2012) and Triguero et al. (2012). Dataset with 2000 or less instances will be 

categorized into small dataset. Meanwhile, medium size dataset is ranged from 2001 to 

20000 and dataset that more than 20000 is categorized as large. However, this study did not 

cover for the large volume of datasets due to the time complexity issue. For the attribute size 

categorization, this study followed the specifications from Chuang, Tsai and Yang, (2011). 

According to the authors, dataset with 19 or less attributes are considered as small dataset 

and attributes size less than 50 is considered a medium size. Attributes size more than 50 is 

classified as large size. However, the dataset with attributes size of 1000 and above is not 

included for the experiment due to the time complexity. In brief, there are 35 small size 

datasets and seven medium size datasets in term of volume or the number of instances. In 

term of size of attributes, 30 datasets are small, nine are medium and three are large size of 

attributes datasets selected for the experiments.  
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The selected dataset cannot be employed directly for the experiment purpose. There 

are some missing values present in some datasets. These missing values are replaced with 

median value for numeric value and mode for symbolic value that is similar to Skalak (1994) 

and Al-Shalabi (2011). Then, all datasets were normalized using min-max normalization 

method within the range of [0,1]. This normalization process is important to provide some 

standardisation and to avoid any attribute values from dominating the analysis (Al-Shalabi, 

2011). 

Table 3.1: Brief Description on 42 Benchmarks Datasets 

Dataset NoI Size Class NoA MV CD MnC(%) MjC(%) 

CCAus 690 S 2 14 No IB 44.49 55.51 

CCGer 1000 S 2 24 No IB 30.00 70.00 

Haberman 306 S 2 3 No IB 26.47 73.53 

Heart 270 S 2 13 No IB 44.44 55.56 

Hepa 155 S 2 19 Yes IB 20.65 79.35 

Ionos 351 S 2 34 No IB 35.90 64.10 

Liver 345 S 2 6 No IB 42.03 57.97 

Musk 476 S 2 166 No IB 43.49 56.51 

Pksn 195 S 2 22 No IB 24.62 75.38 

Pima 768 S 2 8 No IB 34.90 65.10 

Sonar 208 S 2 60 No IB 46.63 53.37 

SPECT 267 S 2 22 No IB 20.60 79.40 

SPECTF 267 S 2 44 No IB 20.60 79.40 

Threeof9 512 S 2 9 No IB 46.48 53.52 

Transfusion 748 S 2 4 No IB 23.80 76.20 

Votes 435 S 2 16 Yes IB 38.62 61.38 

WDBC 569 S 2 30 No IB 37.26 62.74 

WOBC 699 S 2 9 Yes IB 34.48 65.52 

WPBC 198 S 2 33 Yes IB 23.74 76.26 

Balance 625 S 3 4 No IB 7.84 46.08 

BreastT 106 S 6 9 No IB 13.21 20.75 

Cars 392 S 3 12 No IB 17.35 62.50 

Derma 366 S 6 33 Yes IB 5.46 30.60 

Glass 214 S 6 9 No EIB 4.21 32.71 

Hayes 160 S 3 4 No IB 19.38 40.63 

HeartC 303 S 5 13 Yes EIB 4.29 54.13 

Image 2310 M 7 19 No B 14.29 14.29 

Iris 150 S 3 4 No B 33.33 33.33 

LED7 3200 M 10 7 No IB 8.44 10.66 

Lenses 24 S 3 4 No IB 16.67 62.50 



54 

 

Table 3.1 continued 

Nthyroid 215 S 3 5 Yes IB 13.95 69.77 

OpticalD 5620 M 10 64 No IB 9.86 10.16 

PageB 5473 M 5 10 No EIB 0.51 89.77 

VerteC 310 S 3 6 No IB 19.35 48.39 

Vehicle 846 S 4 18 No IB 23.52 25.77 

Wave 5000 M 3 40 No IB 33.06 33.84 

Wine 178 S 3 13 No IB 26.97 39.89 

WQRed 1599 M 6 11 No EIB 0.63 42.59 

WQWhite 4898 M 7 11 No EIB 0.10 44.86 

Yeast 1484 S 10 8 No EIB 0.34 30.86 

Zoo 101 S 7 16 No EIB 3.96 40.10 

Note: NoI-no. of instances, NoA-no. of attributes, MV- missing value, CD-class distribution, MnC-minority 

class, MjC-majority class, S-small, M-medium, B-balanced, IB -imbalanced, EIB-extremely imbalanced, 

CCAus-Statlog Australian Credit approval, CCGer- Statlog German Credit, Haberman-Haberman’s Survival 

data, Heart-Statlog Heart Disease, Hepa-Hepatitis Domain, Ionos-Johns Hopkins University Ionosphere data 

set, Liver-Bupa Liver Disorders, Musk-Musk Clean1 data, Pksn-Parkinsons disease, Pima- Pima Indian 

Diabetes, Sonar-Connectionist Bench (Sonar, Mines vs. Rocks), SPECT-SPECT heart data, SPECTF-SPECTF 

heart data, Threeof9-3 consecutive bits of 9 features are true, Transfusion-Blood Transfusion Service Center, 

Votes-1984 U.S Congressional Voting Records, WDBC-Wisconsin Diagnostic Breast Cancer, WOBC-

Wisconsin Original Breast Cancer, WPBC-Wisconsin Prognostic Breast Cancer, Balance-Balance Scale, 

BreastT-Breast Tissue, Cars-Car Models data, Derma-DermatologyDatabase, Glass-Glass Identification, 

Hayes-Hayes Roth & & Hayes Roth (1977), HeartC-Heart Disease Cleveland, Image-Statlog Image 

Segmentation, Iris-Iris plants, LED7-LED display domain, Lenses-Database for fitting contact lenses, 

Nthyroid-Thyroid Gland Data, OpticalD-Optical Recognition of Handwritten Digits, PageB-Page Blocks 

Classification data set, Soya-Small Soyabean, VerteC-Vertebral Column, Vehicle-Statlog vehicle silhouettes, 

Wave-Waveform Databse Generator (Version 2), Wine-Wine Recognition data set, WQRed-Wine Quality 

(Red), WQWhite-Wine Quality (White), Yeast-Protein Localization Sites, Zoo-Zoo database. 

 

3.4 System Requirements  

The preprocessing process were done by using MS Excel 2016 as a tool. All 

processed datasets were presented as flats file and were saved under *.dat extension. 

Besides, all the results and analysis were also presented using MS Excel 2016. The proposed 

algorithms were implemented using MATLAB 2016a and all experiments were running on 

a Dell Precision T3600 computer model. It is a workstation computer provided by Universiti 

Malaysia Sarawak. This computer is equipped with Intel(R) Xeon(R) CPU E5-1620 0 @ 

3.60GHz and 16GB RAM. It was running with Windows 7 Professional Service Pack 1 

operating system. 
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3.5 Summary 

This chapter has presented the procedures and processes involved in conducting this 

study. It also provides information on how the results will be analysed and validated. In 

addition, the preparation of the benchmark datasets process is explained in this chapter to 

prevent any unreliable results and analysis at the end of the study. The necessary hardware 

and software are explained to conduct the experiment. In the next chapter, the 

implementation of the proposed frameworks will be explained in detail. 
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CHAPTER 4  

 

 
PROPOSED ALGORITHMS 

4.1 Overview 

This chapter presents the conceptual designs of proposed BFOA for Prototype 

Selection and Prototype Generation algorithms together with their detailed implementation.  

All parameter configurations and experimental setup for both proposed algorithms were 

explained to evaluate the performance of the proposed algorithms. 

4.2 Bacterial Foraging Optimisation Algorithm using Prototype Selection (BFOA-S) 

The general implementation of BFOA for PS algorithm is portrayed in Figure 4.1. 

Through review, there are a lot of works on the conversion of nature-inspired optimisation 

algorithm into PS algorithm. However, there is no specific framework that converts an 

optimisation BFOA algorithm into a PS algorithm (classification algorithm). Thus, this study 

proposes a conceptual framework for the conversion of an optimisation BFOA into PS 

algorithm (accurately as evolutionary PS algorithm). 
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Figure 4.1: General Implementation of BFOA as a Prototype Selection Algorithm 

 

The ultimate challenge in converting BFOA into PS algorithm is to design a good 

prototype set that can produce a reference set with minimal cardinality and simultaneously 

increase the classification performance of 1-NN. Another challenge is to retain the original 

mechanisms of BFOA (chemotaxis, tumbling, swimming, reproduction and elimination-

dispersal) from the optimisation technique into the classification algorithm because improper 

modification will degrade its original capabilities. Apart from that, a proper solution and 

data representation are also important because they enable and affect the way of algorithm 

process the data.   

From the literature, most of evolutionary PS algorithms are using method and 

guideline from Kuncheva and Bezdek (1998, 2001) to develop evolutionary PS algorithm. 

Since there is no framework exists for converting BFOA into PS, thus this study follows the 

guideline from Kuncheva and Bezdek (1998) to develop BFOA based PS algorithm. As 

stated in Chapter 2, it is compulsory to decide on representation of data and fitness function 

that going to be used to evaluate the candidate solutions first before modifying the targeted 

algorithm into PS algorithm. The details of the proposed framework to convert BFOA into 

PS algorithm is explained as follows. 

Reference Set 
Training 

1-NN 

Classifier 

BFOA using 

Prototype Selection 

(BFOA-S) 



58 

 

4.2.1 Representation for BFOA-S 

This study has employed Pittsburgh approach for solution representation. It is a 

common solution representation for PS algorithm. In Pittsburgh approach, an individual in 

a population will represent as a potential solution to a problem. Then, binary encoding 

method is used to encode information into the individual. This encoding method is widely 

used for the evolutionary PS algorithms.  

In the proposed framework, an individual (a candidate reference set or potential 

solution) in the population is known as bacterium. Assume that each bacterium 𝐵𝑎𝑙𝑙 be the 

set of given j instances 𝐵𝑎𝑙𝑙 =  {𝑥1, 𝑥2, … , 𝑥𝑗}., where 𝑗 = 1,2, …,j are the data from c classes 

in a dataset D. Let B represents the selected data points and a reference set (solution), 𝐵 ∈

 𝐵𝑎𝑙𝑙. Every bacterium in 𝐵 is encoded with binary string that is based on the length j. 

Originally, each bacterium consists of two layers of string. The first layer is the index of 

instances in the dataset and the second layer is the binary string. The binary string consists 

the value of 0 to indicate inactive representative and 1 to mark as an active representative. 

The encoded binary string can be referred in Figure 4.2. 
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Figure 4.2: Data Representation using Binary Encoding Scheme 

 

4.2.2 Fitness Function for BFOA-S 

Classification accuracy is used as the fitness function to evaluate the candidate 

solutions in most classification problem. As the evolutionary PS algorithm also known as 

performance driven algorithm, it is natural to employ 1-NN classification accuracy to ensure 

that the algorithm become more sensitive to the presence of noise in the dataset. 

Classification accuracy can be interpreted as the ratio of correctly classified instances from 

x to overall number of instances j, j=|x|. However, the main objectives of PS are not fulfilled 

if the algorithm fails to find solution with the smallest cardinality even though the potential 

solution has better performance in classification. Both criteria are important in PS. 

Therefore, penalty function is adopted together with the classification accuracy to force the 

algorithm to select the best solution with smallest cardinality (Kuncheva & Bezdek, 1998). 
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Equation 4.1 

The proposed algorithm needs to search for a set of B* that satisfies 𝐵∗ =

arg max
𝑆𝑐𝑥

𝐹(𝐵), where F(B) is the fitness function of the solution. The function F consists of 

two components as stated in Equation 4.1. 

 

𝐹(𝐵) = 𝐴(𝐵)− ∝ 𝑓(|𝐵|) 

 

The first component A(B) denotes the classification accuracy when using individual 

B as the potential solution. Then, the penalty function ∝ 𝑓(|𝐵|) be the second component is 

applied to A(B) where ∝ 𝑓(|𝐵|) denotes the cardinality function of B weighted by coefficient 

∝ > 0. The penalty value depends on the cardinality of the solution. The bigger size of 

solution, the higher the value of penalty that will be deducted from the accuracy. This action 

is to force the algorithm to prioritise the solution with smaller cardinality (Kuncheva & 

Bezdek, 1998). Parameter T is introduced to set the optimal cardinality threshold for a 

solution and the proposed algorithm needs to find those optimal solutions (Kuncheva & 

Bezdek, 1998). Penalty value is calculated based on the differences of the cardinality of 

solution compared to T. 

4.2.3 Initialisation for BFOA-S 

The initialisation process is started with the generation of the bacteria population as 

portrayed in Figure 4.3. A set of N bacteria in population P is randomly generated and 

represented as 𝑃 =  𝐵1, … , 𝐵𝑁. Each bacterium has a binary string that can be referred as 

cells to represent the reference set. Each cell 𝐵𝑁 =  {𝑥1, 𝑥2, … , 𝑥𝑗} value is generated and 

determined by the predefined probability 𝑆𝑖𝑛𝑖𝑡. This parameter is important to control either 

the string contain sparse or dense representatives (cell with the value of 1) (Kuncheva & 
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Bezdek, 1998). If the proposed algorithm intends to start with lower error rate, higher value 

of probability 𝑆𝑖𝑛𝑖𝑡 is recommended. However, this study uses small value of 𝑆𝑖𝑛𝑖𝑡. It is 

purposely set to lower because the proposed framework intends to start with the lower 

cardinality of candidate solutions. This is consistent with the selected fitness function since 

the value of T is small, thus it is unpreferable to have higher penalty values from the 

beginning. Furthermore, it will make the convergence rate of the algorithm slower since the 

study aims for small cardinality and high classification performance reference set. Kuncheva 

and Bezdek (1998) recommends the value of probability of 𝑆𝑖𝑛𝑖𝑡 is 10% or 𝑆𝑖𝑛𝑖𝑡 = 0.1 from 

the dataset. However, this study employs a lower value 𝑆𝑖𝑛𝑖𝑡, that takes only 5% (𝑆𝑖𝑛𝑖𝑡 =

0.05) from the dataset. The reason is that the proposed algorithm will be working with small 

and medium size datasets. If 10% s instances are used as the representatives for the solution, 

then the cardinality of the solution become larger if the total size of the dataset is over than 

2000 instances. Furthermore, the number of representatives is generated randomly, thus it 

may generate lower cardinality than 5% from the total size of dataset. Next section will 

explain on the modification of BFOA’s main processes for PS algorithm.  

 

 

 

 

 

 

 

 

 

Figure 4.3: Population Initialisation of BFOA using Prototype Selection Approach 
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4.2.4 Chemotaxis for BFOA-S 

Chemotaxis is the core process for local search operation.  The proposed framework 

tries to preserve as much as possible the original concept of chemotaxis. Similar to the 

original concept of chemotaxis in BFOA, both subprocesses of swimming and tumbling are 

adopted in the proposed framework. However, the ways the work with the data are quite 

different from the original due to the differences in data representation. Each bacterium has 

two layers that represents the information of the dataset. The first layer consists of the index 

or position of an instances in the dataset and the other layer consists of binary values of 0 

and 1. Chemotaxis process for the proposed framework will occur on the second layer only. 

The way of chemotaxis process works in the proposed method is different compare 

the original optimisation chemotaxis. The original chemotaxis works by moving the bacteria 

around in the search space to find the optimal solution. However, the proposed method works 

with the cells within the bacteria which is different with the original concept. It tries to find 

the combination of representatives that can improve the classification accuracy. 

Representatives are the instances with the binary value of 1. Thus, chemotaxis will work 

with the representatives to find a good combination as the solution for the problem. 

The proposed chemotaxis has two subprocesses called swimming and tumbling. 

Tumbling process will take place and followed by swimming process if the bacterium meets 

the minimum requirement of swimming process. These two modes are proposed to move 

representatives in the bacterium’s cell. There are two directions for the movement of 

representatives. It is either moving forward (+v) or moving backward(-v). The parameter v 

is introduced to control the length of the representative will move from its current position. 

Value of v is randomly generated from predefined range, vrange. The tumbling process starts 
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with the selection of a representative (instances that have value of 1 in the second layer) from 

the list of instances with binary value of 1. Next, a direction is randomly generated for the 

representative to move into a new position with random length of v. Figure 4.4 shows the 

process for tumble and swim process in the proposed algorithm. The details on swimming 

and tumbling processes are explained as follows.  

Tumble:  Assume that a representative has been selected randomly and it is expected 

to move into a new location with the direction to move forward (+) in a specific length of v. 

The current position of representative is mark with i and it will move into new position i+v. 

The algorithm will check the binary value of new position (i+v) either 1 or 0.   If the binary 

value of the new position is 0 (inactive instance or not a representative), then it will be 

changed into 1 (a new representative). If it successfully changed into new representative, 

then the previous position will be loss its right as the representative. The value of binary of 

the previous position will change from 1 (active) into 0 (inactive). However, if the binary 

value of new position is 1, then algorithm will generate new length of v to search for new 

inactive instance. A successful tumble process will produce a new set of representative 

combination. This new combination is evaluated with the fitness function to measure its 

performance. The next process is triggered by this fitness value.  

Swim: Swimming process is executed when the fitness value from the tumble process 

is higher than the previous fitness. Alternatively, this process can be described as a repetitive 

process of tumbling but in a similar length and direction. Swimming process will take place 

when the fitness function of new combination of representatives. F(𝐵𝑠+1) after tumble is 

better than previous fitness function 𝐹(𝐵𝑠). The bacterium will keep swimming until a new 
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combination of representatives (reference set) F(𝐵𝑠+1) produce inferior fitness value than 

the previous one or maximum swimming counter 𝑠  is met.  

 

Figure 4.4: Tumble and Swim Process in Chemotaxis for BFOA-S 

 

4.2.5 Reproduction for BFOA-S 

Reproduction is responsible for the convergence of the algorithm for optimal 

solution. It is a process of replication and elimination of bacteria based on their health. The 

process is executed after chemotaxis process completes its cycles. The way of reproduction 

process works for the proposed framework is similar with the original reproduction process 

in optimisation BFOA. The population bacteria, P is sorted according to their fitness values. 

It starts from the healthiest (high value of fitness) bacterium and goes down into the poorest 

health (lowest value of fitness) of bacterium. Then, the bacteria will be divided in half into 

two groups. The first half consists of good health bacteria and the other half consists of poor 

health bacteria. The poor bacteria will be eliminated from the population and good bacteria 

will be replicated. Thus, a new population of good health bacteria is produced and will go 

through chemotaxis process. The process is repeated until maximum iteration 𝑁𝑟𝑒 is met. 
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The whole reproduction process can be seen in Figure 4.5.  This method will keep the number 

of bacteria constants throughout the whole process of the proposed algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Reproduction Process for the Proposed BFOA-S 

 

4.2.6 Elimination and Dispersal for BFOA-S 

Elimination and dispersal is a process to help algorithm to expand its searching area 

and reposition the bacteria closer to the optimal solution.  The process is also crucial to 

ensure that the algorithm does not trapped at local optima. This process contributes to the 

global search capability of BFOA. Technically, the process of elimination and dispersal 

involves with the process of reinitialization of bacteria with specific probability 𝑃𝑒𝑑 for the 

proposed framework. The control parameter 𝑃𝑒𝑑 is adopted as the external factor to trigger 

j 

Acc. j 

acc. 

acc. 

Sort bacteria according 

to their accuracy and 

eliminate half of 

bacteria with poor 

accuracy. 

Reproduce the eliminated 

bacteria by replicating the 

good bacteria. 
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the elimination and dispersal process. As portrays in Figure 4.6, once the elimination and 

dispersal event is triggered, all bacteria in the population are eliminated and reinitialized 

with new bacteria. These bacteria are the new individuals that consists of new combination 

of representatives. Then, they will be evaluated and proceed with chemotaxis and 

reproduction processes. Those processes will keep repeating until maximum iteration of 

elimination and dispersal, 𝑁𝑒𝑑 is met. There is situation where the elimination and dispersal 

is not triggered because of it does not meet the minimum requirement of 𝑃𝑒𝑑. If this case 

happens, the population current population will remain unchanged and proceeds with 

chemotaxis and reproduction again until maximum iteration of 𝑁𝑒𝑑 is met. Complete 

pseudocode for BFOA-S can be referred in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Elimination and Dispersal Process for the Proposed BFOA-S 
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[Step 1] Initialisation of parameters S, Sinit ,  Nc, Ns, Nre, Ned, Ped, T, 𝛼, vrange 

Bacteria loop: i= i +1 

a) Randomly select Sinit from the training data as the representatives 

for bacterium i 

b) Initialize localbestAcc, globalbestAcc 

 

[Step 2] Elimination-dispersal loop: l =l + 1 

 

[Step 3] Reproduction loop: k = k + 1 

 

[Step 4] Chemotaxis loop:  j = j + 1 

a) for i = 1,2,…., S take the chemotactic steps for bacterium i 

b) compute the fitness function for bacterium i 

c) Save the values of prevAcc = accuracy, prevPen = penalty, 

d) Compare the current accuracy with the local and global accuracy  

if localbestPen > globalbestPen then set  

            globalbestAcc=localbestAcc; 

            globalbestProt=localbestProt; 

            globalbestPen=localbestPen; 

            globalChro=localbestChro 

elseif localbestPen == globalbestPen, then check 

if localbestProt < globalbestProt , then set 

            globalbestAcc=localbestAcc; 

            globalbestProt=localbestProt; 

            globalbestPen=localbestPen; 

            globalChro=localbestChro. 

e) Randomly select a representative in bacterium I and extract its 

position. 

f) Tumble: generate a random direction (+ or -) and the length of 

chemostep, v within range [1, vrange] 

g) Move the bacterium i from the current position into new position 

(+v or -v). 

h) Compute the fitness function of bacteria i with new combination 

of representatives. 

i) Swim 

i. Let m = 0 (counter for swim length). 

ii. While m < Ns (if have not swim too long). 

• Let m=m+1. 

• If pen > prevPen (better fitness), then repeat (g) 

using similar direction and length of v. 

• Else, let m= Ns. This is the end of the while 

statement. 

j) Go to next bacterium (i+1) if i ≠ S (i.e., go to (b) to process the 

next bacterium). 
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[Step 5] If j < Nc, go to Step 4. In this case, continue the chemotaxis process since 

the life of the bacteria is not over. 

[Step 6] Reproduction: 

a) For the given k and l, and for each i = 1,2,..., S , let 

𝐽ℎ𝑒𝑎𝑙𝑡ℎ
𝑖 = ∑ Accuracy                                      (3)

𝑁𝑐+1

𝑗+1

 

Be the health of bacteria i (a measure of how many nutrients it 

got over its lifetime 

and how successful it was at avoiding noxious substances). 

Sort bacteria and chemotactic 

the bacteria in order of ascending Jhealth (higher Jhealth means 

better health). 

b) The Sr bacteria with the lower Jhealth values die and the 

remaining Sr bacteria with the best values will split (this 

process is performed by the copies that are made are placed at 

the same location as their parent). 

c) The bacterium with highest Jhealth is compared with the 

previous global best solution or bacterium) 

d) If current bacterium > global best bacterium, then replace the 

global best bacterium with the current bacterium 

[Step 7] If k < Nre , go to step 3. In this case, the algorithm had not reached the 

number of specified reproduction step, so it starts the next generation of 

the chemotactic loop. 

 

[Step 8] Elimination-dispersal: For i = 1,2..., S with probability Ped, eliminate and 

disperse each bacterium (this keeps the number of bacteria in the 

population constant). To do this, if a bacterium is eliminated, simply 

disperse by reinitialize another one to a random search space. If l < Ned, 

then go to step 2; otherwise end. 

Figure 4.7: Pseudocode for BFOA-S 

 

4.3 Bacterial Foraging Optimisation Algorithm using Prototype Generation 

(BFOA-G) 

This section presents the conceptual framework for converting an optimisation BFOA 

into Prototype Generation (PG) algorithm. The challenges for the conversion of BFOA are 

similar with BFOA for PS algorithm since PG also a subcategory under Instance Selection. 

It is important to decide on the data representation and fitness function that is suitable with 

the concept of PG. Furthermore, PG concept is more flexible that it can modify and generate 
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new instances to produce better solution. Thus, the study needs to modify the BFOA 

appropriately to ensure that the modification will not reducing its original capabilities for 

BFOA as a PG algorithm. The general framework for prototype generation algorithm is 

shown in Figure 4.8 for the implementation of the proposed algorithm. The details for 

conversion of BFOA into a PG algorithm are described in the next section. 

 

 

 

 

 

 

Figure 4.8: Prototype Generation Algorithm General Framework 

 

4.3.1 Data Representation for BFOA-G 

The proposed framework adopts data and solution representation from the Cervantes 

et al. (2009) to encode information into the solution. The authors introduce Michigan 

approach into PG algorithm for the nature-inspired Particle Swarm Optimisation (PSO) 

algorithm. In Michigan approach, only a part of solution is encoded into an individual. 

Therefore, a population of bacteria is representing a solution for a problem. The individual 

or prototype is called as bacterium in the proposed framework. As for the data representation 

value, real number is used since the attribute values from the datasets are used to represent 

a bacterium. Assume that 𝐵 ∈  𝐵𝑎𝑙𝑙 is a set instances with size of N that represent a solution. 

Given that Ball is a set of N number of instances where N is determined by the distribution of 
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instances in each class in the dataset. Given that bacteria 𝐵𝑎𝑙𝑙 =  {𝑥(1,𝑐), 𝑥(2,𝑐), … , 𝑥(𝑁,𝑐)} 

where 𝑥 represents an instance with class label c. Each of 𝑥 consists of the instance’s 

attributes of n and a class of c. The class is assigned during the initialisation of the population 

and it remain unchanged even the algorithm completes its cycles. Figure 4.9 shows the 

representation format for a bacterium in a population. 

 

Figure 4.9: Data Representation for a Bacterium in BFOA-G 

 

4.3.2 Fitness Function for BFOA-G 

There are two fitness functions for the proposed framework. The proposed algorithm 

must generate a set of solution *𝐵𝑎𝑙𝑙 that can maximize the classification performance of 

nearest neighbour classification. The objective can be denoted as *𝐵𝑎𝑙𝑙 = arg max
𝑆𝑐𝑥

𝐹(𝐵𝑎𝑙𝑙 ), 

where F(𝐵𝑎𝑙𝑙) is the objective function. Since a bacterium only carries a part of solution in 

the proposed framework then a normal classification accuracy is unable to measure its 

performance. A fitness function called total correct prediction, tcor is employed to measure 

 n c 
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Equation 4.2 

the performance of a bacterium which is also an instance against all instances with the same 

class label. It can be denoted as shown in Equation 4.2. 

 

𝑡𝑐𝑜𝑟(𝑥, 𝑐) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 𝑤𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠 𝑐

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐
 

 

However, this metric unable measure a solution’s performance in classification. It is 

only working as health indicator for reproduction process. Classification accuracy is 

employed to evaluate the performance of the solution. It is a performance metric that 

calculates the ratio of correct prediction using 𝐵𝑎𝑙𝑙 against total number of instances.  

4.3.3 Initialisation for BFOA-G 

Population initialisation is an important step to generate prototypes or individuals. 

The number of bacteria in a population is determined by the distribution of instances in each 

class. Assume that a population P =  { 𝐵1, 𝐵2, . . . , 𝐵𝑁} where N is the total number of bacteria 

in a population P. Let 𝐵𝑁 =  {𝑥(1,𝑐), 𝑥(2,𝑐), … , 𝑥(𝑁,𝑐)} where x is an instance with a class label 

of c. Therefore, bacterium is consisted by a set of attributes with a class as shown in Figure 

4.10. However, the total number of bacteria in a population, N is determined by a set of rules 

to maintain the distribution of dataset.  The value of N will represent the cardinality of the 

solution. The cardinality will stay the same from the beginning until the end of the algorithm 

cycles. The rules are proposed as a scheme to reduce the cardinality of solution without 

ignoring the distribution of dataset. The rules for the determination of the total number of 

instances for each class is shown in Equation 4.3.  
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Equation 4.3   𝑓(𝑔𝑐) = {

1,   0  ≤ 𝑔𝑐 ≤ 4
2,   5  ≤ 𝑔𝑐 ≤ 10
3,   11 ≤ 𝑔𝑐 ≤ 20
5,    𝑔𝑐 > 20

                        

 

 

 

 

 

 

 

4.3.4 Chemotaxis for BFOA-G 

The proposed framework adopts chemotaxis with some modification. It is 

responsible for the local search capability of the proposed algorithm.  All subprocesses in 

the original chemotaxis are preserved in term of concept for the proposed framework. 

Chemotaxis in the proposed framework has two subprocess named swim and tumble. The 

way of these processes work is depended on the representation of a bacterium. Since a 

bacterium consists of a set of attributes with a certain class, chemotaxis is executed by 

manipulating the value of the attributes in the bacterium’s cells. There are two modes for the 

modification the selected attribute. It is either increasing (+) or decreasing (-) the attribute’s 

value with specific chemostep v. The variable v is a random integer that is generated from a 

predefined range. Chemotaxis will start with tumbling process and follow by swimming 

process if the requirement for swimming is fulfilled. The details for both processes are 

explained as follows. 

 

where  𝑔𝑐 = Total number of 

instances in class 

c (no) 

 n c 

Figure 4.10: Bacteria Population Initialisation 
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Figure 4.11: Tumble Process for a Bacterium in BFOA-G 

 

Tumble: Tumble process starts with the selection of an attribute in bacterium 𝐵𝑁. The 

normalized value of the attribute is extracted for modification. Then, a direction and the 

value of chemostep v are generated randomly as shown in Figure 4.11. The predefined chemo 

step range, vrange is introduced to limit the generated value of v. For example, the algorithm 

decides on the increasing value of the attribute. The extracted value will be increased with 

the value of v (+v). Then, a mutated bacterium is produced. The fitness functions are applied 

to measure the classification performance of the population of bacteria as a single solution 

and also the individual performance of the bacterium against all instances with similar class 

label. The results are recorded but only the classification accuracy of the population of 

bacteria is considered for evaluation in chemotaxis. All bacteria will go through similar 

tumble process and they will be evaluated every time the bacterium’s attribute is mutated 

with new value. 

 

Swim: Swim process is executed if the fitness value of current solution Pnew after tumble is 

better than the previous fitness function of solution Pold. It is the requirement for swimming 

process to be executed. Similar to the original concept of swimming process in optimisation 

BFOA, the swimming itself is a repetitive process of tumble with similar attribute, direction 

(mode) and chemostep v. The evaluation process for the bacteria population is similar with 

-v or + v 

 n c 
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tumble process. Both fitness functions are employed but only classification accuracy of the 

bacteria population as a single solution is considered for next swimming process. The 

swimming process will repeat until maximum iteration, Ns is met, or the current fitness value 

is inferior than the previous. The process can be referred in Figure 4.12. 

 

 

Figure 4.12: Tumble and Swim Process of a Bacterium for BFOA-G 

 

4.3.5 Reproduction for BFOA-G 

Reproduction is a process of elimination of weak bacteria and reproduce good 

bacteria to ensure only good bacteria will survive for the next cycle. This process is 

responsible for the convergence of the solution for the proposed algorithm. The proposed 

framework introduces a different way of implementation for reproduction process. It is due 

to the representation of the bacteria. A bacterium in the proposed framework only represents 

a part of the solution. The sorting process that based on the classification accuracy is unable 

to occur because the classification accuracy of solution does not represent a bacterium health 

or performance. Thus, the elimination process cannot be executed. 

However, there is an alternative fitness function introduced to measure the health of 

a bacterium for BFOA-G. The percentage of the total correct predicted rate of bacterium 
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(basically a bacterium is also an instance) against all instances with similar class in the 

dataset, tcor is employed for the reproduction process. In the proposed framework, the 

elimination of the bacteria is based on the value of tcor. The tcor value is taken from the 

chemotaxis process where a bacterium is evaluated using accuracy against all dataset and 

also against data in its own class. A minimum threshold is introduced to determine either the 

bacterium is eliminated or survived for the next algorithm’s cycle. When a bacterium with 

tcor value below than 50% (tcor < 0.5) is categorized as weak or poor health bacterium. This 

weak bacterium will be eliminated and reproduced by using any instance’s set of attributes 

from similar class during reproduction process. The tcor value is set as 50% because if the 

value is too high, the total elimination of bacteria can be occurred which is similar to role of 

elimination and dispersal process. On top of that, the algorithm will be degraded into 

exhaustive search since it hard to converge since the population is totally changed for every 

iteration. This method will maintain the total number of bacteria in the population and ensure 

that there’s no changes in the distribution of data in the solution.  

It is important to maintain the distribution of dataset in the solution so that it can 

represent the dataset well. Improper reproduction process will produce an unacceptable 

solution. For example, assume that a bacteria population consists of bacterium with class A 

and class B. During the during reproduction process, it is found that all bacteria with class 

A have lower value of tcor and considered as poor health bacteria. Only bacteria with class 

B are considered as good bacteria. Improper elimination will erase the bacteria with class A 

completely and only bacteria with class B are remained in the population. Now the solution 

becomes smaller which is good for reduction rates, but it is only biased to class B. For the 

next iteration, the searching process is only resolved around class B and the algorithm will 

produce a final solution only for class B. This reference set is not acceptable to become the 
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solution because it will lead to misclassification if instances with class A are supplied. Thus, 

it is necessary to retain the ratio of instances for each class in the solution so that it will 

become an optimal solution for the classification problem. The reproduction process for the 

proposed algorithm can be referred in Figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13:  Reproduction Process for BFOA-G 

 

4.3.6 Elimination and Dispersal for BFOA-G 

Elimination and dispersal process are responsible for global search capability of the 

proposed algorithm. The implementation of elimination and dispersal process for the 

proposed framework is quite different compared to the original process in optimisation 

BFOA. However, the concept is preserved even though there is some modification on how 

the it works. This is due to the representation of the solution. In the optimisation BFOA, a 
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bacterium is eliminated and reinitialized into new place based on probability Ped. For the 

proposed framework, elimination and dispersal occurs on a population of bacteria. The 

bacteria are eliminated and initialized again with the probability of Ped. However, the 

bacteria are not eliminated completely but reinitialized the bacterium’s attributes. The class 

assigned to each bacterium is unaffected to maintain the class distribution in the solution. 

Figure 4.14 portrays the elimination and dispersal process for the proposed algorithm. Once 

a population is reinitialized, it will undergo similar process such chemotaxis and 

reproduction process again. This process will keep repeating until maximum iteration of Ned 

is met. Through this process, the algorithm able to explore in new search space and it also 

help the algorithm to avoid from trapped at the local solution. Full pseudocode for the 

proposed BFOA-G can be referred in Figure 4.15. 
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Figure 4.14: Elimination and Dispersal Process for BFOA-G 

 

Bacteria population is 

reinitialized if rand > Ped =0.75 

(75%) 

 

B
1
 0.23 0.54 0.53 0.17 … 1 0 

B
2
 0.21 0.52 0.09 0.16 … 1 0 

B
3
 0.11 0.78 0.74 0.86 … 1 0 

B
4
 0.45 0.45 0.14 0.26 … 2 0 

B
N
 0.36 0.57 0.86 0.441 … 2 0 

 n c acc 

 n c acc 



78 

 

[Step 1] Initialisation of parameters S, Sinit ,  Nc, Ns, Nre, Ned, Ped, vrange 

Bacteria loop: i= i +1 

a) Randomly select Sinit from the training data as the representatives 

for bacterium i 

b) Initialize localbestAcc, globalbestAcc 

 

[Step 2] Elimination-dispersal loop: l =l + 1 

[Step 3] Reproduction loop: k = k + 1 

[Step 4] Chemotaxis loop:  j = j + 1 

a) for i = 1,2,…., S take the chemotactic steps for bacterium i 

b) compute the fitness function  for bacterium i 

c) Save the values of prevAcc = accuracy, prevPen = penalty, 

d) Compare the current accuracy with the local and global accuracy  

if localbestPen > globalbestPen then set  

            globalbestAcc=localbestAcc; 

            globalbestProt=localbestProt; 

            globalbestPen=localbestPen; 

            globalChro=localbestChro 

elseif localbestPen == globalbestPen, then check 

if localbestProt < globalbestProt , then set 

            globalbestAcc=localbestAcc; 

            globalbestProt=localbestProt; 

            globalbestPen=localbestPen; 

            globalChro=localbestChro 

e) Randomly select a representative in bacterium i and extract its 

position. 

f) Tumble: generate a random direction (+ or -) and the length of 

chemostep, v within range [1, vrange] 

g) Move the bacterium from the current position into new position 

(+v or -v). 

h) Compute the fitness function of bacteria i with new combination 

of representatives. 

i) Swim 

i. Let m = 0 (counter for swim length). 

ii. While m < Ns (if have not swim too long). 

• Let m=m+1. 

• If pen > prevPen (better fitness), then repeat (g) 

using similar direction and length of v. 

• Else, let m= Ns. This is the end of the while 

statement. 

j) Go to next bacterium (i+1) if i ≠ S (i.e., go to (b) to process the 

next bacterium). 

 

[Step 5] If j < Nc, go to Step 4. In this case, continue the chemotaxis process since 

the life of the bacteria is not over. 
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[Step 6] Reproduction: 

a) For the given k and l, and for each i = 1,2,..., S , let 

𝐽ℎ𝑒𝑎𝑙𝑡ℎ
𝑖 = ∑ Accuracy                                      (3)

𝑁𝑐+1

𝑗+1

 

Be the health of bacteria i (a measure of how many nutrients it 

got over its lifetime 

and how successful it was at avoiding noxious substances). 

Sort bacteria and chemotactic 

the bacteria in order of ascending Jhealth (higher Jhealth means 

better health). 

b) The Sr bacteria with the lower Jhealth values die and the 

remaining Sr bacteria with the best values will split (this 

process is performed by the copies that are made are placed at 

the same location as their parent). 

c) The bacterium with highest Jhealth  is compared with the 

previous global best solution or bacterium) 

d) If current bacterium > global best bacterium, then replace the 

global best bacterium with the current bacterium 

 

[Step 7] If k < Nre , go to step 3. In this case, the algorithm had not reached the 

number of specified reproduction step, so it starts the next generation of 

the chemotactic loop. 

 

[Step 8] Elimination-dispersal: if rand > Ped 

• Eliminate and disperse all bacteria in the population (this keeps 

the number of bacteria in the population constant).  

• To do this, reset all attributes in all bacteria and repeat Step 1 to 

reinitialize the bacteria. 

•  If l < Ned, then go to step 2; otherwise end. 

Figure 4.15:  Pseudocode for BFOA-G 

 

4.4 Summary 

As summary, this chapter presents the conceptual frameworks for the conversion an 

optimisation BFOA into PS and PG algorithm. Each of the framework for the proposed 

algorithms has their own method of data representation, chemotaxis, reproduction and 

elimination processes to enable the conversion from optimisation algorithm into PS and PG 

algorithm. Those frameworks were developed based on original concept of BFOA to avoid 

any degradation on its original capabilities to produce a good classification algorithm. 
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CHAPTER 5  

 

 
RESULTS AND DISCUSSION 

5.1 Overview 

The objectives of this chapter are to present the findings of the heuristic settings for 

parameter configuration and the experimental study that has been conducted. The proposed 

algorithms BFOA-S and BFOA-G are compared and analysed with benchmark algorithms. 

The parameter configurations for both proposed algorithms are presented in this chapter. In 

addition, the proposed algorithms also compared against nine state-of-the-art Instance 

Selection algorithms in term of generalization ability and reduction rate. Relevant figures, 

graphs and tables are generated to explained and support the finding.  

5.2 Parameter Configuration 

An experimental study was conducted to observe and compare the performance of 

the proposed algorithms with some benchmark algorithms. A preparation must be made 

before executing the experiment. All datasets and its pre-processing method are already 

explained in Chapter 3. There are three algorithms involved in the experiment which are 

BFOA-S, BFOA-G, the earliest evolutionary Instance Selection algorithm GA (IS-GA) 

(Kuncheva & Bezdek, 1998) and 1NN classifier. Each algorithm needs an optimised 

parameter configuration to perform well in classification. There are several parameters that 

have been adopted and introduced in the proposed algorithms. All parameters for both 

proposed algorithms are listed in the Table 5.1. 
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Table 5.1: List of Parameters for the Proposed BFOA-S and BFOA-G 

BFOA-S BFOA-G 

Bacteria size, S 

Chemotactic steps, Nc 

Swimming steps, Ns 

Reproduction steps, Nre 

Elimination and Dispersal steps, Ned  

Probability of Elimination and Dispersal, 

Ped 

Initial probability search, Sinit 

Predefined cardinality of solution, T 

Weighting coefficient for penalty term, 𝛼 

Maximum range of Chemostep, vrange 

 

Bacteria size, S 

Chemotactic steps, Nc 

Swimming steps, Ns 

Reproduction steps, Nre 

Elimination and Dispersal steps, Ned  

Probability of Elimination and Dispersal, 

Ped 

Maximum range of Chemostep, vrange 

 

 

 

The parameter configuration from original BFOA cannot be simply adopted into the 

proposed algorithms. Thus, it is necessary to find the optimal parameter setting to ensure 

that the proposed algorithms can perform in optimal. A heuristic setting is employed for both 

algorithms to find the parameter configuration. The details of heuristic setting for BFOA-S 

and BFOA-G are explained as follows. 

Heuristic setting for BFOA-S focusses on parameters for the core process of BFOA 

such as chemotaxis, reproduction and elimination and dispersal process. Some of parameters 

can be skipped for heuristic setting because there is some recommendation available for 

specific parameters by the previous researchers. The value of parameter S, Sinit, α, T are 
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adopted from Kuncheva and Bezdek (1998) and Hossin et al. (2017). The remaining 

parameter will undergo heuristic setting to find optimal values for each of them. Table 5.2 

shows the list values for each parameter in heuristic setting. Those value are suggested due 

to the structure of the proposed BFOA algorithms. As shown in the previous section, the 

proposed algorithms consist of many nested loops. The creator of original BFOA (Passino, 

2002) also suggests a lower value of parameter for the core processes in optimisation BFOA. 

The reason is to avoid the algorithm from consuming resources excessively to produce 

results. This study has produced a guideline and recommended a parameter configuration 

for BFOA-S from the heuristic result. 

Table 5.2: Test Values for Each Parameter of BFOA-S in Heuristic Settings 

Parameter Test Values 

Nc 5,10,15,20 

Ns 5,10 

Nre 5,10,15,20 

Ned 5,10 

Ped 0.25, 0.50, 0.75 

vrange 5, 10 

 

From the heuristic testing, the larger the value of chemotaxis steps, Nc will increase 

the time and complexity of the algorithm. However, if the value of Nc is too low, the 

algorithm may converge prematurely and can cause the algorithm trapped at local solution. 

The swim process does not affect directly to the performance of the algorithm since it has 

some requirement to be fulfilled before it can be executed. Bacterium may swim or not at all 

during a specific chemotaxis iteration and it depends on comparison on current fitness 
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against the previous fitness value. However, it helps the algorithm to search for a better 

solution. A suitable value of swim steps Ns is needed to avoid a bacterium swim for too long 

because it will cost more on the computational time of the algorithm. Apart from that, 

parameter vrange is also important to be initialized with an optimal value. It controls the 

distance of the bacterium will move during chemotaxis. vrange is a maximum range that the 

algorithm can generate for the movement of the bacteria. If the value is too low, the algorithm 

needs more iterations to obtain a good solution. However, if the maximum value is too large, 

the algorithm could miss the optimal solution during the run because the bacteria move too 

far than it should be. 

Besides, when the value of chemotaxis steps Nc is optimal, the number of 

reproduction steps Nre will affect the convergence rate of the algorithm. The algorithm gains 

the capability to focus on good region and ignore bad region through reproduction process. 

The proposed algorithm may converge prematurely if the value of Nre is too low. However, 

if the value is too high, it will affect the computational time tremendously. Based on the 

heuristic testing, when the value of Nre is increased with the values in Table 5.2, the time 

complexity of the algorithm is doubled whenever the value is increased. Thus, the 

determination of the value of Nre must be made carefully to ensure the algorithm works 

efficiently. 

The elimination and dispersal steps, Ned is the outermost loop. Chemotaxis and 

reproduction reside in this loop. An iteration of elimination and dispersal will execute a 

complete iteration of Nc and Nre. As mentioned in the previous section, elimination and 

dispersal process is responsible for the global search capability of the algorithm. Lower value 

of Ned is recommended because a single iteration of Ned will affect tremendously on the time 
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complexity of the algorithm. Based on heuristic testing, lower value makes the algorithm 

produce result faster, but the result may not be closed to optimal. The algorithm may 

converge prematurely since it is not enough cycles to find a better solution. Furthermore, 

elimination and dispersal is controlled by probability Ped. The elimination and dispersal 

process might occur or not at all in all iterations of Ned. Higher value of Ped indicates that 

more bacteria will remain in the population and small value of Ped indicates that there is high 

chance for bacteria to be eliminated and dispersed into new search area. It is recommended 

to have slightly higher Ped because the algorithm will be degraded into a random exhaustive 

search if there is too much changes in the bacteria population. However, the algorithm cannot 

have the maximum value of Ped because the probability for the elimination and dispersal 

event to be occurred become zero. If there is no elimination and dispersal occur, then the 

algorithm will lose its global search capability to avoid from trapped at local solution. Thus, 

suitable value of Ped is necessary to facilitate the algorithm to search for a better solution.  

From the heuristic testing, this study has come up with a parameter configuration for BFOA-

S as presented in Table 5.3.  

 

 

 

 

 

 

 



85 

 

Table 5.3: Recommended Parameters Value for BFOA-S and BFOA-G from the 

Heuristic Settings 

BFOA-S BFOA-G 

S = 20 

Nc =5 

Ns = 10 

Nre = 5 

Ned = 5 

Ped = 0.75 

T = 10 

𝛼 = 0.1 

v = 5 

 

Nc = 10 

Ns = 10 

Nre = 20 

Ned = 10 

Ped = 0.75 

v = 0.1 

 

 

Table 5.4: Test Values for Each Parameter of BFOA-G in Heuristic Settings 

Parameter Test Values 

Nc 5,10,15,20 

Ns 5,10 

Nre 5,10,15,20,25,30 

Ned 5,10,15,20 

Ped 0.25, 0.50, 0.75 

vrange 0.05, 0.10, 0.20 

 

Table 5.4 shows the list of the values of BFOA-G’s parameters for heuristic testing. 

The effect of the parameters is not so different compared to BFOA-S. Increasing in 

chemotaxis steps Nc value will increase the time and computational cost of the algorithm. 

Whenever the value of Nc increases within the listed values in Table 5.4, the time complexity 
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of the algorithm is doubled. In contrary, the algorithm unable to produce good result when 

the value of Nc is too low. It is a proof that the algorithm does not have enough iterations for 

the chemotaxis process to search for good solution. Therefore, it is necessary to find an 

optimal value for Nc so that the local search for solution can occur efficiently without wasting 

resources. Related to chemotaxis, the bacterium attributes are increased or decreased with 

random value generated within the range of parameter vrange. It is recommended to have 

lower value of vrange because the algorithm might miss the optimal value of the attribute if it 

is increased drastically. Furthermore, some attributes originally have higher value (value 

close to 1) so it is not possible to have high value of vrange because it will halt the chemotaxis 

process. However, the algorithm will need more iterations when the vrange is too low. It may 

lead to slow convergence rate of the algorithm. 

The reproduction steps, Nre affect the convergence rate of the algorithm if all 

parameters in chemotaxis is optimal. It affects the capability of the algorithm to ignore the 

bad region and focus on the good region. The algorithm will converge prematurely if the 

value Nre is too small because the is not enough iteration to search for the best solution. In 

BFOA-G case, it preferable to have slightly moderate value of Nre. The computational cost 

of chemotaxis in BFOA-G is low due to small cardinality in every bacterium that is based 

on the number of attributes. On top of that, chemotaxis process works directly with the 

attribute values thus it does not cost much on the time complexity of the algorithm. However, 

the algorithm will not produce better result if the value of Nre is too high. Thus, it does not 

benefit the algorithm and only cost more on the resources.  

Elimination and dispersal process is responsible for the global search capability of 

the algorithm. Based on heuristic testing, BFOA-G need more iterations to find a good 
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solution. A slightly moderate value for Ned is recommended since chemotaxis and 

reproduction processes do not take too much time to complete their activities. Lower value 

makes the algorithm to produce result faster, but the result may not be closed to optimal. The 

algorithm may converge prematurely since it is not enough cycles to find a better solution. 

Furthermore, this process is controlled by probability Ped. The elimination and dispersal 

process might occur or not at all in all iterations of Ned. Higher value of Ped indicates of lower 

chance for elimination and dispersal to occur. Contrary, small value of Ped indicates that 

there is high chance for the bacteria population to be eliminated and dispersed into new 

search area. It is recommended to have slightly higher value of Ped because the algorithm 

will be degraded into a random exhaustive search if there are too much changes in the 

bacteria population. However, the algorithm cannot have the maximum value of Ped because 

the probability for the elimination and dispersal event to be occurred become zero. If there 

is no elimination and dispersal occur, then the algorithm will lose its global search capability 

to avoid from trapped at local solution. Thus, suitable value of Ped is necessary to facilitate 

the algorithm to search for better solution.   Table 5.3 shows the recommended parameter 

configuration for the proposed BFOA-G that based on the result of the heuristic testing. 

The final parameter configurations for the all algorithms in the experiment are 

presented in Table 5.5. Most of parameter configurations for IS-GA are adopted from its 

original work. Only parameter Pini is adopted from Hossin et al. (2017) for IS-GA because 

the algorithm worked with variety size of datasets in the experiment. The configuration used 

for IS-GA is shown in Table 5.5. On the other hand, there is no parameter setting for 1NN 

classifier since there is no parameter in it. IS-GA and 1NN became the benchmark algorithms 

for the experiment. 
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Table 5.5: Parameter Configuration for BFOA-S, BFOA-G and IS-GA for the 

experiment 

BFOA-S BFOA-G IS-GA 

S = 20 

Nc =5 

Ns = 10 

Nre = 5 

Ned = 5 

Ped = 0.75 

T = 10 

𝛼 = 0.1 

v = 5 

Nc = 10 

Ns = 10 

Nre = 20 

Ned = 10 

Ped = 0.75 

v = 0.1 

 

S=20 

Mrate=0.025 

𝛼 =0.1 

T=10 

Gen=500 

 

 

5.3 Experimental Result and Analysis 

This study conducted an experiment to evaluate the performance of the proposed 

algorithms. As mentioned in the experimental setup, two algorithms were chosen as the 

benchmark to measure the capability of the proposed algorithms as the Instance Selection 

algorithm. The core evaluation metrics for Instance Selection algorithms are generalization 

capability, storage requirement (cardinality of the reference set) and time complexity of the 

algorithm. A good IS algorithm can produce a reference set that has high generalization 

ability (high classification accuracy), low storage requirement and time complexity of the 

algorithm.  

The experimental results obtained are shown in the Table 5.6. The average training 

accuracy, testing accuracy, average storage requirement, reduction rate and average time 

taken for training process obtained from 10-cross validation method were recorded for 

further analysis. The average results for 42 datasets are presented in Table 5.6 that indicates 

as the rough indicator for the algorithm’s performance. Only testing accuracy and storage 
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requirement were collected for 1-NN classifier since there is no training process involved. 

In additional, Rec*Acc has been used as an estimator of the capability for an IS classifier to 

consider the trade-off between reduction and classification accuracy (Garcia et al., 2012). 
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Table 5.6:  Experimental Results for BFOA-S, BFOA-G, IS-GA and Time Complexcity and 1NN Algorithms based on Average 

Testing Error, Storage Requirement 

Datasets BFOA-G  BFOA-S  IS-GA  1NN 

Accuracy Storage Time  Accuracy Storage Time  Accuracy Storage Time  Accuracy 

BCD 0.9666 0.0176 28.0  0.9244 0.0211 141.6  0.8858 0.0308 364.1  0.9227 

BCO 0.9786 0.0143 16.2  0.9600 0.0169 85.0  0.9457 0.0309 219.8  0.9471 

BCP 0.7718 0.0505 9.9  0.7726 0.0505 17.4  0.7574 0.0510 53.0  0.6061 

CARDAUS 0.8783 0.0145 22.2  0.8435 0.0213 114.1  0.8058 0.0313 279.8  0.8174 

CARDGER 0.7420 0.0100 43.8  0.6780 0.0171 310.1  0.6040 0.0318 991.1  0.6030 

HABER  0.7872 0.0327 6.2  0.7451 0.0324 14.3  0.7091 0.0333 30.9  0.6437 

HEART270 0.8407 0.0370 7.8  0.8296 0.0430 22.9  0.8148 0.0444 49.2  0.7741 

HEPA 0.8967 0.0645 5.3  0.8850 0.0652 13.9  0.8721 0.0529 23.8  0.8383 

IONOS 0.8860 0.0285 18.6  0.8775 0.0365 83.1  0.8061 0.0407 165.4  0.8804 

LIVER 0.7040 0.0290 8.0  0.6377 0.0325 25.4  0.6003 0.0357 50.8  0.6003 

MUSK11 0.7393 0.0210 91.1  0.7249 0.0248 419.0  0.6999 0.0326 1249.5  0.7645 

PARKINSON 0.8976 0.0513 7.4  0.8968 0.0605 21.8  0.8711 0.0549 38.5  0.8921 

PIMA 0.7864 0.0130 19.0  0.6967 0.0190 110.5  0.6354 0.0319 242.7  0.6757 

SONAR 0.7926 0.0481 17.0  0.6929 0.0524 61.6  0.6014 0.0543 95.1  0.5769 

SPECT 0.8462 0.0375 10.1  0.8499 0.0453 23.9  0.8425 0.0446 71.8  0.7487 

SPECTF 0.8387 0.0375 16.9  0.8802 0.0378 46.6  0.8503 0.0419 121.2  0.8085 

THREE9 0.8009 0.0195 15.0  0.7579 0.0287 57.2  0.7227 0.0344 128.0  0.5450 

TRANS1 0.7928 0.0134 14.6  0.7701 0.0187 77.5  0.7085 0.0306 158.2  0.6001 

VOTES 0.9608 0.0230 13.1  0.9172 0.0253 49.9  0.8619 0.0333 134.4  0.9126 

BALANCE 0.8047 0.0240 14.6  0.7952 0.0210 62.9  0.7441 0.0322 119.7  0.7776 

BREAST1 0.7264 0.1698 4.0  0.7073 0.1519 7.1  0.6609 0.1019 8.5  0.6009 

CARS 0.7576 0.0383 11.1  0.7323 0.0311 31.1  0.7015 0.0349 68.5  0.6989 

DERMA 0.9618 0.0765 43.3  0.6967 0.0325 76.4  0.6255 0.0415 174.8  0.6914 

GLASS 0.6961 0.1075 9.8  0.7476 0.0607 16.5  0.6732 0.0509 26.6  0.7470 

HAYES 0.7125 0.0938 4.0  0.7125 0.0725 7.9  0.6313 0.0669 11.7  0.7188 

HEARTC 0.5615 0.0759 15.9  0.5906 0.0353 27.2  0.5674 0.0373 59.2  0.5117 

IMAGE 0.8766 0.0152 215.7  0.7896 0.0208 1350.0  0.7939 0.0376 4136.2  0.9182 

IRIS 0.9733 0.1000 3.6  0.9733 0.0460 6.9  0.9267 0.0513 11.0  0.8200 

LED7 0.7450 0.0156 207.7  0.5516 0.0206 1486.0  0.5078 0.0381 3886.8  0.2694 
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Datasets BFOA-G  BFOA-S  IS-GA  1NN 

Accuracy Storage Time  Accuracy Storage Time  Accuracy Storage Time  Accuracy 

LENSES 0.9167 0.2292 0.6  0.9167 0.3833 0.8  0.6333 0.1875 1.1  0.8667 

NTHYROID 0.9818 0.0698 5.5  0.9442 0.0540 12.4  0.8892 0.0488 20.4  0.9398 

OPDIGIT 0.9021 0.0089 2196.2  0.4014 0.0232 24143.7  0.3915 0.0396 91599.8  0.4546 

PAGE 0.9128 0.0046 263.2  0.9417 0.0223 4655.1  0.9393 0.0390 14070.3  0.9567 

SBEANS 1.0000 0.1915 2.3  0.9750 0.1468 3.9  0.9750 0.1106 4.8  0.9750 

VCOL31 0.7839 0.0484 8.4  0.7613 0.0290 22.2  0.6968 0.0394 40.9  0.6419 

VEHICLE 0.6087 0.0236 48.2  0.4172 0.0193 224.1  0.3782 0.0323 560.6  0.6182 

WAVE 0.7444 0.0030 456.9  0.3402 0.0222 17736.5  0.3176 0.0394 36787.0  0.3290 

WINE 0.9778 0.0843 6.8  0.9444 0.0584 13.7  0.9382 0.0517 23.1  0.9317 

WQRED1 0.4791 0.0156 82.1  0.5291 0.0184 508.8  0.4747 0.0339 1315.3  0.6479 

WQWHITE1 0.4020 0.0060 292.6  0.4194 0.0232 4501.3  0.4300 0.0394 12061.2  0.6519 

YEAST 0.5061 0.0300 93.0  0.4090 0.0185 376.7  0.3753 0.0351 922.5  0.4360 

ZOO 0.9700 0.1733 4.4  0.9409 0.1366 9.7  0.8318 0.1168 10.6  0.9400 

 0.8073 0.0516 103.8  0.7518 0.0499 1356.6  0.7071 0.0487 4056.9  0.7214 

Table 5.6 continued 
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Besides, two statistical tests were carried out to analyse further on the results 

obtained on testing accuracy and storage requirement. The statistical results are presented in 

Table 5.7 and Table 5.8. The value of Ss indicates the comparative descriptive statistic on 

win/draw/loss records from pairwise comparison. The first value indicates the win record of 

the number of datasets that is the algorithm (classifier) in the corresponding column performs 

better than the algorithm (classifier) in the corresponding row. Draw indicates the numbers 

of datasets that the compared two algorithms have similar performances. The third value is 

the loss which is referring to the number of datasets that the algorithm in the corresponding 

column has inferior performance compared to the algorithm in the corresponding row.  

Table 5.7: Average result for 42 datasets for BFOA-G, BFOA-S, IS-GA and 1-NN 

Algorithm Average 

Testing 

Accuracy 

(Acc) 

Average 

Storage 

Requirement 

Average 

Time 

Taken(s) 

Reduction 

Rate 

(Red) 

Red* 

Acc 

BFOA-G 0.807339 0.051604 103.8 0.948396 0.765677 

BFOA-S 0.7518376 0.049920 1356.6 0.950080 0.704711 

IS-GA 0.707093 0.048749 4056.9 0.951251 0.672623 

1-NN 0.721437 1.000000 - - - 

 

Based on the experimental results presented in Table 5.7, it is clearly shown that both 

of the proposed BFOA-G and BFOA-S have better generalization capability (average testing 

accuracy) compared to the benchmark algorithms. The proposed BFOA-G significantly 

outperformed BFOA-S in term of generalization capability. This claim is supported by the 

statistical analysis in Table 5.8 where there is a significant difference between the proposed 

BFOA-G and BFOA-S. Besides, the statistical result in Table 5.8 also shows that there is a 

significant different between BFOA-G against GA and 1-NN in term of average testing 
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accuracy. Even though BFOA-S has inferior generalization capability compared to BFOA-

G, it shown a better performance in term of classification accuracy against IS-GA and 1NN 

classifiers. It can be seen in Table 5.7 that the average testing accuracy of 42 datasets 

produced by BFOA-S is higher than IS-GA and 1NN classifiers. This finding is supported 

by the statistical analysis obtained in Table 5.8 that there is significant difference between 

BFOA-S against those two benchmark algorithms. In this case, it is clearly shown that both 

of proposed algorithms have higher generalization capability than the benchmark 

algorithms. 

Table 5.8: Statistical Analysis for Testing Accuracy 

Algorithm Analysis Algorithm 

1-NN IS-GA BFOA-S BFOA-G 

1-NN Ss 

Ps 

Pw 

- 17/1/24 

0.349 

0.328 

31/1/10** 

0.002 

0.009 

34/0/8** 

0.000 

0.000 

IS-GA Ss 

Ps 

Pw 

- - 39/1/2** 

0.000 

0.000 

47/0/6** 

0.000 

0.000 

BFOA-S Ss 

Ps 

Pw 

- - - 31/3/8** 

0.000 

0.000 

BFOA-G Ss 

Ps 

Pw 

- - - - 

Note: * the row algorithm has significant difference with the column algorithm for both statistical tests, **the 

column algorithm has significant difference with the row algorithm for both statistical tests  

 

However, an IS algorithm is not considered an efficient algorithm if it needs high 

storage requirement to produce a high classification accuracy result. The core objective of 

the Instance Selection is to reduce the storage requirement while maintaining or increasing 

the classification accuracy. Hence, the average storage requirement is presented in Table 5.7 

as a rough indicator for reduction rate capability of the algorithms. Table 5.7 shows that IS-
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GA classifier has the smallest average storage requirement compared to BFOA-G and 

BFOA-S. It means that IS-GA has the highest reduction rate on the storage requirement 

compared to BFOA-G and BFOA-S. Surprisingly, the statistical analysis in Table 5.9 shows 

a contradicting result. The analysis result in the Table 5.9 shows that BFOA-S has better 

reduction capability (low storage requirement) compared to IS-GA in all 42 datasets. This 

can be seen in Table 5.9 that there is a significant difference between BFOA-S and IS-GA 

which is contradicting to the result presented in Table 5.7 for storage requirement. Besides, 

statistical analysis in Table 5.9 also shows that there is no significant difference between 

BFOA-G and IS-GA. Hence, the IS-GA does not outperform the proposed algorithms 

statistically. In fact, the proposed BFOA-S has the highest reduction capability (low storage 

requirement) on 42 datasets compared to IS-GA according to the statistical analysis. Apart 

from that, it can be seen in Table 5.9 that there is no significant different between the 

proposed BFOA-G and BFOA-S. Thus, they are not far different in term of reduction 

capability performance. Statistical analysis is not done for 1-NN because there is no 

reduction occurs in the algorithm.  
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Table 5.9: Statistical Analysis for Storage Requirement 

Classifier Analysis Classifier 

1-NN IS-GA BFOA-S BFOA-G 

1-NN Ss 

Ps 

Pw 

- - - - 

IS-GA Ss 

Ps 

Pw 

- - 28/0/14* 

0.003 

0.020 

28/0/14 

0.045 

0.731 

BFOA-S Ss 

Ps 

Pw 

- - - 25/1/16 

0.212 

0.841 

BFOA-G Ss 

Ps 

Pw 

- - - - 

Note: * the row algorithm has significant difference with the column algorithm for both statistical tests, **the 

column algorithm has significant difference with the row algorithm for both statistical tests  

 

For deeper analysis on the capability of the proposed algorithms, the product of 

accuracy and reduction rate (Red*Acc) were calculated as presented in Table 5.7. It serves 

as an estimator for the capability of an IS classifier to balance the trade-off between reduction 

and classification accuracy. A higher value of Red*Acc indicates a better capability of 

balancing the trade-off between reduction rate and generalization capability (average testing 

accuracy). Based on the result, BFOA-G significantly outperforms BFOA-S and IS-GA in 

term of their capability to balance the trade-off between accuracy and reduction rate. 

Besides, the other proposed algorithm BFOA-S also showed a higher value of Red*Acc 

compared to BFOA-S. This means the BFOA-S has better capability to balance the trade-off 

between accuracy and reduction rate than IS-GA. 

Another criterion to evaluate the algorithms is the time taken for the algorithm to 

complete its cycles to produce the final reference set. The average time taken is presented in 

Table 5.7 for all algorithms to indicate the time complexity of the algorithm. Based on the 

result, the proposed BFOA-G has the lowest average time taken compared to BFOA-S and 
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IS-GA. It shows that the proposed algorithm BFOA-G is the fastest and most efficient 

algorithm in the experiment. The difference of the average time taken for BFOA-G 

compared to BFOA-S and IS-GA is tremendous. BFOA-G is 13 times faster than BFOA-S 

and 39 times faster than IS-GA in completing its cycles. On the other hand, the proposed 

BFOA-S performed 3 times faster than IS-GA to complete its cycles. An interesting remark 

that can be pointed out is BFOA-S was adopted with similar initialisation method, fitness 

function and solution representation. However, there is huge difference in their time 

complexity. It can be claimed that the BFOA mechanism is more efficient compare to the 

GA mechanism in processing and producing the most relevant solution. 

As the overall conclusion for the experimental study, both proposed algorithms 

BFOA-G and BFOA-S outperformed the performance of the benchmark IS-GA and 1NN 

algorithms in term of generalization capability, storage requirement, time complexity and 

the capability to balance the trade-off between reduction rate and generalization ability. The 

proposed BFOA-G is the most efficient algorithm in all evaluations for the experiment. 

Apart from that, BFOA-S also shows a good performance against the benchmark algorithm 

in all evaluation. The interesting finding is BFOA-S performed better in term of 

generalization capability, time complexity and on par with IS-GA in term of storage 

requirement. Both of algorithms share similar solution representation method, fitness 

function and initialization method but they produce result differently. Hence, it the capability 

of the original mechanism of the nature-inspired optimisation algorithm affects the 

performance of the proposed algorithm as an IS algorithm. 
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5.4 Graphical Summary for Small and Medium Datasets 

A further observation has been made to study the behaviour of the proposed 

algorithms in small and medium datasets using the results attached in Table 5.6. A summary 

for small and medium datasets is plotted using scatter plot graph for each algorithm. It is to 

illustrate the relationship between the size of data and the generalization capability of the 

algorithm in tackling variety size of data. Small datasets are the dataset that contain less than 

2000 instances and medium datasets contain more than 2000 but not more than 20000 

instances. The details of the datasets can be referred in Chapter 3. 

 Figure 5.1 shows the generated scatter plots of small datasets for all algorithms and 

Figure 5.2 shows the generated scatter plots of medium datasets for all algorithms. These 

scatter plots are plotted based on the result of storage requirement (x-axis) against the testing 

error (y-axis) obtained from Table 5.6. Each of the scatter plot in Figure 5.1 contains 36 

circles that represent 36 datasets with size of instances below than 2000. On the other hand, 

each of the scatter plot in Figure 5.2 contains 6 circles that represent 6 datasets with size of 

instances more than 2000 but less than 20000. A good scatter plot has more circles closer to 

origin (0,0). It can be translated as the reference set (model) has low testing error and storage 

requirement.  
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(a) 

  

(c) 

 

(b)   

 

(d) 

Figure 5.1: Scatter Plots of Storage Against Error for Small Datasets (a)BFOA-

G(<2000), (b)BFOA-S(<2000), (c)IS-GA(<2000), (d)1NN(<2000) 

 

Based on scatter plots in Figure 5.1, several interesting patterns are obtained. The 

most outstanding pattern that can be seen is both of scatter plots by BFOA-G and BFOA-G 

has more circles concentrated closer to origin (≤ 0.3). This means that both proposed 

algorithms produced small cardinality of reference set (low storage requirement) with high 
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generalization capability (low error) for small datasets. Furthermore, both of scatter plots by 

BFOA-G and BFOA-S have circles that closer to origin on x-axis compared to IS-GA. It 

shows that both algorithms have better capability in searching for the smallest cardinality of 

reference set without reducing its generalization capability than IS-GA. It also can be seen 

in the comparison with 1NN that the proposed algorithms produce lower error reference set 

with small storage requirement compared to 1NN where 1NN used the whole dataset to 

produce result. 

Another interesting observation that can be seen in Figure 5.1 is the scatter plots by 

BFOA-S and IS-GA. A closer look on scatter plot by BFOA-S shows an outlier spotted in 

the plot. This presence of outlier made the proposed BFOA-S look inferior to IS-GA since 

it can be misinterpreted as an incompetent IS algorithm in term of storage requirement. 

However, when the outlier in the scatter plot is extracted, it is from the smallest size dataset 

named as LENSES. This dataset consists of 24 instances with 3 classes. Based on the result 

in Table 5.6, BFOA-S obtained 0.3833 for storage requirement which is approximate to 9 

instances and IS-GA obtained 0.1875 which is approximate to 5 instances. Then, the study 

extracts the error rate produced by both algorithms for LENSES dataset to see their 

classification performance. BFOA-S obtained 0.083333 (8.3% error rate) for the testing error 

and IS-GA obtained 0.366667 (36.7% error rate). This shows that BFOA-S prioritized the 

generalization capability and does not focussed on reduction. In contrary, IS-GA focusses 

more on reduction compared to the generalization capability of the reference set. In this case, 

BFOA-S performed better than IS-GA. For small dataset, differences with 4 instances will 

not give much impact on the time complexity of the algorithm. 
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Apart from that, an interesting pattern is observed in the scatter plots for medium 

datasets in Figure 5.2. Both of proposed BFOA-G and BFOA-S have circles closer to origin 

on x-axis compared to IS-GA. It shows that both algorithms have high reduction capability 

compared to IS-GA in larger size of datasets. Furthermore, the error rate produced by BFOA-

G and BFOA-S were lower than IS-GA that can be seen in the scatter plots. Besides, BFOA-

G has the lowest error rate and storage requirement in medium datasets. The real capability 

of BFOA-G can be studied when larger size of dataset is supplied. Out of 6 datasets, 5 of 

them are located below than 0.3 (≤ 0.3) which is better than other algorithms in the 

experiments. Reduction capability is critical for medium datasets because it tremendously 

affect the time complexity of the algorithm when the size of reference is large. However, it 

must generate a high accuracy of reference set. High reduction without a good classification 

performance reference set is useless for IS algorithm because it contradicts with the IS 

concept. Consequently, poor classification performance is produced in latter process of 

classification. 

Another pattern that can be seen in Figure 5.2 is the pattern produced by scatter plots 

from BFOA-S and IS-GA. As mentioned above, BFOA-S and IS-GA share similar solution 

representation, fitness function and initialisation method. It relatable that the patterns 

produced by these algorithms are quite similar. They have a consistent reduction rate for 

medium dataset as can be seen on the x-axis in both scatter plots. However, it is clearly 

shown that BFOA-S has better performance compared to IS-GA since circles in scatter plot 

by BFOA-S are closer to the origin than circles in IS-GA’s scatter plot. Compare to IS-GA, 

BFOA-S has lower classification error. Hence, BFOA-S outperformed IS-GA in both 

criteria.  
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(a) 

  

(c) 

 

(b)

 

(d) 

Figure 5.2: Scatter Plots of Storage Against Error for Medium Datasets (a)BFOA-

G(>2000), (b)BFOA-S(>2000), (c)IS-GA(>2000), (d)1NN(>2000) 

 

Apart from that, both proposed algorithms also produced competitive result against 

1NN. Despite of using a partial of data to carry out classification task, both proposed 

algorithms able to produce good reference sets that are comparable when the whole dataset 

is used for classification. BFOA-G has better classification performance compared to 1NN 
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since more data are closer to origin compared to 1NN. This situation similar with BFOA-S 

that it also has lower error compare to 1NN for 6 medium datasets. Thus, both BFOA-S and 

BFOA-G able to outperform the performance of benchmark algorithms. 

As overall summary for the graphical scatter plots, BFOA-G is the best IS algorithm 

for small and medium datasets. It has a better balancing capability between generalization 

accuracy and storage requirement compared to BFOA-S, IS-GA and KNN. Another 

proposed algorithm BFOA-S also has better balancing capability between generalization 

accuracy and storage requirement compared IS-GA and 1NN. Thus, both of algorithms 

outperformed the benchmark algorithms in small and medium datasets. 

5.5 The Comparison Result with other IS Algorithms 

The study has carried out an additional comparison and analysis between the 

proposed algorithms against the state-of-the art and recent IS algorithms. The results from 

Garcia-Pedrajas et al. (2010) were extracted for nine selected algorithms for the comparison. 

In addition, IS-GA is also included in this comparative study. 24 datasets were used for the 

comparison and analysis. The average storage requirement and testing error rate over 24 

datasets were recorded and used for further analysis. The results can be referred in Table 

5.10.
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Table 5.10: The Average Results of Each Dataset for 12 Instance Selection Algorithms based on Testing Error and Storage Requirement 

Data sets IB3   DROP3   ICF   GA with CHC MSS   EBIS   

  Stor. Te.Err Stor. Te.Err Stor. Te.Err Stor. Te.Err Stor. Te.Err Stor. Te.Err 

Balance 0.2426 0.2790 0.2179 0.1694 0.1862 0.2258 0.1277 0.2194 0.3169 0.2823 0.9235 0.2065 

BCO 0.0310 0.0464 0.0638 0.0507 0.0375 0.0464 0.0549 0.0421 0.1013 0.0783 0.1771 0.0609 

CardAus 0.1435 0.2594 0.2532 0.2319 0.2409 0.2087 0.0837 0.2667 0.3908 0.2652 0.2521 0.2580 

CardGer 0.1461 0.3870 0.2559 0.2910 0.1880 0.3090 0.1447 0.3230 0.4309 0.3550 0.453 0.3110 

Derma 0.1294 0.0889 0.1385 0.0667 0.1982 0.0694 0.0979 0.0861 0.1988 0.0917 0.2094 0.0917 

Glass 0.3384 0.3381 0.2922 0.3238 0.2741 0.3333 0.1529 0.3762 0.4207 0.3143 0.6289 0.2714 

Heart270 0.1214 0.2185 0.2111 0.2222 0.1745 0.2370 0.0802 0.2630 0.3716 0.2630 0.4946 0.2519 

HeartC 0.1254 0.2467 0.2063 0.1800 0.2000 0.1867 0.1342 0.2567 0.3923 0.2600 0.3461 0.2734 

Hepatitis 0.1029 0.2667 0.1479 0.2000 0.1379 0.2133 0.0814 0.2067 0.3186 0.2334 0.3267 0.2933 

Ionosphere 0.1399 0.1086 0.0930 0.1457 0.0519 0.1514 0.1408 0.1371 0.2484 0.1457 0.1531 0.1229 

Iris 0.1385 0.0867 0.1652 0.0600 0.3526 0.0800 0.0859 0.1067 0.2155 0.0933 0.5217 0.1000 

Bupa-liver 0.1640 0.4265 0.4129 0.3971 0.3129 0.4265 0.0939 0.4471 0.5064 0.3971 0.9249 0.3706 

New-thyroid 0.1077 0.0619 0.1273 0.0619 0.1057 0.0619 0.167 0.0571 0.1546 0.0476 0.5292 0.0524 

Opdigits 0.0817 0.0651 0.1003 0.0514 0.0797 0.0792 0.4419 0.0342 0.1663 0.0425 0.502 0.0215 

Pima 0.1280 0.3355 0.2225 0.2829 0.1942 0.2842 0.1292 0.3013 0.4142 0.3342 0.8507 0.3224 

Sonar 0.1824 0.2150 0.3330 0.2750 0.2527 0.2750 0.1351 0.2300 0.3697 0.1800 0.1496 0.3550 

Wine 0.1379 0.0647 0.1702 0.0588 0.1441 0.0470 0.1199 0.0647 0.1801 0.0765 0.3231 0.0823 

Zoo 0.2110 0.0500 0.2319 0.1000 0.4736 0.0900 0.1626 0.0900 0.167 0.0700 0.1640 0.0900 

Yeast 0.4142 0.5189 0.2718 0.4696 0.2474 0.4716 0.2017 0.4926 0.5339 0.5230 0.7232 0.4838 

Image 0.1003 0.0697 0.1352 0.0641 0.1839 0.0745 0.0951 0.0762 0.1628 0.0498 0.4615 0.0615 

Vehicle 0.3002 0.3321 0.3192 0.3036 0.2869 0.3107 0.1845 0.3440 0.4139 0.3321 0.6477 0.3012 

Vote 0.0770 0.1047 0.0928 0.0907 0.1036 0.1070 0.0735 0.0884 0.1684 0.0930 0.1512 0.1372 

Waveform 0.2851 0.3208 0.2709 0.2876 0.1838 0.3118 0.4956 0.2990 0.3435 0.3065 0.8755 0.2792 

Page 0.0368 0.0761 0.0438 0.0411 0.0448 0.0415 0.226 0.0430 0.0991 0.0428 0.3578 0.0417 

AVERAGE 0.1619 0.2070 0.1990 0.1844 0.1940 0.1934 0.1546 0.2021 0.2952 0.2032 0.4644 0.2017 
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Data sets IMOEA   LVQPRU   CCIS   
BFOA-

S 
  BFOA-G   IS-GA   

  Stor. Te.Err Stor. Te.Err Stor. Te.Err Stor. Te.Err Stor. Te.Err Stor. Te.Err 

Balance 0.2791 0.2952 0.1197 0.1903 0.0256 0.1306 0.0210 0.2048 0.0240 0.1953 0.0322 0.2559 

BCO 0.1004 0.0580 0.0387 0.0377 0.0138 0.0333 0.0169 0.0400 0.0143 0.0214 0.0309 0.0543 

CardAus 0.0432 0.2044 0.0644 0.2014 0.0201 0.1942 0.0213 0.1565 0.0145 0.1217 0.0313 0.1942 

CardGer 0.0758 0.3240 0.0498 0.3030 0.0189 0.2700 0.0171 0.3220 0.0100 0.2580 0.0318 0.3960 

Derma 0.0535 0.0528 0.5952 0.0361 0.0506 0.0583 0.0325 0.3033 0.0765 0.0382 0.0415 0.3745 

Glass 0.0796 0.4476 0.5539 0.3000 0.0679 0.3143 0.0607 0.2524 0.1075 0.3039 0.0509 0.3268 

Heart270 0.0701 0.3111 0.1951 0.2222 0.0280 0.2185 0.0430 0.1704 0.0370 0.1593 0.0444 0.1852 

HeartC 0.0607 0.2967 0.1684 0.2567 0.0243 0.1667 0.0353 0.4094 0.0759 0.4385 0.0373 0.4326 

Hepatitis 0.0281 0.2333 0.1607 0.2267 0.0250 0.2267 0.0652 0.1150 0.0645 0.1033 0.0529 0.1279 

Ionosphere 0.0406 0.1457 0.1693 0.0971 0.0380 0.0857 0.0365 0.1225 0.0285 0.1140 0.0407 0.1939 

Iris 0.0266 0.1667 0.3837 0.0733 0.0422 0.0733 0.0460 0.0267 0.1000 0.0267 0.0513 0.0733 

Bupa-liver 0.0889 0.4147 0.1997 0.3971 0.0476 0.3647 0.0325 0.3623 0.0290 0.2960 0.0357 0.3997 

New-thyroid 0.0857 0.0571 0.1763 0.0524 0.0402 0.0476 0.0540 0.0558 0.0698 0.0182 0.0488 0.1108 

Opdigits 0.1450 0.0374 0.0234 0.0634 0.1602 0.0452 0.0232 0.5986 0.0089 0.0979 0.0396 0.6085 

Pima 0.0544 0.3948 0.0708 0.2855 0.0157 0.2579 0.0190 0.3033 0.0130 0.2136 0.0319 0.3646 

Sonar 0.0460 0.205 0.1591 0.2150 0.0739 0.2750 0.0524 0.3071 0.0481 0.2074 0.0543 0.3986 

Wine 0.0376 0.1412 0.2429 0.0412 0.0379 0.0235 0.0584 0.0556 0.0843 0.0222 0.0517 0.0618 

Zoo 0.0349 0.1000 0.4242 0.0500 0.0978 0.0800 0.1366 0.0591 0.1733 0.0300 0.1168 0.1682 

Yeast 0.1790 0.5500 0.1424 0.4311 0.0276 0.4007 0.0185 0.5910 0.0300 0.4939 0.0351 0.6247 

Image 0.0219 0.5282 0.0435 0.0541 0.1399 0.0853 0.0208 0.2104 0.0152 0.1234 0.0376 0.2061 

Vehicle 0.0834 0.3310 0.0906 0.2857 0.0551 0.3298 0.0193 0.5828 0.0236 0.3913 0.0323 0.6218 

Vote 0.0503 0.0489 0.0357 0.0930 0.0161 0.0605 0.0253 0.0828 0.0230 0.0392 0.0333 0.1381 

Waveform 0.0856 0.2516 0.0120 0.1796 0.3634 0.3060 0.0222 0.6598 0.0030 0.2556 0.0394 0.6824 

Page 0.1397 0.0441 0.0170 0.0431 0.0713 0.0457 0.0223 0.0583 0.0046 0.0872 0.0390 0.0607 

AVERAGE 0.0796 0.2350 0.1724 0.1723 0.0625 0.1706 0.0375 0.2521 0.0449 0.1690 0.0434 0.2942 

Table 5.10 continued 
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Table 5.11 presents the average result on testing errors and storage requirement over 

24 selected datasets for all algorithms. Meanwhile, Table 5.12 and Table 5.13 show the 

statistical results of the proposed algorithms against ten IS algorithms in term of testing error 

and storage requirement. It is clearly shown in Table 5.11 that the proposed BFOA-G 

performed better against the pioneer IS-GA, three state-of-the-arts algorithms (IB3, DROP3 

and ICF) and six recent algorithms by having the lowest average testing error.  Apart from 

that, both of proposed algorithms obtained lower average storage requirement than the other 

10 algorithms. BFOA-S dominates the ranking by having the lowest average storage 

requirement. Unfortunately, the result shows that BFOA-S has inferior classification 

performance compared to the recent algorithms such LVQPRU and CCIS in term of average 

testing error. BFOA-S only manages to outperform the benchmark IS-GA in term of average 

testing error over 24 datasets.  

Table 5.11:  Average Error Rate and Average Storage Requirement for 12 Algorithms 

IS Algorithm Average Error Average Storage 

IB3 0.206958 0.161892 

DROP3 0.184383 0.199033 

ICF 0.193413 0.193962 

GA-CHC 0.202138 0.154596 

MSS 0.203221 0.295238 

Ebis 0.201658 0.464442 

IMOEA 0.234979 0.079588 

LVQ-PRU 0.172321*** 0.172354 

CCIS 0.170562** 0.062546 

IS-GA 0.294192 0.043362** 

BFOA-S 0.264096 0.037500* 

BFOA-G 0.169008* 0.044938*** 

Note: *winner, **first runner-up, ***second runner-up 
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Statistical results in Table 5.12 show that the proposed BFOA-G significantly 

outperformed all eight algorithms except LVQPRU and CCIS10. There are significant 

different obtained by BFOA-G for both statistical test against all eight algorithms in term of 

testing error. BFOA-G shows a competitive by having more win records against LVQPRU 

and CCIS10. However, the statistical result shows that there is no significant difference at 

confidence level 95% between BFOA-G against LVQPRU and CCIS10. Hence, they are 

competitive to each other. On the hand, the proposed BFOA-S also competitive against the 

other algorithms in term of testing error. The statistical result in Table 5.12 shows that there 

is no significant different between BFOA-S and other nine algorithm except IS-GA. On top 

of that, the statistical result also shows that the other algorithm unable to outperform BFOA-

S statistically. As can be seen in Table 5.12, BFOA-S unable to outperform LVQPRU and 

CCIS10 in term of win-draw-loss record but the statistical result also shows that LVQPRU 

and CCIS10 do not have significant difference at 95% confidence level for both statistical 

tests against BFOA-S.  Thus, the proposed BFOA-S is not inferior but competitive in term 

of testing error against the selected ten algorithms. 
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Table 5.12: The Statistical Result Comparison of Two Proposed Algorithms Against 

Ten Selected IS Algorithms using 24 Selected Datasets based on Testing Error Rate 

Algorithm 

(Row) 

Analysis Algorithm (Column) 

BFOA-S BFOA-G 

IB3 Ss 

Ps 

Pw 

14/0/10 

0.541 

0.658 

18/0/6** 

0.023 

0.011 

DROP3 Ss 

Ps 

Pw 

12/0/12 

1.000 

0.290 

17/0/7 

0.064 

0.081 

ICF Ss 

Ps 

Pw 

12/0/12 

1.000 

0.458 

18/0/6** 

0.023 

0.019 

GA-CHC Ss 

Ps 

Pw 

14/0/10 

0.541 

0.607 

18/0/6** 

0.023 

0.022 

MSS Ss 

Ps 

Pw 

14/0/10 

0.541 

0.668 

18/0/6** 

0.023 

0.032 

EbIS Ss 

Ps 

Pw 

14/0/10 

0.541 

0.819 

17/0/7 

0.064 

0.059 

IMOEA Ss 

Ps 

Pw 

15/0/9 

0.307 

0.648 

18/0/6** 

0.023 

0.005 

LVQ-PRU Ss 

Ps 

Pw 

7/0/17 

0.064 

0.067 

13/0/11 

0.839 

0.568 

CCIS-10 Ss 

Ps 

Pw 

7/0/17 

0.064 

0.028 

16/0/8 

0.152 

0.424 

IS-GA Ss 

Ps 

Pw 

23/0/1** 

0.000 

0.000 

22/0/2** 

0.000 

0.000 

Note: * the row algorithm has significant difference with the column algorithm for both statistical tests, **the 

column algorithm has significant difference with the row algorithm for both statistical tests  
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Table 5.13: The Statistical Result Comparison of Two Proposed Algorithms Against 

Ten Selected IS Algorithms Using 24 Selected Datasets Based on Storage Requirement 

Algorithm 

(Row) 

Analysis Algorithm (Column) 

BFOA-S BFOA-G 

IB3 Ss 

Ps 

Pw 

24/0/0** 

0.000 

0.000 

24/0/0** 

0.000 

0.000 

DROP3 Ss 

Ps 

Pw 

24/0/0** 

0.000 

0.000 

24/0/0** 

0.000 

0.000 

ICF Ss 

Ps 

Pw 

24/0/0** 

0.000 

0.000 

24/0/0** 

0.000 

0.000 

GA-CHC Ss 

Ps 

Pw 

24/0/0** 

0.000 

0.000 

22/0/2** 

0.000 

0.000 

MSS Ss 

Ps 

Pw 

24/0/0** 

0.000 

0.000 

23/0/1** 

0.000 

0.000 

EbIS Ss 

Ps 

Pw 

24/0/0** 

0.000 

0.000 

23/0/1** 

0.000 

0.000 

IMOEA Ss 

Ps 

Pw 

19/0/5** 

0.007 

0.004 

16/0/8 

0.152 

0.052 

LVQ-PRU Ss 

Ps 

Pw 

22/0/2** 

0.000 

0.000 

24/0/0** 

0.000 

0.000 

CCIS-10 Ss 

Ps 

Pw 

13/0/11 

0.839 

0.346 

12/0/12 

1.000 

0.977 

IS-GA Ss 

Ps 

Pw 

19/0/5** 

0.007 

0.013 

16/0/8 

0.152 

0.932 

Note: *the row algorithm has significant difference with the column algorithm for both statistical tests, **the 

column algorithm has significant difference with the row algorithm for both statistical tests  

 

The statistical results in Table 5.13 clearly shows that the proposed BFOA-G and 

BFOA-S have better performance in storage requirement compared to most of the selected 

algorithms. BFOA-G statistically outperformed seven algorithms and there is significant 

difference at 95% confidence level for both statistical tests. Meanwhile, the proposed BFOA-
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S outperformed nine algorithms in term of storage requirement. There statistical result shows 

that there is significant difference in both statistical tests between BFOA-S and the nine 

algorithms. Both proposed algorithms have competitive performance against CCIS10 since 

there is no significant difference in the statistical result.  

Table 5.14:  The Ranking of 12 Algorithms based on Average Testing Accuracy (Acc), 

Reduction Rate (Red) and Balancing Capability Between Accuracy and Reduction 

(Acc*Red) 

 Avg. 

Testing 

Accuracy 

 Reduction 

Rate 

 Acc*Red 

BFOA-G 

CCIS-10 

LVQ-PRU 

DROP3 

ICF 

EbIS 

GA-CHC 

MSS 

IB3 

IMOEA 

BFOA-S 

IS-GA 

0.8310 

0.8294 

0.8277 

0.8156 

0.8066 

0.7983 

0.7979 

0.7968 

0.793 

0.765 

0.7479 

0.7058 

BFOA-S 

IS-GA 

BFOA-G 

CCIS-10 

IMOEA 

GA-CHC 

IB3 

LVQ-PRU 

ICF 

DROP3 

MSS 

EbIS 

0.9625 

0.9566 

0.9551 

0.9375 

0.9204 

0.8454 

0.8381 

0.8276 

0.806 

0.801 

0.7048 

0.5356 

BFOA-G 

CCIS-10 

BFOA-S 

IMOEA 

LVQ-PRU 

IS-GA 

GA-CHC 

IB3 

DROP3 

ICF 

MSS 

EbIS 

0.7937 

0.7776 

0.7199 

0.7041 

0.6850 

0.6752 

0.6745 

0.6646 

0.6533 

0.6501 

0.5616 

0.4276 

 

On the other hand, a ranking for the proposed algorithms and ten selected algorithms 

is generated in the Table 5.14 according to their average testing accuracy (Acc), reduction 

rate (Red) and balancing capability between accuracy and reduction rate (Acc*Red). This 

additional analysis is generated to evaluate the capability of an algorithm to balance between 

classification accuracy and reduction for the purpose of comparison between the proposed 

algorithm and the other ten selected algorithms. The results were extracted from Table 5.10 

for all algorithms. The ranking starts from the highest performance algorithm and ends with 

poorest performance algorithm at the bottom in every respective column.  



110 

 

Based on the result in table 5.14, the proposed BFOA-G is at top of ranking that 

indicates the highest performance algorithm for the average testing accuracy for 24 datasets. 

Unfortunately, the proposed BFOA-S is ranked as second from the bottom which is only 

outperformed IS-GA in term of average testing accuracy. However, BFOA-S has the highest 

performance in reduction rate and placed first in the ranking. BFOA-G also showed a good 

performance in reduction rate where it ranked as the third place in the ranking.  

Since Instance Selection method aims for algorithm that has high performance in 

both accuracy and reduction rate then the products of testing accuracy and reduction rate is 

calculated to measure the capability of the algorithm to balance the trade-off between these 

two criteria. The result in Table 5.14 shows that the proposed BFOA-G obtained the first 

place in the ranking. This indicates that BFOA-G have the highest capability to produce a 

high accuracy solution with high reduction rate. It means that BFOA-G is capable to consider 

the trade-off between those criteria and able to excel in both of them. Apart from that, BFOA-

S also shows a competitive result where it ranked as the third place in the ranking for 

Acc*Red. BFOA-S ranked as third as it loses the balance in considering the accuracy of the 

reference set and focussed more on reduction. Thus, it unable to outperformed CCIS10 since 

this algorithm is consistent in term of testing accuracy and also have high reduction rate. It 

is expected that BFOA-S has this kind of result since BFOA-S adopted most of the 

conventional methods from IS-GA. Therefore, BFOA-S also inherit all the challenges or 

weaknesses faced by IS-GA. However, BFOA-S significantly outperformed IS-GA as it 

ranked in top three in the ranking and outperformed other algorithms in term of balancing 

capability of between reduction and accuracy (Acc*Red). Thus, BFOA-S is competitive 

classification algorithm against the recent IS algorithms despite of having most of the 

conventional methods in its implementation. 
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In addition, Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6 show scatter plots of 

the results for 24 datasets obtained from Table 5.10 for each algorithm. Each algorithm has 

two scatter plots which are for small datasets (<2000 instances) and medium datasets (>2000 

instances). Similar with the previous section, x-axis represent the storage requirement and y-

axis represent the testing error of the algorithm. The best result is determined by the 

algorithm with the most circles closer to origin (0,0). 

Based on scatter plots for small datasets in Figure 5.3, Figure 5.4, Figure 5.5 and 

Figure 5.6, there are roughly seven algorithms have been identified as they displayed better 

results in term of testing error for small and medium datasets. The best result was portrayed 

by CCIS10 for small datasets with error below than 0.4 (< 0.4). BFOA-G and LVQPRU also 

shows competitive results in small datasets that mostly of the circles are positioned below 

0.3 on y-axis (< 0.3) for the testing error which as good as the CCIS’s performance. In term 

of storage requirement, CCIS10 showed a better result where all circles are positioned below 

0.1 (< 0.1). However, BFOA-G, BFOA-S and IS-GA also show competitive result in storage 

requirement for small datasets where most of the circles are positioned below 0.1 (< 0.1) and 

except have an outlier positioned more than 0.1 (< 0.2).  

For medium datasets, LVQPRU and BFOA-G displayed better result compared other 

algorithms in term of testing error. All circles are positioned below 0.2 (< 0.2) in the scatter 

plot for LVQPRU. Meanwhile, the circles in scatter plot of BFOA-G for medium datasets 

are positioned below 0.3 (< 0.3). LVQPRU has better result compared to BFOA-G in 

medium datasets for testing error. In term of storage requirement, BFOA-G, BFOA-S, 

LVQPRU and IS-GA showed better result where most of the circles are positioned below 

than 0.1 (< 0.1) on x-axis for medium datasets. Among of them, BFOA-G has the lowest 
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storage requirement for medium datasets where the circles are closer to origin compared to 

others. As the summary for Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6, some algorithm 

performs better in small datasets and some is better in medium datasets. However, the 

proposed BFOA-G is competitive in both small and medium dataset in term of testing error 

and storage requirement. 
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Figure 5.3: Summary of Results on Small and Medium Datasets for 12 Algorithm based 

on Testing Error Rate and Storage Requirement (Part 1)
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Figure 5.4: Summary of Results on Small and Medium Datasets for 12 Algorithm based 

on Testing Error Rate and Storage Requirement (Part 2)
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Figure 5.5: Summary of Results on Small and Medium Datasets for 12 Algorithm based 

on Testing Error Rate and Storage Requirement (Part 3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r

Storage

IMOEA (<2000 Instances)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r

Storage

CCIS (<2000 Instances)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r

Storage

LVQ-PRU (<2000 
Instances)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r

Storage

IMOEA (>2000 Instances)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r

Storage

CCIS (>2000 Instances)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r

Storage

LVQ-PRU (>2000 
Instances)



116 

 

 

 

 

 

 

 

Figure 5.6: Summary of Results on Small and Medium Datasets for 12 Algorithm based 

on Testing Error Rate and Storage Requirement (Part 4) 
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5.6 Discussion 

This study has successfully introduced and implemented two new conceptual 

frameworks for the conversion of the optimisation BFOA into Instance Selection (IS) 

algorithm that covers two major categories in Instance Selection which are Prototype 

Selection and Prototype Generation. The proposed BFOA for Prototype Selection is called 

as BFOA-S and the proposed BFOA for Prototype Generation is named as BFOA-G. From 

the experimental study that has been conducted, both proposed algorithms are able to 

outperform the benchmark algorithm statistically. This study has proved that it is possible to 

adopt an optimisation BFOA into IS algorithm and it also proved that the capabilities of the 

nature-inspired algorithm affect the performance of the future IS algorithm that will be 

developed. 

From the experiment, BFOA-G is statically proved as the most efficient algorithm 

against the benchmark and other selected IS algorithms. On the other hand, the other 

proposed algorithm BFOA-S also outperforms the benchmark algorithms and shows 

competitive result against the other selected IS algorithms. Despite of having similar solution 

representation, fitness function and initialisation method with the conventional IS-GA, 

BFOA-S able to perform faster and produce higher accuracy reference set compared to IS-

GA. This result shows that the proposed BFOA has better global search capability and higher 

convergence rate compare to GA for IS problem. This finding is consistent with the 

performance of BFOA in other domains against GA (Chakrabarty et al., 2012; Zhang & Wu, 

2012; Rupal & Kataria, 2014; Hongwei & Liwei, 2015; Lv et al., 2018). 

Unfortunately, BFOA-S unable to outperform the other state-of-the-art IS algorithm 

and the recent IS algorithms due to the challenges and weaknesses from the conventional 
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methods. It is undeniable that the original capabilities of an optimisation algorithm affect the 

capability of the future developed IS algorithm. It also expected for the BFOA-S to have this 

kind of performance against them since the BFOA-S adopted the conventional methods to 

convert an optimisation BFOA into evolutionary IS algorithm. The advantage of adopting 

the conventional method is that it easier to study the capability of BFOA as IS algorithm and 

observe either the modified BFOA is inheriting its original capabilities from its original 

optimisation algorithm or not. Besides, the study can observe how far the capability of 

BFOA can improve the nearest neighbour classification instead of having the most 

conventional method as the base for constructing the reference set. Based on this finding, it 

is easier to identify the weaknesses that can be improved in the future.  

Apart from that, both proposed algorithms are faster and more efficient compared to 

benchmark algorithm in the experiment. It is because of the both proposed algorithms have 

lower cycles than IS-GA. Commonly, the algorithm’s cycles are calculated based on the 

iteration of outermost loop counters. As stated in the parameter configuration, IS-GA has 

500 generation cycles that halt the algorithm when it reaches 500 generations of population. 

On the other hand, the outermost loop for the proposed BFOA-S and BFOA-G is the 

elimination and dispersal steps, Ned and both algorithms have small iteration compared to IS-

GA. The value of Ned for BFOA-G is 10 (Ned = 10) and the value of Ned BFOA-S is 5 (Ned = 

5). It is impossible to produce a good result by having such a small generation cycle of 

population. According to Li et al. (2014) in their analysis suggested that the cycles are 

determined by evolution generation that based on reproduction steps, Nre for BFOA since the 

population of the bacteria are evolved during reproduction process. Hence, the generation 

cycles are the product of Nre and Ned for BFOA. The generation cycles for BFOA-S is 25 

cycles ( Nre =5 , Ned =5) and the generation cycles for BFOA-G is 200 cycles (Nre=20 , Ned 
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=10). Since both proposed algorithms have smaller generation cycles, they require less time 

and resources to complete the training process compared to benchmark IS-GA.  

  In comparison between BFOA-S and BFOA-G, there is huge difference in term of 

time complexity. BFOA-G works 13 times faster than the BFOA-S. BFOA-S unable to 

perform faster due to the complexity in the solution representation, encoding method and 

calculation of the fitness. The major contribution to the complexity of the BFOA-S is the 

length of the bacterium ‘s cells. Since a bacterium in BFOA-S represent a candidate 

reference set, the bacterium inherits the total size of dataset supplied as its cell’s length. The 

larger the size of the dataset, the longer the size of a bacterium. Furthermore, every time 

there is changes occurred on the binary values in the cell, it will trigger the algorithm to re-

evaluate the bacterium fitness. The algorithm needs to extract the instance’s attributes based 

on binary value in the cells to carry out the calculation for the fitness. This situation increases 

resources needed for calculation and increases the time taken for the algorithm to complete 

its cycles. This finding is consistent with Cano et al. (2005) and Garcia et al. (2008) that the 

length of chromosome affects the computational time of the algorithms.  Meanwhile in 

BFOA-G, the bacterium’s cell size is depended on the dimension of an instance’s attributes. 

Increasing in number of instances in the dataset will not affect the length of a bacterium. 

Furthermore, any modification is being made directly on the bacterium’s attributes which 

also represents an instance’s attributes. The process is simpler and occurred faster than 

BFOA-S since the bacterium’s length is shorter. Thus, BFOA-G can perform faster to 

complete its cycles. The improvement for BFOA-S can be made by using different solution 

representation and encoding method or by doing some modification on the algorithm’s 

structure to reduce the complexity of the algorithm.  
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On the other hand, both proposed algorithms able to produce better results despite of 

having small generation cycles due to the global search capability in BFOA. Generally, an 

algorithm with small cycles is unable to produce good result because there are not enough 

iterations for the algorithm to search and converge at the global solution. Sometimes, it is 

possible for the algorithm trapped at the local solution. Global search capability facilitates 

the algorithm to discover and converge at the global solution faster and avoid the algorithm 

from trapped at local solution. This can be seen clearly in the performance of BFOA-S 

against IS-GA where the global search capability of BFOA helps the algorithm to search for 

high performance reference set with small cardinality faster than IS-GA. Besides, BFOA-G 

also has similar capability that it can converge at the global solution with small generation 

cycles. 

Another effect of the global search capability in the proposed algorithm is the 

reduction performance of the proposed algorithm. The global search ability does not affect 

the reduction performance of BFOA-G because the size of solution is fixed with the 

predefined rules that has been set from the start. However, the reduction performance of 

BFOA-S and IS-GA is controlled by similar predefined threshold T=10 for penalty function. 

According to the results, BFOA-S has higher reduction rate in all datasets compared to IS-

GA. The global search capability that reside in elimination and dispersal process helps the 

proposed BFOA-S to explore into new search space. Therefore, BFOA-S able to find the 

smallest size possible reference set that can represent the datasets compared to IS-GA.  

The current value of threshold T adopted from Kuncheva and Bezdek (1998) is not 

suitable for datasets that have class labels more than threshold value. Some classes will be 

missed out from the reference set since the algorithm is forced to reduce the cardinality of 
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the reference set equal or less than the threshold. It is suggested to have a flexible value of 

T to ensure that at least each class has a single instance that can represent them in the 

reference set. On top of that, penalty function with small threshold value only works on 

smaller size of data. When it comes to a larger size of dataset, the initial penalty value 

become too high because higher penalty is given to the extra instances in the reference set 

that above the threshold. Then, the removal or reduction in a reference set will not have so 

much impact on the fitness value of the reference set since the penalty value of the reduced 

reference set will be too small. This condition makes the algorithm become less sensitive to 

the changes in the classification accuracy of the reference set and it affects the decision-

making mechanism of the algorithm to select the best reference set in latter process. 

Moreover, it also affects the capability of the algorithm to balance the trade-off between 

generalization accuracy and reduction. Thus, the algorithm will focus more on reduction and 

disregard the generalization performance of the reference set that can been in the result 

produced by BFOA-S and IS-GA. 

Even though this study does not focus specifically on the class distribution in 

datasets, most of the datasets used in the experiment are imbalanced. Imbalanced dataset is 

known with a lot of issues and challenges for its majority and minority classes that affect the 

classification accuracy of the algorithm (He & Garcia, 2009; Zang & Wang, 2013). Balanced 

datasets normally produce better result compared to imbalance datasets (Zang & Wang, 

2013). The classification performance for imbalanced dataset is depended on the capability 

of the algorithm to produce a good reference set that is not biased towards majority classes. 

As can be seen from the results, both proposed algorithms are able to produce high accuracy 

results that on par with the recent algorithms especially BFOA-G. It is possible because 

BFOA-G is adopted with restricted initialisation method that consider the ratio of instances 
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for each class. This method ensures that at least an instance is presented to become the 

representative for the minority class. Thus, it can reduce the effect of bias in the reference 

set for the testing process.  

5.7 Summary 

As the summary, this chapter has presented and discussed the results and analysis 

obtained from the experimental studies to evaluate the performance of the proposed 

algorithms, BFOA-S and BFOA-G in term of generalization accuracy, storage requirement, 

time complexity and the balancing capability between reduction and generalization. This 

chapter also discussed in detail the effect of the parameters on the algorithm’s performance 

based on the heuristic setting. From the heuristic result, this study has come up with 

recommended parameter configurations for both proposed algorithms. Furthermore, the 

finding in heuristic result can be the guidelines for the future research to improve the 

proposed algorithms. 

There are two experiments that have been carried out which are against the 

benchmark algorithms using 42 UCI datasets and a comparison against three state-of-the-art 

and nine recent IS algorithms using 24 selected datasets. For the experiment against the 

benchmark algorithms, the proposed BFOA-G is statistically most efficient and has the 

highest performance in overall evaluation criteria. It performed 39 times faster than the 

benchmark IS-GA algorithm and approximately 3 times faster than BFOA-S. It also has a 

good balancing capability since it able to produce high reduction on the storage requirement 

while maintaining high generalization accuracy simultaneously. The proposed algorithm 

obtained 80.73% on the average testing accuracy and it has 10% higher than the performance 

of IS-GA that only achieved 70.7% on the average testing accuracy for 42 datasets.  
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The comparison study against three state-of-the-art and nine recent IS algorithms 

shows that the proposed algorithm BFOA-G statistically outperformed the other algorithms 

in term of average error and storage requirement in general. A ranking has been established 

which based on the balancing capability between reduction and generalization of the 

algorithms. BFOA-G has the highest performance and ranked as the first place in term 

balancing capability for the evaluated criteria. On the other hand, BFOA-S also performed 

competitively as it ranked the third place in the ranking. Generally, both proposed algorithms 

perform well in both experiments. On the other hand, BFOA-S also performed competitively 

against the existing IS algorithm as it ranked the third place in the ranking. Furthermore, the 

statistical result for BFOA-S also shows that the existing IS algorithm do not outperform the 

proposed BFOA-S. Hence, it can conclude that BFOA-S has competitive performance 

against them.
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CHAPTER 6  

 

 

CONCLUSION 

6.1 Conclusion  

As an overall conclusion, this study has introduced two new Instance Selection (IS) 

algorithms which originated from Bacterial Foraging Optimisation Algorithm (BFOA) to 

address the problem of Nearest Neighbour Classification. The two algorithms were 

developed based on each category in IS, indicated in their names respectively, BFOA-S 

(BFOA using the concept of Prototype Selection) and BFOA-G (BFOA using the concept 

of Prototype Generation).  BFOA is a nature-inspired optimisation algorithm that is known 

for its successfulness in many applications and domains. It has a good optimisation 

performance due to its global search capability and high convergence rate. However, none 

of the works published on BFOA has proposed BFOA as a classification algorithm despite 

its good performance compared to other nature-inspired algorithms such as Genetic 

Algorithm and Particle Swarm Optimisation. The two latter mentioned algorithm both have 

been adopted into IS algorithms in which they are well known to have better performance 

compared to other IS algorithms. In other words, this study has successfully introduced two 

new frameworks for the conversion of the optimisation BFOA into IS algorithms. 

The performances of the proposed algorithms have been evaluated on 42 UCI 

datasets (Frank & Asuncion, 2011) with the selected benchmark algorithms. The statistical 

results demonstrate that both BFOA-S and BFOA-G were outperformed the other algorithms 

in term of their generalization accuracy, storage requirement, time complexity and capability 

to balance between reduction and generalization performance. BFOA-G was identified as 
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the most efficient and high-performance algorithm in the evaluated criteria, followed by 

BFOA-S.  

In addition, a comparative study against three state-of-the-art algorithms and six 

recent IS algorithms have been done in term of their error rate, storage requirement and 

capability to balance between reduction and generalization performance. A ranking has been 

generated based on the algorithms’ performance. From the ranking, BFOA-G has been 

identified as the most efficient and high-performance algorithm. On the other hand, BFOA-

S also performed competitively as it ranked the third place in the ranking. Generally, both 

proposed algorithms were performed well in both experiments. 

The proposed algorithms were able to produce good results due to the global search 

capability and its high convergence rate from the BFOA mechanism. The proposed 

frameworks were successfully preserved those capabilities even though lots of modification 

have been made in converting the BFOA into IS algorithm.  Furthermore, this study also 

proves that the original capability of the nature-inspired algorithm does affect the 

performance of its modified version as an IS algorithm.  

Based on the finding, this study has proved that the BFOA can be modified using PG 

and PS approach to become an IS classifier. The overall finding also shows that BFOA with 

the PG approach has better performance in term of accuracy, cardinality and time complexity 

compared to BFOA with PS approach. Therefore, it is recommended to adopt BFOA with 

PG approach since BFOA-G is the best modified IS algorithm in the study. Otherwise, it is 

necessary to find different initialisation method and fitness function in order to produce a 

better BFOA with PS approach so that its performance is comparable to BFOA with PG. 
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The proposed algorithms still have many rooms for improvement and still far from 

their state-of-the-art. In this study, few guidelines for parameter configuration of the 

proposed algorithms have been provided. These guidelines can be referred to as a further 

improvement of both proposed algorithms.  

6.2 Future Works 

Based on the evaluation and analysis obtained in this study, there are several issues 

that could be proposed for the future works. The issues are listed as follows. 

Initialisation and representation method- As the experimental result in Chapter 5 

suggests, new solution representation and initialisation method are needed to improve the 

performance of BFOA-S. The current binary-like representation of dataset in the proposed 

BFOA-S increases the complexity of the classifier to process and calculate the fitness 

function of candidate solutions since the length of chromosome increase proportionally with 

the size of dataset. Due to the complexity of the classifier, it is impossible to increase the 

iteration or adopt more complex method in latter process to improve BFOA-S. Thus, new 

initialisation and representation method is needed to improve the performance of BFOA-S.  

Adopt or devise a better evaluation fitness function – To improve the 

classification accuracy for imbalanced datasets, a better performance measure needs to be 

adopted or devised. The current fitness function is measured solely based on the overall 

recognition and it does not consider the performance of data in each class. The weakness of 

the accuracy as the fitness function is the algorithm will prioritize the majority class since it 

will increase the overall recognition and might disregard the minority class to be selected as 

representative in the reference set or model. Thus, a better fitness function needs to be 

adopted to address the weakness. 
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Feature selection/filtering – In the literature, feature selection is used to improve 

the classification accuracy of the classifier by selecting the optimal features and removing 

the noises features. By removing noise features, it improves the accuracy of the 

representative to represent a respective class and simultaneously reduce the time complexity 

of classifier since the dimension of the dataset is reduced. This method can be adopted into 

BFOA-S and BFOA-G to improve their performance in classification. 

Large datasets – This study does not include large datasets in the experiments due 

to scaling up problem and limited hardware resources. Most of evolutionary IS algorithms 

suffered scaling up problem when the size of dataset is too large to be processed. The current 

structures of the proposed algorithms were restricted to work with large dataset. Thus, the 

proposed algorithms need to be reconstructed or adopted with another methods for large 

dataset such as stratification method (García et al., 2012) to enable the proposed algorithms 

to work with large datasets (more than 20000 instances).  

Pre-processing Algorithm – As mentioned in the discussion, Instance Selection 

algorithms also can be used as a pre-processing algorithm to find a good training set for other 

classifiers. Thus, the proposed BFOA can be used for pre-processing algorithm for other 

algorithms.  
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